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ABSTRACT

Although ongoing research has revealed some of the main drivers behind global spatial patterns of microbial communities,
spatio-temporal dynamics of these communities still remain largely unexplored. Here, we investigate spatio-temporal
variability of both bacterial and eukaryotic soil microbial communities at local and intercontinental scales. We compare
how temporal variation in community composition scales with spatial variation in community composition, and explore
the extent to which bacteria, protists, fungi and metazoa have similar patterns of temporal community dynamics. All soil
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microbial groups displayed a strong correlation between spatial distance and community dissimilarity, which was related
to the ratio of organism to sample size. Temporal changes were variable, ranging from equal to local between-sample
variation, to as large as that between communities several thousand kilometers apart. Moreover, significant correlations
were found between bacterial and protist communities, as well as between protist and fungal communities, indicating that
these microbial groups change in tandem, potentially driven by interactions between them. We conclude that temporal
variation can be considerable in soil microbial communities, and that future studies need to consider temporal variation in
order to reliably capture all drivers of soil microbiome changes.

Keywords: soil microbial communities; spatio-temporal variability; microbial ecology; protists; soil biogeography

INTRODUCTION

In recent years, the development of high-throughput sequenc-
ing (HTS) techniques has allowed for rapid developments in
the field of molecular ecology, particularly for characterization
of microbial communities. The main advantages of HTS tech-
niques are that they are culture independent and that they gen-
erate tremendous amounts of sequence data at a fraction of the
cost of earlier methods (Caron et al. 2011; Logares et al. 2012; Lie
et al. 2014; Mahé et al. 2015). Thanks to this increased capacity to
census microbial communities through environmental barcod-
ing, global efforts are being made to map the soil microbiome
and predict corresponding community structures based on abi-
otic and biotic parameters.

These studies have to date mainly focused on bacteria and
fungi. Consequently, we now know that pH is often found to
be a major driver of changes in bacterial and archaeal commu-
nity composition on both the local scale and the global scale
(Lauber et al. 2009; Bahram et al. 2018; Delgado-Baquerizo et al.
2018a; Delgado-Baquerizo et al. 2018b). However, other studies
have found that various other factors can also be important in
explaining global patterns for soil bacterial communities. For
example, both Maestre et al. (2015) and Zhou et al. (2016) have
shown that climatic factors such as aridity and temperature
can shape soil bacterial communities. Similarly, vegetation type
(Prober et al. 2015) and nutrient availability (Leff et al. 2015) have
also been shown to have a significant influence. Most studies
agree that a low number of bacterial species are usually shared
between sites, but also that a small amount of species usu-
ally makes up nearly half of the recovered sequences and that
these dominant species can often be the ones shared between
distinct sites (Ramirez et al. 2014; Maestre et al. 2015; Delgado-
Baquerizo et al. 2018a). And although these dominant species
are usually spread out over several phylogenetic groups, more
than half of them can be divided into groups with predictable
habitat preferences (Delgado-Baquerizo et al. 2018a). Interest-
ingly, several studies seem to find that spatial distance is only
a weak predictor for community dissimilarity for bacteria, sug-
gesting that environmental parameters are more important in
shaping bacterial communities than dispersal capacity (Lauber
et al. 2009; Bahram et al. 2018). This is in contrast to fungal com-
munities, where geographic distance has been found to be an
important predictor of community composition (Bahram et al.
2018). This illustrates that fungi and bacteria have different
drivers for community assembly on the local and the global
scale (Rousk et al. 2010; Bahram et al. 2018). Indeed, other studies
regarding fungal composition on a global scale find that disper-
sal is a likely candidate for driving global fungal patterns. For
example, Treseder et al. (2014) found that the youngest clades of
fungi appear closer to the poles, suggesting a dispersion starting
from the tropical regions outward. A similar result was found
by Talbot et al. (2014), who found strong geographical cluster-

ing of fungal communities, suggesting a dispersal limit. In con-
trast to these studies highlighting biogeographic patterns, vari-
ation in other edaphic parameters such as vegetation and cli-
matic factors has been proposed to be as important, or perhaps
even more important in shaping soil fungal communities on
the global scale (Tedersoo et al. 2014, 2016). In addition to these
environmental filters, there is of course an important role for
biological interactions between organisms in shaping commu-
nity composition. Bahram et al. (2018), for example, found evi-
dence for the influence of biotic interactions on both bacterial
and fungal communities. However, soils are among the most
complex habitats on Earth and consequently host an enormous
diversity of functionally different microbes besides bacteria and
fungi. How assemblages of these other organisms vary with their
environment and with other microbes is much less studied. For
example, protists are by far the most diverse and (together with
fungi) the most abundant soil eukaryotes (Ekelund and Rønn
1994; Foissner 1997; Finlay et al. 2000). Different taxa of soil pro-
tists are known to function as consumers of bacteria, fungi and
other protists (Clarholm 1981; de Ruiter, Neutel and Moore 1995;
Geisen et al. 2015b; Mitchell 2015), consume metazoans or act
as parasites (Geisen et al. 2015a, 2016; Mitchell 2015). Protists
are therefore a crucial component of the soil microbial commu-
nity, yet their response to environmental changes or commu-
nity shifts of other microbial groups remains largely unknown
(Geisen et al. 2017).

