

EGU2020-17416 https://doi.org/10.5194/egusphere-egu2020-17416 EGU General Assembly 2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Siberian Arctic inland waters emit mostly contemporary carbon

Joshua Dean^{1,2}, Ove Meisel², Melanie Martyn Roscoe², Luca Belelli Marchesini³, Mark Garnett⁴, Henk Lenderink², Richard van Logtestijn², Alberto Borges⁵, Steven Bouillon⁶, Thibault Lambert⁵, Thomas Röckmann⁷, Trofim Maximov⁸, Roman Petrov⁸, Sergei Karsanaev⁸, Rien Aerts², Jacobus van Huissteden², Jorien Vonk², and Han Dolman²

¹School of Environmental Sciences, University of Liverpool, Liverpool, UK

²Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

³Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy

⁴Natural Environment Research Council Radiocarbon Facility, East Kilbride, United Kingdom

⁵Chemical Oceanography Unit, University of Liège, Liège, Belgium

⁶Department of Earth and Environmental Science, Katholieke Universiteit Leuven, Leuven, Belgium

⁷Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, the Netherlands

⁸Institute for Biological Problems of the Cryolithozone, Siberian Branch Russian Academy of Sciences, Yakutsk, Russia

Inland waters (rivers, lakes and ponds) are important conduits for the emission of terrestrial carbon in Arctic permafrost landscapes. These emissions are driven by turnover of contemporary terrestrial carbon and additional "pre-aged" (Holocene and late-Pleistocene) carbon released from thawing permafrost soils, but the magnitude of these source contributions to total inland water carbon fluxes remains unknown. Here we present unique simultaneous radiocarbon age measurements of inland water CO₂, CH₄ and dissolved and particulate organic carbon in northeast Siberia during summer. We show that >80% of total inland water carbon emissions were contemporary in age, but that pre-aged carbon contributed >50% at sites strongly affected by permafrost thaw. CO₂ and CH₄ were younger than dissolved and particulate organic carbon, suggesting emissions were primarily fuelled by contemporary carbon decomposition. The study region was a net carbon sink (-876.9 ± 136.4 Mg C for 25 July to 17 August), but inland waters were a source of contemporary (16.8 Mg C) and pre-aged (3.7 Mg C) emissions that respectively offset 1.9 ± 1.2% and 0.4 ± 0.3% of CO₂ uptake by tundra (\square 897 ± 115 Mg C). Our findings reveal that inland water carbon emissions from permafrost landscapes may be more sensitive to changes in contemporary carbon turnover than the release of pre-aged carbon from thawing permafrost.