Drivers of the variability of dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) in the Southern North Sea

Royer Colin^{1,2}, Jon Lapeyra Martin¹, Alberto V. Borges² & Nathalie Gypens¹ ¹Ecology of Aquatic Systems (ESA) Laboratory, Université Libre de Bruxelles (ULB), Belgium ²Chemical Oceanography Unit, FOCUS Research Unit, Université de Liège (ULiège), Belgium

Context

DMS(P,O)	Are the precursors of DMS – climate active gas impacting the Earth's radiative balance		
	Are playing several hypothetical roles on phytoplankton cells: cryoprotectant, osmoregulator or antioxidant		
BCZ	Belgian Coastal Zone - Coastal waters characterized by three phytoplanktonic blooms: 1) The first in early spring dominated by diatoms 2) The second in late spring dominated by the Prymnesiophyceae <i>Phaeocystis globosa</i> 3) The third in summer dominated by diatoms		

Goal

Are the environmental drivers influencing the interannual variability between 2016 and 2018 of phytoplankton chlorophyll *a* concentration? phytoplankton community composition? DMSP and DMSO concentration?

Material

Sampling	each month during the year 2016 and 2018 bimonthly between March and May five fixed stations covering near- and off-shore gradient	Biotic parameters	Chlorophyll <i>a</i> (Chl <i>a</i>) concentrations Phytoplankton diversity DMSP and DMSO concentration
Abiotic parameters	Sea Surface Temperature (SST) Sea Surface Salinity Photosynthetic Active Radiation (PAR) Nutrient concentrations	Method	Fluorometry for Chl <i>a</i> DNA sequencing for phytoplankton diversity Gas Chromatography for DMS(P,O)

E

- 2016

Results

С

Figure: Seasonal evolution in 2016 and 2018 of (A) average ChI o concentration (µg L¹); (B) average Surface Temperature (SST) (°C); (C) average DMSP_p concentration (nmol L¹); (D) average photosynthetic active radiation (P&R) (µE m³2⁺¹); (E) average DMSO_v concentration (nmol L¹)

Chla different in early spring (Fig. A)

✓ SST in winter 2018 < 2016 (Fig. B)
 Less zooplankton grazing

TAKE HOME MESSAGE

Comparison of (a)biotic drivers and DMS(P,O)

concentrations between 2016 and 2018

Chla concentration higher during the early spring and summer diatom blooms in 2018 due to higher incident light + colder winter +

Seasonal variation of DMS(P,O),:Chla

2018

230

Legend • Station — Belgia Depth (m) 0 12.5 25 37.5 50

10

40 kr

higher nutrient inputs

2016

ratio identical

- PAR in February 2018 > 2016 (Fig. D)
 Early onset of the bloom
- DMS(P,O) similar (Fig. C, E) • Low-DMSP producers dominated the phytoplankton community

Chla different in summer (Fig. A)

- SST in July 2018 > 2016 (Fig. B)
 Promoting growth
- ✓ PAR in June-July 2018 > 2016 (Fig. D)
 Explaining the higher SST
- DMS(P,O) similar (Fig. C, E)
 - Low-DMSP producers dominated the phytoplankton community

Figure: (F-G) DMS(P,O)p measured (nmol L-1) and DMS(P,O)p calculated (nmol L-1) based on the empirical relations of Fig. H.

Empirical relation for DMS(P,O)_p estimation:

 $DMS(P,O)_p$: $Chla^1 * Relative abundance^2 * Chla concentration³ = <math>DMS(P,O)_p$ calculated ¹ From literature review; ² From DNA sequencing; ³ From Chla analysis

DMS(P,O) estimation based on phytoplankton diversity:

- Good estimation of DMSP (Fig. F)
- DMSO estimation did not reproduce the concentration neither the seasonality of DMSO measurements (Fig. G)
- Need to generate specific DMSO:Chla ratio for each phytoplankton group linked to environmental stress