While spatial patterns of major microbial groups are increas-
ingly being mapped, temporal dynamics have received far less
attention in soils. This is surprising, given that some earlier
studies on soil bacteria have clearly illustrated that commu-
nities do exhibit interseasonal changes, which can often be
linked to temporal differences in environmental parameters. For
example, Lauber et al. (2013) found that soil bacterial communi-
ties from bulk soil exhibited temporal patterns that were sig-
nificantly determined by changing soil moisture and temper-
ature. Similarly, Lazzaro, Hilfiker and Zeyer (2015) and Zhang
et al. (2018) found that seasonal changes in temperature, pH and
nutrients had a large influence on soil bacterial communities in
alpine sites, while Chemidlin Prevost-Boure et al. (2011) found
both soil moisture and litter amount to be determining factors
for seasonal changes in soil bacteria in a temperate deciduous
forest. Apart from these abiotic parameters, the plant commu-
nity can also exert an influence on soil microbial communities
that changes over time (Yao, Bowman and Shi 2011). From these
results, it becomes clear that the factors influencing soil micro-
bial communities on the temporal scale are very similar to the
factors influencing community composition on the spatial scale.
Considering these factors can exhibit equally large changes over
seasons as they can when comparing spatially distant sites,
they are expected to correlate with similar degrees of variation
in soil microbial communities. Moreover, this additional source
of variation may potentially confound interpretations of spatial
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patterns in communities. To date, however, the combination of
spatial and temporal variability of soil microbial communities,
especially eukaryotic soil microbial communities, has not yet
been systematically examined. As any study on temporal vari-
ation will invariably contain some spatial variation on a local
scale (as repeated soil sampling in the exact same location is
impractical because of disturbance), it is important to know the
relative size of both to avoid confounding spatial and temporal
patterns when interpreting data from environmental sampling.

This study aims to investigate spatio-temporal variation of
both bacterial and eukaryotic soil microbial communities using
a multiscale approach including local and intercontinental vari-
ation within and between sampling occasions at different times
of the year. We characterize temporal changes in soil micro-
bial communities to investigate the relative size of temporal
and spatial variation, and whether the degree of spatio-temporal
variation differs between bacteria, fungi, protists and metazoa.
Additionally, the correlation between site characteristics and the
degree of interseasonal variation is tested. This knowledge is
important as it will allow us to estimate the prevalence and rel-
ative size of spatial and interseasonal variation in soil microbial
communities.

METHODOLOGY

Study sites and sampling

The sites selected for this study are part of ongoing experiments
and studies (Table S1, Supporting Information) and thus pro-
vide an opportunity to study soils in well-characterized ecolog-
ical settings. A total of 13 sites were sampled from seven coun-
tries (Australia, Belgium, France, French Guiana, Iceland, Spain
and Sweden) spanning five climate types (temperate oceanic,

subarctic, tropical rainforest, humid subtropical and Mediter-
ranean) and eight different ecosystem types (broadleaf forest,
cereal cropland, coniferous forest, eucalypt forest, grassland,
holm oak forest, shrubland and tropical forest). This informa-
tion is listed in Table 1, and additional information regarding
specific site characteristics are provided in Table S2 (Support-
ing Information). Each site was sampled at two distinct time
points, which were selected based on expected differences in
microbial activity. At every sampling, four replicates were taken
from the site (except in the Garraf, Prades, Reykir and French
Guiana sites, where eight, nine, five and five samples were taken,
respectively), for a total of 154 samples.

For each site, we obtained soil pH, average vegetation height
and elevation above sea level (Table S2, Supporting Information).
As climate variables, the average minimum and maximum tem-
perature and total precipitation for the month leading up to the
sample date were obtained from on-site weather stations, or
when this was not available, from the nearest weather station
(Reykir, Nouragues). Soil samples were taken at random loca-
tions within an ∼20 m × 20 m area using a corer. The upper
5 to 10 cm soil layer was sampled directly below the bottom
of the ‘intact litter’ layer. If no litter was present, the upper 0–
15 cm of the soil was sampled. After sampling, soil was frozen
and stored at −20◦C until further processing, with the exception
of the two tropical sites, where samples were frozen and sub-
sequently freeze-dried before storage at room temperature. The
deviating storage procedure in the tropical sites was due to the
unavailability of reliable freezers.

Library preparation and sequencing

DNA was extracted from ∼0.25 g of soil using the MoBio Pow-
ersoil kit according to the manufacturer’s protocol (MoBio,

Table 1. Comprehensive list of all sampling sites, including information about climate (based on Köppen–Trewartha classification), location,
country, sampling time and ecosystem type.

