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ABSTRACT

Pulsating variables of γ Doradus type (γ Dor) and slowly pulsating B-type (SPB) stars are found on and near the main sequence
with typical periods varying between one and several days, making them rather hard to detect from the ground. It is only with space
missions such as CoRoT and Kepler that we became truly capable of determining their oscillation frequencies with enough precision
to perform in-depth analyses. Here we present an efficient and easy-to-implement seismic tool, in which the frequency (ν) and the
square root of the frequency difference (

√
∆ν) are plotted against each other as the abscissa and the ordinate, respectively. This allows

us to immediately (1) perform mode identification; (2) estimate the average rotation rate and the characteristic period of gravity
modes; and (3) recognise certain physical effects, including buoyancy glitches and avoided crossings. This diagnostic tool can only
be applied to prograde sectoral g modes. To validate the tool presented here, we used stellar models and also applied it to three γ Dor
(KIC 12066947, KIC 5608334 and KIC 4846809) and one SPB star (KIC 3459297), all observed with Kepler. Furthermore, we show
that the rotation rates determined using this new tool are consistent with the results of previous studies.
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1. Introduction

Gamma Doradus (γ Dor) stars are a class of pulsating vari-
able stars located on and near the main sequence with spectral
types from late-A to early-F. The corresponding mass range is
between 1.4 and 2.0 M�1. They show multi-periodic variabil-
ity with amplitudes of .0.1 mag and periods of about one day.
The average measured projected rotational velocity, v sin i, is
∼70−100 km s−1, which indicates that the surface rotation rate
is of the same order as the pulsation periods. This means that
rotation significantly affects the low-frequency oscillation modes
in these stars, making them perfect objects for the study of how
rotation affects the internal structure and evolution of these stars.

There has been substantial progress in the understanding of γ
Dor stars, thanks to space missions such as CoRoT (Baglin et al.
2006) and Kepler (Borucki et al. 2010), which delivered long
and continuous observations with unprecedented precision of
a vast number of stars. Contrary to ground-based data, space
observations do not suffer from daily aliasing issues, which pose
a serious problem when studying pulsating stars with periods
close to one day. It is only thanks to multiple years of data from
Kepler that oscillation periods in γ Dor stars have finally been

1 For more details about the history of γ Dor stars we refer the reader
to Saio et al. (2018a). Although the prototype was discovered in 1963
(Cousins & Warren 1963), the class of γ Dor pulsators was established
only three decades later (Balona et al. 1994).

resolved, leading to a true revolution in the study of these stars
(e.g. Van Reeth et al. 2015). While Kepler data have revealed
a significant number of oscillation modes in many cases, their
exact identification is absolutely crucial for in-depth analyses.

Oscillation frequencies in rapid rotators are fundamentally
different from those of slow rotators. For the latter, the rota-
tion can be regarded as a small perturbation and so the average
internal rotation rate can be estimated by measuring the rota-
tional splittings in the frequency spectrum (Cowling & Newing
1949; Ledoux 1951). In the case of rapid rotators, the period ver-
sus period-spacing (P–∆P) diagram is known to provide useful
information about the mode identification and the internal rota-
tion rate (e.g. Bouabid et al. 2013; Ouazzani et al. 2017). The
asymptotic formula of the period spacing (Ballot et al. 2012)
serves as a useful theoretical basis for extracting information
from the frequency spectrum. Nevertheless, the estimation of the
rotation rates of these stars is not a simple task. Van Reeth et al.
(2016), for example, use a large grid of evolutionary mod-
els with an assumed range of rotation rates to find the best-
fitting parameters for their sample of stars, including the rota-
tion rates. On the other hand, Christophe et al. (2018) propose a
model-independent method based on the discrete Fourier trans-
form. The basic idea is that the pulsation periods will be evenly
spaced even when the star is rapidly rotating if the period
coordinate is stretched appropriately. Li et al. (2019) developed
a different model-independent method in the same theoretical
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framework as Van Reeth et al. (2016) and Christophe et al.
(2018), which is described in detail in Sect. 2.1. Li et al. (2020)
then applied the method to as many as 611 γ Dor stars in the
Kepler field. The central problem of all the methods mentioned
above is the parameter sweep in a multidimensional space, which
is generally time-consuming and computationally intense.

