WhoSGIAd : A precise characterisation of the Kepler Legacy sample

Martin Farnir

Université de Liège Prof. Marc-Antoine Dupret

 20^{th} of August 2019

• Aims:

- → Constrain solar-like models taking advantage of Kepler data precision:
 - \rightarrow Ex: Helium mass degeneracy, extra mixing

• Outline:

- ightarrow Solar-like spectrum and glitches
- \rightarrow Method
- \rightarrow Results: Kepler Legacy Sample, 16 Cyg A

Solar-like spectrum and Acoustic glitches

Solar-like oscillations spectra exhibit:

① regular pattern, smooth

Introduction Solar-like spectrum

Solar-like spectrum and Acoustic glitches

Solar-like oscillations spectra exhibit:

- 1 regular pattern, smooth
- 2 oscillation, glitch, caused by a sharp variation (Γ₁, c), provide localised info:
 - ightarrow Surface helium content, Y_s
 - → Nature/amount of convective extra mixing
- → Glitches can help lift model degeneracies

Several glitches analysis, for solar-like, have been realised : Basu et al. 2004, Verma et al. 2014, Monteiro et al. 2014,... However,

- Separate treatment of glitch and smooth components,
- Use of correlated indicators,
- Seismic and non-seismic constraints not combined in a statistically relevant way.
- \Rightarrow Need for a method tackling these issues

- Whole Spectrum and Glitches Adjustment (Farnir et al. 2019)
 - → Coherent adjustment of both smooth and glitches component of the oscillation spectrum
 - \rightarrow Proper covariances retrieved

 \Rightarrow Precise seismic measurements \Rightarrow better constraints on stellar modelling

Principle

Represent $\nu_{n,l} \sim (n + \epsilon_l)\Delta_l + p_{2,l}(n) + \delta\nu_{\text{He}} + \delta\nu_{\text{CZ}}$ as:

 2^{nd} order polynomial

oscillatory function

Orthogonalisation \Rightarrow Independent coefficients

Combine independent coefficients into indicators: \hat{r}_{0l} (~ Roxburgh & Vorontsov 2003)

Mean distance between 2 ridges

- \rightarrow Info about:
 - \hat{r}_{01} : Composition
 - \hat{r}_{02} : Evolution

σ 4 times smaller than usual indicators

WhoSGIAd Indicators

\hat{r}_{01} - Δ_{01} diagram

Evolution on MS of models of given mass and composition:

Credits: Farnir et al. 2019

Credits: Deheuvels et al. 2016

Relative slope differences: $\Delta_{0l} = \frac{\Delta_l}{\Delta_0} - 1$

 $\rightarrow \Delta_{01}$: central extra mixing

Indicators

Helium glitch amplitude

Models at fixed Δ :

Credits: Farnir et al. 2019

→ Very good indicator of Y_s → But $Y_s - Z_s$ degeneracy (see also Basu et al. 2004)

Results

Kepler Legacy

WhoSGIAd and Kepler Legacy Sample

Credits: Silva Aguirre et al. 2016

Application:

- Free parameters: $\rightarrow M, t, \alpha_{ov}, (Z/X)_0, Y_0$
- Constraints:
 - $\rightarrow \Delta, \hat{r}_{01}, \hat{r}_{02}, \Delta_{01}, A_{\text{He}}$ [Fe/H]

Results I

Kepler Legacy

WhoSGIAd and Kepler Legacy Sample

- No α_{ov} and M correlation observed (to be confirmed)
- Y_0 and $(Z/X)_0$ correlated \Rightarrow Galactic enrichment?
 - Typical precision:
 - $\sigma(M) \in [0.02, 0.05] M_{\odot}$
 - $\sigma(t) \in [0.1, 0.5]$ Gyrs
 - $\sigma(Y) \in [0.01, 0.05]$
 - $\sigma(\alpha_{ov}) \in [0.01, 0.05]$

Only one set of input physics tested

 $\Rightarrow \sigma$ relative to the method

Results 16 Cygni A

In depth modelling: 16 Cygni A

• Method:

- $\rightarrow \sigma 4$ times lower \Rightarrow better models
- 16 Cyg A: (Farnir et al. 2019b in prep.)
 - $\rightarrow\,$ Possibility to discriminate choices of physics
- Kepler Legacy: (Farnir et al. 2019c in prep.)
 - \rightarrow Both [Fe/H] and $A_{\rm He}$ necessary
 - \rightarrow Correlation between Y_0 and $(Z/X)_0$
 - \Rightarrow Galactic enrichment?
 - \rightarrow No correlation between α_{ov} and M observed

• Future perspectives:

ightarrow Adaptation to subgiants and mixed modes

• Gram-Schmidt \rightarrow discrete orthonormal basis functions

→ glitch completely independent of smooth part

 Combine coefficients a_j → seismic indicators as uncorrelated as possible

 \rightarrow tighter constraints

Construction of orthonormal basis elements

- Subtract from current element its projection on the previous orthonormal elements,
- 2 Normalise it.

$$u_{j_{0}} = p_{j_{0}} - \sum_{j=1}^{j_{0}-1} \langle p_{j_{0}} | q_{j} \rangle q_{j}, \qquad (1)$$
$$q_{j_{0}} = \frac{u_{j_{0}}}{||q_{1}|||q_{0}||||q_{0}|||q_{0}|||q_{0}||q_$$

 $\|\boldsymbol{u}_{j_0}\|$

Appendices

An Illustrative Example

An Illustrative Example : Smooth

At a given degree, projection of the frequencies on the successive basis elements.

- $\rightarrow 0$ order : mean value;
- \rightarrow 1st order : straight line approximation;
- \rightarrow 2nd order : parabola approximation.

Follow the proper ordering to define seismic indicators

Appendices An Illustrative Example : Glitch

Simultaneous projection of the frequencies for every spherical degree on the successive basis elements.

- \rightarrow First for the helium;
- \rightarrow Then for the convection zone.

- Correlated with Y_{surf} ;
- Anti-correlated with Z_{surf};
- $\rightarrow \Gamma_1$ toy model provides an explanation.

- Correlated with Y_{surf} ;
- Anti-correlated with Z_{surf};
- $\rightarrow \Gamma_1$ toy model provides an explanation.

- Correlated with Y_{surf} ;
- Anti-correlated with Z_{surf};
- $\rightarrow \Gamma_1$ toy model provides an explanation.

- Correlated with Y_{surf} ;
- Anti-correlated with Z_{surf};
- $\rightarrow \Gamma_1$ toy model provides an explanation.

- Correlated with Y_{surf} ;
- Anti-correlated with Z_{surf};
- $\rightarrow \Gamma_1$ toy model provides an explanation.

- Correlated with Y_{surf} ;
- Anti-correlated with Z_{surf};
- $\rightarrow \Gamma_1$ toy model provides an explanation.

- Correlated with Y_{surf} ;
- Anti-correlated with Z_{surf};
- $\rightarrow \Gamma_1$ toy model provides an explanation.

- Correlated with Y_{surf} ;
- Anti-correlated with Z_{surf};
- $\rightarrow \Gamma_1$ toy model provides an explanation.

Γ_1 Toy Model