Location Country Climate Ecosystem type Sampling time

Brasschaat Belgium Temperate oceanic Coniferous forest End of spring (June, high expected
microbial activity) and end of autumn
(November, low expected microbial activity)

Dorinne Grassland
Lonzee Cereal cropland
Barbeau France Oak forest
Reykir Iceland Subarctic Grassland Spring (April, low expected microbial

activity) and autumn (October, high
expected microbial activity)

Svartberget Sweden Coniferous forest Spring (June, high expected microbial
activity) and autumn (November, low
expected microbial activity)

Nouragues French Guiana Tropical rainforest Tropical forest hilltop Wet season (June, high expected microbial
activity) and dry season (October, low
expected microbial activity)

Topical forest valley
Paracou Tropical forest hilltop

Tropical forest valley
Cumberland Australia Humid subtropical Eucalypt forest Winter (June, low expected microbial

activity) and summer (December, high
expected microbial activity)

Garraf Spain Mediterranean hot
summer

Shrubland Spring (April, low expected microbial
activity) and summer (August, high
expected microbial activity)

Prades Holm oak forest
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Carlsbad, CA, USA), and all extracts were measured using a
Qubit 3.0 Fluorometer (Invitrogen, Waltham, MA, USA) and
standardized to 5 ng/μl to reduce variability (Kennedy et al.
2014). For eukaryotes, we used the general TarEuk primers
described by Stoeck et al. (2010): TAReuk454FWD1 [5’-CCAGCA(G/
C)C(C / T)GCGGTAATTCC-3’, S. cerevisiae position 565–584] and
TAReukREV3 [5’-ACTTTCGTTCTTGAT(C / T) (A / G)A-3’, S. cere-
visiae position 964–981], targeting the hypervariable V4 region
of the 18S rRNA gene. These primers were selected not only
as they have been used previously in studies looking at protist
communities (Mahé et al. 2017) but also for the examination of
fungal and metazoan community composition (Bernhard et al.
2014; Pawlowski et al. 2014; Dunthorn et al. 2017; López-Escardó
et al. 2018). An adapter was included in the primers for attaching
indices after the initial polymerase chain reaction (PCR). We also
used a newly designed plant blocker (PNA 5’-GCTCAAAGCAAGC-
3’) to limit the amplification of plant DNA in the samples. The
blocker was designed by aligning the sequence with a wide range
of plant species and representatives from all major supergroups
of protists, fungi and metazoa to ensure the blocker selects
against most embryophyte species, while allowing amplification
of single-celled chlorophytes. We optimized the reaction mix
by varying annealing temperature, primer and blocker concen-
trations and visually inspecting amplicon size and intensity on
a 1.5% agarose gel. The optimized 25 μl reaction mixture con-
tained 1.5 μl of sample, 0.5 μM of each primer, 0.8 μM plant
blocker and 1× Phusion High-Fidelity PCR Master Mix with GC
Buffer (ThermoFisher Scientific, Waltham, MA, USA). The PCR
profile was as follows: an initial denaturation step at 98◦C for
5 min, followed by 35 cycles of 98◦C for 45 s, annealing of the
plant blocker at 67◦C for 20 s, primer annealing at 54◦C for 60 s
and elongation at 72◦C for 90 s, with a final elongation step at
72◦C for 10 min. Amplified products were purified using Sequal-
Prep according to the manufacturer’s protocol (Thermo Fisher
Scientific, Waltham, MA, USA), after which a second PCR was
performed to attach the Illumina indices to the product (Illu-
mina, San Diego, CA, USA). This PCR had the following reaction
mix: 2.5 μl of purified PCR amplicon, 0.2 μM p5/p7 primer mix,
1× Phusion High-Fidelity PCR Master Mix with GC Buffer and the
following PCR profile: 98◦C for 60 s, followed by 10 cycles of 98◦C
for 10 s, primer annealing at 55◦C for 30 s, elongation at 72◦C
for 30 s and final elongation at 72◦C for 5 min. A second purifi-
cation and equalization was done with SequalPrep with a slight
modification of the protocol to increase the final eluate concen-
tration. This was followed by agarose gel electrophoresis and
extraction to exclude primer-dimers, after which the concentra-
tion of the pooled finished library was determined by qPCR and
sequenced on an Illumina Miseq using 2 × 300 cycles of paired-
end sequencing.

For bacteria, we used the primers targeting the hypervari-
able V3–V4 region of the 16S rRNA gene (S-D-Bact-0341-b-S-
17, 5’-CCTACGGGNGGCWGCAG-3’ and S-D-Bact-0785-a-A-21,
5’-GACTACHVGGGTATCTAATCC -3’) as described by Klindworth
et al. (2013). The reaction mixture contained 1.5 μl of sample,
0.5 μM of each primer and 1× Phusion Master Mix. The PCR
conditions were 98◦C for 5 min, 25 cycles of 98◦C for 40 s, 55◦C
for 30 s, 72◦C for 60 s and a final extension at 72◦C for 10 min.
After amplification, the subsequent steps were the same as for
eukaryotes. To test for the preservation of community fidelity,
chimera formation and primer bias, several internal controls
from representatives of most of the major important groups
found in soils were selected. These internal controls were spiked
into extracts of four samples from different ecosystems to cover
as broad a spatial and season gradient as possible, but without

performing the analysis on all samples. The amount of internal
controls that was added to each sample was such that the con-
trols should represent at least 30% of the total 18S rRNA gene
concentration (see the Supporting Information).