In this paper, we show that the internal rotation rate of γ
Dor and slowly pulsating B-type (SPB) stars can be estimated
in a model-independent way by using a simple linear relation
between the oscillation frequency and the square-root of the
frequency difference. This method can only be applied to pro-
grade sectoral g modes, which is fortunate as observations (e.g.
Saio et al. 2018a; Li et al. 2019) show that γ Dor stars predom-
inantly pulsate in these modes. We confine ourselves to single
stars in this paper because tidal effects in binaries (or multi-
ple systems) could complicate the picture significantly. Prograde
sectoral g modes consist of the waves that propagate in the
same longitudinal direction as the rotation, with large amplitudes
confined to the equatorial region. Their main restoring force is
buoyancy, while the Coriolis force plays an essential role in the
equatorial confinement. These modes, which are found in γ Dor
stars, are also excited in SPB stars (Waelkens 1991; Salmon et al.
2014). These stars are known as gravity-mode pulsators on the
main-sequence with the mass between 3−9 M�. The second most
dominant component in the frequency spectrum of γ Dor stars
is that of r modes (Papaloizou & Pringle 1978; Van Reeth et al.
2016; Saio et al. 2018b), which appear at lower frequencies than
prograde sectoral g modes. Rossby (r) modes are mostly com-
posed of toroidal waves (Rossby waves) in each spherical (or
equipotential) layer, which are restored by the Coriolis force.
The (phase) propagation of the modes is opposite to the rotation
in the longitudinal direction (in the co-rotating frame), while the
wave motions in adjacent layers are weakly coupled with each
other through the influence of the buoyancy. Observations sug-
gest that these modes are detected not only in γ Dor stars, but
also in other various types of stars, including chemically pecu-
liar stars and accreting white dwarfs (Saio 2018, 2019).

The structure of this paper is as follows: the method is
described in detail in Sect. 2. It is then applied to (a) synthetic
model frequencies and (b) observed frequencies of four stars in
Sect. 3. Section 4 is devoted to discussions and conclusion.

2. Method

2.1. Theoretical framework

The present study focuses on eigenmodes of stellar oscillations,
specifically, prograde sectoral g modes that have been detected
in γ Dor and SPB stars. These modes have significantly longer
periods than the dynamical time scale of the star and they are
strongly affected by the Coriolis force. This is because their
rotation periods are of the same order as the oscillation periods.
These properties imply that the modes are composed of gravito-
inertial waves, which are waves that are subject to the influence
of both buoyancy and Coriolis forces.

The equations that govern the low-frequency eigenmodes
of linear adiabatic oscillation in rapidly and uniformly2 rotat-
ing stars can be formulated to a good level of precision in the
framework of the traditional approximation of rotation (Eckart
1960). We neglect (1) the perturbation to the gravitational poten-
tial (the Cowling approximation after Cowling 1941), (2) the

2 While it is assumed that the rotation is uniform, we can account for
the radial dependence of the rotation rate without changing the essential
part of the analysis (see Sect. 4 and Appendix E).

centrifugal deformation (the assumption of spherical symmetry
of the equilibrium structure), and (3) the horizontal component
of the rotation vector. The derived equations are separable in
the spherical coordinates (r, θ, φ), with the direction of θ = 0
aligned with the rotation axis. While the φ parts of the eigen-
functions are described by the sinusoidal function, eimφ, where
m is the integral index called the azimuthal order, the θ parts
come from the solution of the Laplace tidal equation (the Hough
function). On the other hand, the radial parts of the governing
equations are of the same form as those of the spheroidal modes
of non-rotating stars under the Cowling approximation. The only
difference from the non-rotating case is that the term `(` + 1),
where ` is the spherical degree, is replaced with the eigenvalue
λ`,m of the Laplace tidal equation. Assuming further that the
radial wavelength of the oscillation is much shorter than the
local scale height of the equilibrium structure, we may apply the
asymptotic analysis (e.g. Vandakurov 1967) to derive the condi-
tion for the eigenfrequency of the low-frequency modes as∫ r2

r1

kr dr = (n + α)π, (1)

where the meanings of the symbols are given as follows: kr is
the radial wave number of the oscillation; r1 and r2 represent the
inner and outer boundaries of the region where the constituent
waves are propagative; n is the radial (integral) order of modes;
α is the phase shift introduced at the inner and outer boundaries
of the propagative region. The expression for the radial wave
number kr is given by

kr =

√
λ`,m (s)N (r)