Bioinformatics and statistical analysis

Eukaryotic paired-end sequences were merged using the
vsearch v2.5.1 ‘merge’ function (Rognes et al. 2016), success-
fully merging 51.4% of the sequences; this relative low percent-
age of successfully merged sequences was caused by increasing
error rates toward the end of the run. Bacterial sequences were
not merged because 3′ quality dropped sharply, so that merging
would have resulted in retaining few sequences. Instead, only
the forward sequences were used after trimming to a length
of 200 bp. Primer sequences were removed from all reads, and
reads were subsequently quality-filtered allowing for a max-
imum expected error of 0.6, leaving 2.7 and 3.1 M reads for
eukaryotes and bacteria, respectively. Operational taxonomic
units (OTUs) with 97% similarity were clustered de novo using the
uparse algorithm (Edgar 2013) in usearch10 (Edgar 2010) after
dereplication and singleton removal. After chimera removal
(leaving 13 387 and 14 219 non-chimeric OTUs for eukaryotes
and bacteria, respectively), all original reads were mapped to the
non-chimeric OTUs (matching 1.9 and 2.7 M reads for eukary-
otes and bacteria, respectively) using usearch10 with the iden-
tity threshold of 0.97 to create an OTU table.

For the taxonomic assignment of OTUs, all eukaryotic OTUs
were first aligned to the Protist Ribosomal Reference database
version 4.6 (PR2; Guillou et al. 2013) using the default uclust
function in qiime (Caporaso et al. 2010; Edgar 2010) with an
80% sequence similarity threshold to compensate for potential
higher divergence from known sequences. This threshold was
selected because eukaryotic assignments with <80% similar-
ity to known references are often considered spurious (Stoeck
et al. 2010; Mahé et al. 2017). Non-protist OTUs were subse-
quently aligned to the SILVA rRNA database version 128 (Quast
et al. 2013), again with an 80% similarity threshold, after which
the results from both databases were merged. This was done
to increase non-protist coverage, as the PR2 database contains
less non-protist sequences (Guillou et al. 2013). Eukaryotic OTUs
were classified as protists, fungi or metazoa based on their best
hit against the databases. Bacterial sequences were matched
to the SILVA rRNA database using the uclust function in qiime
with a 90% similarity threshold as is the default setting. Plant
sequences were also removed from the dataset as they were
not the subject of study. To avoid library size-related artifacts
in downstream data analysis, rarefied OTU tables were created
by random subsampling of the original OTU tables split by taxo-
nomic group (protists, fungi, metazoa and bacteria). We chose
to apply a two-boundary approach (i.e. using separate values
for the maximum read number and the minimum read number)
for subsampling instead of a single-boundary subsampling (i.e.
using a single value for minimum and maximum read number)
to avoid missing temporal effects on microbial communities.
This could have occurred because some time/group combina-
tions had relatively few reads. Given that the eukaryotic commu-
nity is sequenced as a whole, separate groups may have shifting
read abundances over time, and thus a stringent subsampling
threshold might eliminate all samples from a time point due to
a shift in the total eukaryotic microbial community. Using both a
minimum read number to avoid including failed samples and a
maximum read number to avoid large size-related artifacts, and
to normalize read numbers, any possible temporal abundance
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effect is preserved. Only six, four, four and five samples yielded
read numbers below the lower thresholds for bacteria, protists,
fungi and metazoa, respectively, and were considered as failed.
We show that this approach does not greatly affect Bray–Curtis
dissimilarities when OTU tables are normalized by scaling read
numbers to 1 for each sample (Figures S4–S7, Supporting Infor-
mation). All analyses were performed in R version 3.5.3 unless
stated otherwise (R Core Team 2019).