2πνcor
· (2)

Here N(r) is the Brunt–Väisälä frequency, which is a function
of the radius r, and νco is the cyclic frequency of the oscillation
in the co-rotating frame. The eigenvalue λ`,m(s) depends on not
only ` and m, but also the spin parameter s, which is defined by

s =
2νrot

νco
· (3)

The index ` (spherical degree) of λ`,m(s) means that λ`,m(s) →
`(` + 1) as s → 0, while the angular part of the eigenfunctions
cannot be described by any single spherical harmonic for s , 0.
In other words, the ` of eigenmodes in rotating stars indicates
the degree of spherical harmonics that specify the angular depen-
dence only in the limit of no rotation. We note that νco is related
to the oscillation frequency in the inertial frame, ν, by

νco = ν − mνrot. (4)

In this paper, we adopt the convention that positive (negative)
values of m correspond to prograde (retrograde) modes. Equa-
tion (1) implies that the oscillation period in the co-rotating
frame is given by

ν−1
co =

(n + α) P0√
λ`,m (s)

, (5)

in which the parameter P0 is defined by

P0 = 2π2
(∫ r2

r1

N
r

dr
)−1

. (6)

Equation (5) is in general an implicit expression because s
depends on νco. In the absence of rotation, the series of high-
order gravity modes with a given spherical degree ` are equidis-
tantly spaced by a constant period spacing of P0/

√
`(` + 1)
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Fig. 1. Relative differences in the square roots of the eigenvalues of the
Laplace tidal equation

√
λm,m of the prograde sectoral g modes from the

asymptotic values of m for m = 1−5 as functions of the spin parameter
s. The vertical solid line indicates s = 1, the limit of the sub-inertial
regime, s > 1, in which the effect of the Coriolis force is important, and
where the approximation of

√
λm,m ≈ m is valid.

provided that the composition profiles have no steep gradient,
and that the dependence of r1 and r2 on the frequency is negli-
gible. Although the spectrum of the low-frequency oscillations
in rapidly-rotating stars does not show constant period spacings,
the parameter P0 still characterises the structure of the spectrum
through Eq. (5). In this sense, P0 can be regarded as a character-
istic period of the gravity-mode oscillations3.

2.2. Prograde sectoral g modes and the ν −
√

∆ν diagram

We derive the relation between the frequency and the square root
of the frequency difference for prograde sectoral g modes with a
given m. Supposing that there is a list of (observed or synthetic)
frequencies sorted in the ascending order with the radial orders
nk (k = 1, 2, . . .) and the same m, we can take the difference
of Eq. (5) multiplied by

√
λ`,m between the (k + 1)th and kth

frequencies to obtain

∆k

( √
λ`,mν

−1
co

)
= (−∆kn) P0, (7)

in which ∆kq generally means the difference in q between the
(k+1)th and kth frequencies in the list, except for ∆kn = −(nk+1−

nk) (≥1). When we derive Eq. (7), we assume that r1, r2 and α are
independent of the frequency. For the prograde sectoral gmodes,
which have ` = m > 0, there is an approximate relation for
large s,√
λm,m(s) ≈ m (8)

(e.g. Bildsten et al. 1996; Townsend 2003). The accuracy of
Eq. (8) is depicted in Fig. 1. We may further introduce the lin-
earisation relation,

∆k

(
ν−1

co

)
≈ −∆kν

(
νk+ 1

2
− mνrot

)−2
, (9)

under the assumption of ∆kν � νk+ 1
2
, where ∆kν = νk+1 − νk and

νk+ 1
2

= (νk + νk+1)/2, with νk being the kth frequency in the list.

3 Christophe et al. (2018) and Ouazzani et al. (2019) introduce P0 as
the buoyancy radius.

With the help of Eqs. (8) and (9), we can reduce Eq. (7) to√
∆kν

m∆kn
≈

√
P0

(νk+ 1
2

m
− νrot

)
· (10)

In Eq. (10), ∆kν (the difference between the two adjacent fre-
quencies) and νk+ 1

2
(the average frequency of the two) are both

observables that are computed from the same pair of mode fre-
quencies, while m, ∆kn, P0 and νrot are not known in advance.
With estimates of m and ∆kn, we can construct a diagram, based
on only the two observables, in which the abscissa and the ordi-
nate are given by νk+ 1

2
/m and

√
∆kν/(m∆kn), respectively. We

call this the diagram of ν versus
√

∆ν, or simply the ν–
√

∆ν dia-
gram. Although mode identification (i.e., the knowledge of ∆kn)
is not always straightforward, this tool can be used to constrain
∆kn of these prograde modes as described in Sect. 3. Accord-
ing to Eq. (10), each pair of the two adjacent frequencies should
correspond to a point of a common straight line in the diagram.
The slope and the abscissa intercept (the intersection point with
the horizontal line of

√
∆kν/(m∆kn) = 0) of the linear fit are

given by
√

P0 and νrot, respectively. Using this result inversely,
we can estimate νrot and P0 by plotting the modes in the diagram
and fitting them with a straight line. The simplest procedure
is to perform linear least-squares fitting under the assumption
that the errors of each point are uncorrelated with each other.
This assumption is acceptable for rough estimates. However, as
shown in the Appendix A, ∆kν and ∆k+1ν are correlated with
each other since they both depend on νk+1.

2.3. Revised method of estimating νrot and P0

The formula given by Eq. (10) can be improved by discarding
the two approximations that are given by Eqs. (8) and (9). The
revised formula can directly be obtained from Eq. (7) as

fk (νrot)

√
∆kν

m∆kn
=

√
P0

(νk+ 1
2

m
− νrot

)
, (11)

in which

fk (νrot) =

 −1
m∆kν

∆k

 √
λm,m (s)
νco


1
2 (
νk+ 1

2
− mνrot

)
. (12)

The correction factor fk, which is a function of νrot, is practically
close to 1 because Eqs. (8) and (9) are generally good approxi-
mations. This property can be utilised to construct the following
iterative procedure to obtain better estimates of νrot and P0:
1. set fk to f (1)

k = 1 and perform the least-squares fitting based on
Eq. (11) to estimate νrot = ν(1)

rot and P0 = P(1)
0 (cf. Appendix A);

this step is called iteration 1.
2. calculate fk by substituting νrot = ν(1)

rot into Eq. (12), and per-
form the least-squares fitting again to estimate νrot = ν(2)

rot and
P0 = P(2)

0 based on Eq. (11); this step is called iteration 2.
3. repeat the same procedure as step 2 to obtain ν(i+1)

rot and P(i+1)
0

from ν(i)
rot (iteration i + 1) for i = 2, 3, . . . until both of∣∣∣ν(i)

rot − ν
(i+1)
rot

∣∣∣ and
∣∣∣P(i)

0 − P(i+1)
0

∣∣∣ are small enough.
We use the numerical values of λm,m(s) to evaluate Eq. (12).

2.4. Error estimates

The errors in νrot and P0 obtained by the procedure in Sect. 2.3
can originate from (1) the observational errors in the frequency
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measurement and (2) the systematic errors in Eq. (11), which
arise from differential rotation, steep chemical composition gra-
dient (discussed in Sect. 3.1), and deviation from the traditional
approximation of rotation in the asymptotic limit. Because the
relative errors in the frequencies of γ Dor and SPB stars in
the Kepler data are typically of the order of 10−5 or below, we
regard that the dominant uncertainties come from (2). In order
to estimate the systematic errors accurately, we need a detailed
comparison between the frequencies computed under the tra-
ditional approximation of rotation in the asymptotic limit and
those determined by two-dimensional computations that take full
account of the effects of the rapid rotation. We leave this expen-
sive comparison to future work, however, for a first approxima-
tion, we determine uncertainties in νrot and P0 from the residual
sum of squares of the least-squares fitting. These estimates are
based on the assumptions that (a) the uncertainties in the fre-
quencies are not correlated and that (b) they follow a Gaussian
distribution with the same standard deviation. For the sake of
simplicity, we assume that there is no error correlation, but we
do point out that the systematic errors in Eq. (11) are likely to be
highly correlated. We set the default confidence level to 99% for
the uncertainties in the estimates of νrot and P0. More details are
given in Appendix A.