Non-metric multidimensional scaling was performed to
visualize the overall differences in microbial community com-
position for each group (Figures S8–S11, Supporting Informa-
tion) and community Bray–Curtis dissimilarities between sites
and time points were calculated using the vegan package ver-
sion 2.5-5 (Oksanen et al. 2019) and the mean dissimilarities
were tested for significant differences using analysis of variance
(ANOVA). To assess intra-annual changes in community com-
position, two values were calculated, which we here refer to as
‘turnover’ and ‘difference in variability’. Turnover was defined as
the distance between Bray–Curtis centroids of both time points.
The difference in variability was measured by first calculat-
ing the Bray–Curtis distance of each sample to its correspond-
ing seasonal centroid, and then computing the absolute differ-
ence of the time point means of these values. Therefore, this
value is small when the degree of within-time point variation
between replicates is similar for each time point, and large when
this is not the case. All these values were calculated using the
usedist package version 0.1.0 in R (Bittinger 2017). We tested
whether there was a relationship of turnover and difference in
variability with edaphic parameters (temperature, precipitation,
pH and elevation) using linear regression. Pearson correlation
coefficients for turnover and difference in variability were com-
puted for all pairwise combinations of the taxonomic groups.
Spatial distance between sites was calculated based on coordi-
nates using the geosphere package version 1.5-7 (Hijmans 2017).
A Mantel test with 1000 permutations was used to estimate
the significance of the relation between community dissimilar-
ity and spatial distance. Furthermore, a linear regression model
was fitted, plotting community dissimilarity, computed for all
pairwise combinations excluding intra-annual community dis-
similarity, against their corresponding spatial distance to esti-
mate the magnitude of spatial and intra-annual dissimilarity.
The resulting model fit was used to calculate the predicted spa-
tial distance corresponding to each intra-annual dissimilarity
observed. To estimate the significance of observed differences
between groups in the intercept and slope of the linear models,
the 95% quantile, median and mean were calculated for each
group. To achieve this, we randomly subsampled the available
sample–sample pairs in such a way that each specific site only
occurs once in the subsampled dataset. This subset was then
used to calculate the intercept and slope and the process was
repeated 1000 times to generate the 95% quantile.

RESULTS

Temporal and spatial effects on microbial groups

Community dissimilarity did not show a consistent pattern
when comparing samples from a single time point and sam-
ples between time points for the different taxonomic groups.
Community dissimilarities within a given time point also varied
greatly (Fig. 1), causing mean community dissimilarity between
time points to be rarely higher than within each time point (P-
values for all comparisons > 0.05). Within each microbial group,
mean community dissimilarity between sites was consistently

higher than both mean community dissimilarities within and
between time points (P-values for all groups < 0.001). On aver-
age, bacteria showed the lowest mean community dissimilari-
ties and metazoa the highest, with fungi and protists interme-
diate and comparable (P-values for all comparisons < 0.001).

In agreement with the results for community dissimilarity,
average turnover (the distance between temporal centroids) was
also lowest for bacteria and highest for metazoa (bacteria: mean
= 0.199, standard error (SE) = 0.019; fungi: mean = 0.320, SE
= 0.025; protists: mean = 0.318, SE = 0.022; metazoa: mean =
0.401, SE = 0.020). Therefore, the composition of bacterial com-
munities appears to be more ‘stable’. This is also reflected in a
higher percentage of shared taxa between time points (Table 2).
In contrast, metazoan communities have the lowest percentage
of shared taxa between time points (bacteria: mean = 52.9%, SE
= 1.7; fungi: mean = 45.2%, SE = 1.9; protists: mean = 43.5%, SE
= 2.7; metazoa: mean = 36.1%, SE = 3.3 of reads shared). Simi-
lar to turnover, difference in variability (the difference between
time points in how spread out the replicates are) was lowest for
bacteria and highest for metazoa (bacteria: mean = 0.071, SE =
0.015; fungi: mean = 0.125, SE = 0.033; protists: mean = 0.103, SE
= 0.027; metazoa: mean = 0.137, SE = 0.024). We did not find any
significant relation between interseasonal changes in environ-
mental parameters and interseasonal changes in communities
(either turnover- or difference in variability-wise).

We found a significant correlation between bacterial
turnover (the distance between temporal centroids) and protist
turnover (R = 0.79, P = 0.001). There was also a non-significant
trend in the correlation between protist turnover and fungal
turnover (R = 0.52, P = 0.07). These correlations show that
if the community dissimilarity between our interseasonal
sampling occasions is large at a given site for protists, then
the dissimilarity between sampling occasions of bacteria (and
possibly fungi) is also high at the same site. Similarly, the
difference in variability of bacteria (the difference in spread of
the communities around their temporal centroid) correlates
with that of all other groups (bacteria–fungi: R = 0.66, P = 0.01;
bacteria–metazoa: R = 0.57, P = 0.04; bacteria–protists: R =
0.91, P < 0.0001), and protist difference in variability correlates
significantly with fungal difference in variability (R = 0.86,
P = 0.0002). A positive correlation of difference in variability
between two groups indicates that when samples differ more
in one time point than another for one group, the same is true
for the other group. These findings are shown in Fig. 2.

Community dissimilarity significantly increases as the spa-
tial distance between sites increases for all groups (bacteria:
Mantel statistic R = 0.67, permutation P = 0.001; protist: R = 0.79,
P = 0.001; fungi: R = 0.74, P = 0.001; metazoa: R = 0.51, P = 0.001).
The slope shows a decreasing trend in the order (bacteria: slope
= 0.094, intercept = 0.17; protists: slope = 0.061, intercept = 0.52;
fungi: slope = 0.059, intercept = 0.51; metazoa: slope = 0.032,
intercept = 0.72), while the intercept shows the opposite trend
(Fig. 3). With the exception of the comparison between fungi and
protists, these values fall outside of the calculated 95% quan-
tiles (Tables S3 and S4, Supporting Information). It is of impor-
tance to note that many of the spatially distant sites have dif-
ferent ecosystems; therefore, the larger community dissimilar-
ity at these spatial scales could also be due to different envi-
ronments and not strictly spatial. Interseasonal community dis-
similarity varied greatly, with the majority of values equivalent
to dissimilarities corresponding to spatial distances of between
1 and 100 m, i.e. falling within the range of local spatial variation.
However, some of the extremes displayed dissimilarities that
would correspond with spatial distances of >1000 km (Fig. 3).
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6 FEMS Microbiology Ecology, 2020, Vol. 96, No. 3

Figure 1. Within-site comparisons of median community dissimilarities within (‘High activity season’, ‘Low activity season’) and between (‘Between seasons’) time
points, as well as with other sites (‘Between other sites’) for each of the different taxonomic groups. ‘High activity season’ represents the time point where the highest
microbial activity is expected, and ‘Low activity season’ represents the time point with the lowest expected microbial activity. Bacteria are colored in red, fungi in blue,

metazoa in green and protists in purple. Error bars are omitted for clarity.

The results of the methodological controls illustrate that res-
ident community rank abundance is not altered when intro-
ducing large quantities of foreign DNA, and that this remains
consistent throughout several soil types (see Figure S1, Support-
ing Information). Therefore, the large between-sample variation
that was found cannot be attributed simply to artifacts caused
by complex template interactions.

DISCUSSION

Although the number of studies in soil microbial ecology uti-
lizing HTS techniques is steadily increasing, to our knowledge
there have been no studies that have examined the patterns of
local, interseasonal and intercontinental variability in soil bacte-
rial and eukaryotic microbial communities simultaneously. This
study aimed to characterize temporal changes in soil microbial
communities to investigate the relative size of temporal vari-
ation compared to spatial variation, and whether the spatio-
temporal differences vary between broad taxonomic groups,
i.e. bacteria, fungi, protists and metazoa. We found a strong
link between spatial distance and community dissimilarity, with
a decreasing slope with increasing organism size/complexity,
while the intercept shows the opposite trend. Furthermore,
correlated community dissimilarities were found between dif-
ferent microbial groups in our interseasonal comparison,
indicating these groups change in tandem between time
points.

Temporal and spatial patterns of microbial
communities

No consistent pattern was found when comparing samples of
a single time point with samples between time points, e.g. bac-
terial communities of Svartberget (subarctic pine forest) sam-
pled at time points months apart were less dissimilar on aver-
age than samples taken in the same instance, while bacterial
communities of Brasschaat (temperate oceanic pine forest) dis-
played the opposite pattern (Fig. 1). This lack of a consistent pat-
tern explains why no significant relationship was found between
interseasonal changes in environmental parameters and com-
munity changes. It seems that between-sample variation at the
local scale plays a large role in shaping observed community
dissimilarity patterns. Much of this variation can be attributed
to random sampling effects, i.e. the limited sampling from a
(spatially) heterogeneous population. This then also comes into
account in repeated measurements, as it is nearly impossible to
resample the exact same community in a natural setting. There-
fore, any repeated sampling campaigns will inevitably measure
a combination of temporal and random spatial sampling vari-
ation. Our results imply that in some cases this spatial varia-
tion can be very large, and make detecting temporal patterns
difficult. This would appear to be a feature of soil, in contrast to
well-mixed aquatic environments (Gilbert et al. 2012; Rösel, All-
gaier and Grossart 2012), a fact that should be taken into account
when designing studies addressing temporal dynamics in soil
communities.
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Table 2. Turnover and difference in variability in Bray–Curtis dissimilarity of each site for each group, with additional information on the
amount of taxa during the ‘high’ and ‘low’ season, as well as the percentage of shared OTUs between the two time points.

Bacteria

Site Turnover
Difference in

variability
Diversity high

season
Diversity low

season Shared (%)