3. Results

As described in Sect. 1, the ν–
√

∆ν diagram method was devel-
oped based on Kepler observations. It indicates that most of the
observed frequencies in γ Dor stars can be identified as prograde
sectoral g modes and r modes. Therefore, we first address these
two types of modes in this section, while the other types are dis-
cussed in Sect. 3.3.2.

Since analysing γ Dor and SPB stars requires very similar
techniques, in this section we choose to concentrate on the for-
mer, while the latter is discussed in Appendix B.

3.1. Tests based on models

We construct the ν–
√

∆ν diagrams and estimate νrot and P0
for the following three models of γ Dor stars (all having
the same mass of 1.86 M�), which are described in detail in
Christophe et al. (2018): (1) Model A (with smooth profiles of
chemical composition); (2) Model B (with steep gradients of the
chemical composition profiles just above the convective core);
(3) Model A with differential rotation (DR) (νrot = 15 µHz and
7 µHz in the convective core and the envelope, respectively).
For each model, we used the same set of eigenfrequencies as
Christophe et al. (2018), that is, those of prograde sectoral g
modes with m = 1 and the g mode radial orders between −50
and −20. All mode frequencies were computed with the acor
oscillation code (Ouazzani et al. 2012, 2015). For the sake of
simplicity, we took only the spherically-symmetric part of the
centrifugal deformation into account. In Figs. 2–4 we show the
ν–
√

∆ν diagrams for these models. The corresponding estimates
of νrot and P0 are summarised in Table 1.

The ν–
√

∆ν diagrams in Figs. 2–4 clearly show that all the
open circle symbols are well aligned and fit a straight line. This
confirms that Eq. (10) is a good approximation in all of the mod-
els. In models (1) and (2), the spin parameter of the eigenmodes
ranges between 1 and 3, for which Eq. (8) is accurate to only
about 10–20% (see Fig. 1). The inaccuracy of Eq. (8) results in
the deviation of fk in Eq. (12) from 1. This is the main reason
for the differences between the dashed and solid lines in Figs. 2
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Fig. 2. ν versus
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∆ν diagram for model (1) (Model A). Open circles
describe the modes with an azimuthal order m = 1 and ∆kn = 1, which
implies consecutive radial orders. The blue dashed and black solid lines
describe the output of iterations 1 and 5, respectively. The open square
symbol shows the abscissa intercept with the solid line, which gives the
converged estimate of the rotation frequency.
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Fig. 3. Same as Fig. 2, but for model (2) (Model B).

12 14 16 18 20 22
νk+ 1

2
/m [µHz]

0.0

0.2

0.4

0.6

0.8

√ ∆
kν
/

( m
∆

kn
) [

( µ
H

z)
1 2
]

it. 4
×√2

0.00

0.05

0.10

0.15

0.20

√ ∆
kν
/

( m
∆

kn
) [

d−
1 2
]

1.0 1.2 1.4 1.6 1.8
νk+ 1

2
/m [d−1]

Fig. 4. Same as Fig. 2, but for model (3). This model includes differen-
tial rotation. A detailed explanation of the symbols and the dotted line
labelled ×

√
2 respectively, is given in the main text.
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Table 1. Estimates of νrot and P0 for the three theoretical models from the synthetic eigenfrequencies of the prograde sectoral g modes with the
azimuthal order of m = 1.

(1) Model A (2) Model B (3) Model A with DR

νrot P0 [103 s] νrot P0 [103 s] νrot P0 [103 s]

Iteration 1 6.64 µHz 4.03 6.4 µHz 3.8 11.76 µHz 5.60
(0.574 d−1) (0.55 d−1) (1.016 d−1)

Converged value 6.944 ± 0.008 µHz 4.49 ± 0.01 6.7 ± 0.1 µHz 4.3 ± 0.1 11.80 ± 0.04 µHz 5.70 ± 0.06
(0.6000 ± 0.0007 d−1) (0.58 ± 0.01 d−1) (1.020 ± 0.004 d−1)

C18 6.95 µHz 4.495 6.67 µHz 4.233 11.74 µHz 5.592
(0.600 d−1) (0.576 d−1) (1.014 d−1)

True value 7 µHz 4.579 7 µHz 4.453 7–15 µHz 4.579
(0.605 d−1) (0.605 d−1) (0.605–1.296 d−1)

Notes. The process to estimate νrot and P0 converges after 5, 5, and 4 iterations for models (1), (2), and (3), respectively, with the requirement
that the relative differences in νrot and P0 are both less than 10−4 between two successive iterations. The errors that are given for the converged
values correspond to the 99% confidence intervals. The results of Christophe et al. (2018) based on the discrete Fourier transform are also given
and described in the table as C18. The true value of νrot for Model A with differential rotation (DR) indicates the range of the rotation rate in the
model.

and 3 or, equivalently, the differences between the outputs of
iteration 1 and the converged values for these two models (see
Table 1).

The converged values for the rotation rate based on the iter-
ative linear least-squares fitting described in Sect. 2.3 are gen-
erally consistent with the results based on the discrete Fourier
transform (DFT) map developed by Christophe et al. (2018), as
shown in Table 1. Although the differences between the con-
verged estimates and the true values are generally small, the
true values of νrot and P0 are found outside the given confidence
intervals for all cases, which indicates that the unaccounted sys-
tematic errors of Eq. (11) can be significantly larger than the
uncertainties derived here.

As an example of the unaccounted error sources, we may
list the steep gradients in the chemical composition profiles just
above the convective core in model (2). This cannot be treated
by the standard asymptotic analysis because it assumes that the
wavelength of the oscillation is much shorter than the scale
height of the equilibrium structure. The corresponding variation
in the Brunt–Väisälä frequency (buoyancy glitch) is known to
cause a wavy structure in the period spacing (e.g. Miglio et al.
2008; Bouabid et al. 2013; Kurtz et al. 2014). Such an oscilla-
tory behaviour in ∆P caused by a glitch can also be found in
√

∆ν as shown in Fig. 3.
The case of model (3) (see Fig. 4) can be used to check what

happens if the method is applied to the case of differential rota-
tion, although the uniform rotation is assumed in the (standard)
traditional approximation of rotation. Broadly speaking, we find
no critical difference from Fig. 2 because most of the points are
aligned. This is, at first glance, consistent with the argument
in Appendix E, which claims that the effect of weak differen-
tial rotation (in the radial direction) can be taken into account
only by replacing the uniform rotation frequency by its aver-
age weighted by N/r over the propagation region. However, the
weak differential rotation cannot be assumed for model (3) since
the variation between 7 and 15 µHz is large. This means that for
a strongly differentially rotating star, we cannot simply interpret
the derived νrot, even though the value of 11.80 ± 0.04 µHz for
model (3) is clearly within the range of values in the model.

It is remarkable that our method allows us to highlight the
two avoided crossings in Fig. 4 at a frequency of ∼15.5 µHz and
∼17.5 µHz, respectively. It should be noted that methods using

the traditional approximation framework cannot account for this
phenomenon. This is shown by the filled circles deviating from
the solid line (base line). Since these points cannot be interpreted
in the framework developed in Sect. 2, we simply discard them
in the fitting to estimate νrot and P0. Lee & Saio (1989) demon-
strated that an avoided crossing can be caused by the horizon-
tal component of the rotation vector, which is neglected in the
traditional approximation of rotation. However, there may be
other reasons too. In principle, it can occur due to any neglected
terms that make the governing equations variable-inseparable
into the radial and angular parts. In the case of differential rota-
tion, those that include the gradient of the rotation frequency can
also induce the avoided crossing.

Another important difference in model (3) is that some
modes are missing, meaning that not all modes are of consec-
utive radial order. More specifically, the open diamonds aligned
with the blue dotted line labelled “×

√
2” in Fig. 4 correspond to

the jumps in the radial order n with ∆kn = 2. This demonstrates
that this method allows us to not only determine νrot and P0 but
also ∆kn. When a point is found on the line that has the same
abscissa intercept as the base line but a slope steeper than the
base line by factor of

√
j (with j = 2, 3, . . .), we may interpret

this as a missing j−1 radial order(s) with ∆kn = j. With the value
of ∆kn, we can calculate the left-hand side of Eq. (10), which can
be used in the fitting. This correction factor of 1/

√
∆kn is indi-

cated by each of the vertical cyan lines in Fig. 4. We only use the
open circles in Fig. 4 to estimate νrot and P0.