Cumberland 0.252 0.121 1078 1475 50.13
Barbeau 0.347 0.190 1113 619 42.58
Brasschaat 0.253 0.139 639 347 44.11
Dorinne 0.184 0.081 1690 1748 57.88
Garraf 0.136 0.043 1693 1810 62.53
Reykir 0.265 0.092 1415 1797 52.68
Lonzee 0.205 0.098 2715 2554 61.58
Nouragues B 0.104 0.016 1187 1218 52.95
Nouragues T 0.158 0.037 994 1030 46.62
Paracou B 0.125 0.032 1164 1018 53.37
Paracou T 0.154 0.036 1057 1217 54.2
Prades 0.198 0.029 1857 2016 57.76
Svartberget 0.211 0.003 418 500 51.76
Fungi
Cumberland 0.292 0.132 121 110 45.16
Barbeau 0.492 0.385 72 38 27.1
Brasschaat 0.281 0.054 68 43 40.74
Dorinne 0.327 0.035 98 115 46.18
Garraf 0.331 0.090 101 83 52.94
Reykir 0.292 0.198 111 99 47.13
Lonzee 0.484 0.329 91 111 49.35
Nouragues B 0.177 0.028 152 159 47.63
Nouragues T 0.279 0.014 120 100 41.77
Paracou B 0.294 0.080 131 163 45.17
Paracou T 0.408 0.167 109 147 41.78
Prades 0.259 0.089 88 98 47.2
Svartberget 0.240 0.030 64 73 55.74
Metazoa
Cumberland 0.413 0.158 46 48 35.71
Barbeau 0.420 0.201 58 17 26.05
Brasschaat 0.273 0.160 35 25 45.12
Dorinne 0.522 0.313 14 12 34.04
Garraf 0.374 0.150 29 26 38.13
Reykir 0.350 0.101 53 45 46.7
Lonzee 0.485 0.279 17 19 24.14
Nouragues B 0.440 0.071 69 47 28.87
Nouragues T 0.427 0.072 67 28 21.91
Paracou B 0.484 0.064 57 36 28.63
Paracou T 0.354 0.022 57 33 28.31
Prades 0.333 0.133 52 59 51.72
Svartberget 0.344 0.058 42 58 60.5
Protists
Cumberland 0.353 0.154 450 481 47.73
Barbeau 0.498 0.355 308 65 19.97
Brasschaat 0.431 0.151 178 105 35.68
Dorinne 0.312 0.052 365 408 48.54
Garraf 0.237 0.043 328 322 56.36
Reykir 0.332 0.138 392 346 47.31
Lonzee 0.326 0.203 373 407 45.68
Nouragues B 0.237 0.001 320 307 41.63
Nouragues T 0.361 0.041 244 153 36.86
Paracou B 0.251 0.048 298 284 44.15
Paracou T 0.311 0.053 290 246 43.9
Prades 0.219 0.051 460 442 53.84
Svartberget 0.271 0.048 183 198 50.29
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Figure 2. Correlations between microbial groups for turnover (the distance between temporal centroids) on the left and correlation between microbial groups for

difference in variability (the difference in spread between time points) on the right. Every dot represents a single site and significant correlations are highlighted by
their linear fit and confidence interval (shading)

Figure 3. Linear models showing the significant relationship between community dissimilarity and spatial distance. The y-scale shows community dissimilarity while
the x-axis shows log-transformed spatial distance in meters. The red line shows the model fit and blue rugs on the y-axis show all intra-annual within-site community
dissimilarities. The rugs on the x-axis are projected spatial distances according to the model fit and thus indicate the extent of community variation found in intra-
annual sampling scaled to that found at sites with increasing distance. Median values for intra-annual community dissimilarity and corresponding calculated spatial

distance are highlighted in red. Calculated spatial distance was cut off at 0 as spatial distance cannot go below 0. Top left: bacteria (R2 = 0.44, intercept = 0.17, slope =
0.094), top right: protists (R2 = 0.57, intercept = 0.51, slope = 0.059), bottom left: fungi (R2 = 0.49, intercept = 0.52, slope = 0.061) and bottom right: metazoa (R2 = 0.21,
intercept = 0.72, slope = 0.032).
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The lack of a correlation between interseasonal changes in
community composition and edaphic parameters contradicts
some of the earlier work on temporal changes in soil microbial
communities (Bréchet et al. 2018; Buscardo et al. 2018; Lan et al.
2018; Oberholster et al. 2018; Ratcliffe, Bosman and Carnol 2018;
Yang et al. 2018; Zhang et al. 2018). These studies found intersea-
sonal changes in community composition or respiration, which
were linked to temporal differences in precipitation, amount
and quality of litter, and changes in the resident plant commu-
nity. However, it should be noted that these studies used homog-
enized composite samples, thereby eliminating some of the
local variation introduced by random sampling effects. Given
that we only tested for effects of changes in parameters that are
distributed relatively equally on the local scale, we cannot rule
out that parameters that vary more throughout the year on a
small spatial scale such as vegetation (Ramirez et al. 2014; Teder-
soo et al. 2016), nutrients and litter fall (Bates et al. 2013; Ramirez
et al. 2014; Shen et al. 2014; Shi et al. 2015; Dupont et al. 2016)
influenced the microbial community. The amount and quality
of litter, for example, change both throughout the year and over
small scales (<1 m). The substrate it provides could be a poten-
tial explanatory factor for large local differences in soil microbial
communities. The temperate broadleaf site Barbeau displayed
some of the largest temporal changes together with some of
the largest variation within a time point (autumn), which can
be explained by high litter input in autumn. Depending on tree
species and site topology, leaf litter can exhibit a very patchy
spatial distribution in a given site. Furthermore, the stage of
decomposition might also vary on a small local scale.

Despite low evidence of consistent interseasonal turnover
and difference in variability of communities, interseasonal
changes in both turnover and difference in variability are con-
sistent between some groups but not others. This could indicate
a strong linkage between these co-changing groups, or at the
very least a parallel response to joint local circumstances or sea-
sons. Large interseasonal changes in protist communities coin-
cided with large changes in bacterial and fungal communities.
Many protist species are known to be bacterial consumers, and
microbial grazing can exert a strong top-down effect on commu-
nities when consumers have a high abundance and growth rate
(Lenoir et al. 2007; Crowther, Boddy and Jones 2011). At the same
time, bottom-up effects affect grazing communities through the
growth rates of the prey microbes. For example, grazed com-
munities might be able to increase their growth rate and main-
tain high abundances despite predation as long as available
nutrients remain high (Couteaux and Bottner 1994; Vedder et al.
1996; Mikola and Setälä 1998). Changing seasons may then affect
growth rates of both communities through parameters such as
nutrient availability or temperature. No correlation was found
between protists and metazoans, possibly as a result of coarse
taxonomic resolution that precludes detection of the more sub-
tle and complex relationships that may exist. However, this does
not mean that they do not potentially interact with each other.
Several protists have been recorded as predators or parasites
of metazoans (Adl and Gupta 2006; Jassey et al. 2012; Geisen
et al. 2015b; Mitchell 2015), and these interactions might become
more obvious when examining data on a more local scale or
when looking at more specific groups. Alternatively, primer bias
toward protists and fungi, which caused a relative low read num-
ber for metazoa, may explain the lack of correlation (see the Sup-
porting Information). We discovered that difference in variabil-
ity of communities, which can be interpreted as the difference
in sample-to-sample variation between time points, has a very
strong correlation between bacteria and all other groups, as well

as between protists and fungi. As mentioned above, local dif-
ferences in soil and biotic parameters exert a strong effect on
microbial communities (Shi et al. 2015; Dupont et al. 2016; Teder-
soo et al. 2016; Bréchet et al. 2018; Buscardo et al. 2018). As com-
munities become more variable on a local scale for one group,
it is to be expected that other groups that are interacting with
these microbes also become more variable.

In the correlation between community dissimilarity and spa-
tial distance, bacterial communities show the lowest variation at
local scales (intercept) and have (perhaps as a consequence) the
largest change over spatial distance (slope). The opposite is true
for metazoa, with fungi and protists being intermediate. This
corresponds with the findings for the temporal scale, with bac-
teria showing the smallest changes in community composition
locally, and metazoa showing the largest. Interestingly, although
our distance–decay rates are overall comparable to the ones
previously found for microbes, the differences between taxo-
nomic groups contradict some earlier findings, which showed
that smaller organisms display the weakest overall trends (Hille-
brand et al. 2001; Hillebrand and Azovsky 2001; Zhou et al. 2008;
Monroy et al. 2012). For example, Monroy et al. (2012) found that
the community dissimilarity–spatial distance relationship was
weaker for bacteria when compared to Nematoda, the opposite
to our findings comparing bacteria to metazoa. Meyer et al. (2018)
recently showed that the main reason for finding weak biogeo-
graphic patterns is the sampling extent, i.e. the more thoroughly
sampled the community and closer to observing the full com-
munity diversity, the steeper the distance–decay rate. This can
then also provide an explanation for the results found in our
study. Logically, the larger the organism relative to the size of the
sample, the more patchy its observed distribution will be. This
causes a higher starting dissimilarity between samples, leading
to a lower change over spatial distance. This finding is also in
line with the results from Zinger et al. (2019), that the amount of
variation in community composition explained by environmen-
tal variables decreases with increasing propagule size (used as
a proxy for organism size) across taxonomic groups. Although
they suggest that this is more due to differing dispersal and
metabolic rates, we suggest this may also stem from increas-
ing stochasticity when sampling larger organisms, as mentioned
above.

CONCLUSION

To our knowledge, this is the first study to investigate patterns of
local, interseasonal and intercontinental variability in soil bacte-
rial and eukaryotic microbial communities simultaneously. We
extended and confirmed previous results that organism size
greatly affects the distance–decay relationship for community
dissimilarity. Regarding temporal variation, we did not detect
significant correlations between the changing environment and
the associated communities, mostly due to large variation at
small spatial scales. These findings demonstrate that temporal
and spatial variation work on a similar axis in affecting micro-
bial communities, and that the two cannot be viewed as com-
pletely separate.

Our results further show that soil communities displayed
correlating community dissimilarities between different micro-
bial groups. Understanding how microbial groups interact with
each other and how this influences the response to environ-
mental changes is one of the key questions in microbial ecol-
ogy. This study provides an important step in solving this ques-
tion by providing evidence for either a strong linkage between
these co-changing groups, or at the very least a parallel response
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to joint local circumstances. This work moves us toward a bet-
ter understanding of how spatio-temporal variation determines
soil microbial community composition and the degree of consis-
tency across different taxonomic groups.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSEC online.
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