We apply the same method and construct the ν–
√

∆ν diagram
for r modes of model (1) (see Fig. 5). In sharp contrast to Fig. 2,
these modes are not distributed along a straight line with a pos-
itive slope. This very clear difference can be used to distinguish
r modes from prograde sectoral g modes. Thus, the diagram is
also useful for mode identification in this respect.

3.2. Application to real stars

3.2.1. KIC 12066947

The first γ Dor star analysed here is KIC 12066947. The
observed frequencies and the Lomb-Scargle periodogram are
provided in Table A.1 and Fig. 6 of Christophe et al. (2018),
respectively. All peaks were extracted using the Aarhus
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Fig. 5. Diagram of ν versus
√

∆ν for r modes of model (1) with k = −2
and m = −1 (cf. Lee & Saio 1997).
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Fig. 6. ν versus
√

∆ν diagram for KIC 12066947. Here we used the
frequencies between 27 µHz and 35 µHz which were already identified
to be prograde sectoral g modes with m = 1.

University ECHO (Extraction of CoHerent Oscillations) pipeline
described in Antoci et al. (2019). Analyses show that the
extracted frequencies are separated in two clusters, Cluster A
between 20 and 24 µHz and Cluster B between 27 and 35 µHz.

The ν–
√

∆ν diagram in Fig. 6 is constructed using 14 fre-
quencies in Cluster B, which could be identified as m = 1 modes.
It can be seen that except for one peak, all modes follow the three
lines that are displayed. The solid line is the base line, while the
two dotted lines labelled “×

√
3” and “×

√
6” indicate slopes that

are larger than the base line by factors
√

3 and
√

6, respectively.
This is consistent with the interpretation that these frequen-

cies are those of the prograde sectoral g modes. The outlier
at

(
νk+ 1

2
,
√

∆kν
)

= (28.4, 1.08) is discarded when we perform
the least-squares fitting, which converges after three iterations.
Table 2 provides the converged estimates of νrot and P0 with
their 99% and 1σ confidence intervals. These results are consis-
tent with those of Van Reeth et al. (2016) and Christophe et al.
(2018) within 1σ, while those of Li et al. (2019) are within 99%
confidence intervals. We note that the uncertainties of Li et al.
(2019) are smaller than the others because they include not only
prograde sectoral g modes but also r modes in their analysis.

Table 2. Estimates of νrot and P0 for KIC 12066947.

νrot [µHz] νrot [d−1] P0 [103 s]

This work
99% CI 24.9 ± 0.1 2.150 ± 0.009 4.1 ± 0.1
1σ CI 24.88 ± 0.04 2.150 ± 0.003 4.08 ± 0.04
R16 25.00+0.09

−0.10 2.160 ± 0.008 4.171 ± 0.099
C18 24.95 ± 0.05 2.156 ± 0.004 4.181 ± 0.063
L19 24.99 ± 0.02 2.159 ± 0.002 4.17 ± 0.03

Notes. The results of the fitting to Eq. (11) are provided for two different
confidence intervals (CI) of 99% and 1σ.
References. R16: Van Reeth et al. (2016); C18: Christophe et al. (2018);
L19: Li et al. (2019).
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Fig. 7. ν versus
√

∆ν for the observed frequencies of KIC 12066947.
Here we used the peaks between 20 µHz and 24 µHz.

The ν–
√

∆ν diagram constructed using the frequencies in
Cluster A is shown in Fig. 7. It is clear that we fail to observe
the modes showing the expected pattern for prograde sectoral
g modes. We therefore conclude that these peaks are those of
other modes, which is consistent with Van Reeth et al. (2016)
who identify these as r modes (cf. Fig. 5).

3.2.2. KIC 5608334

Saio et al. (2018a) study KIC 5608334, which shows remarkable
frequency groups (fg) in the amplitude spectrum (cf. Fig. 3 in
the paper). We adopted their mode identification of the four fre-
quency groups, fg1–fg4, as the prograde sectoral g modes with
m = 1−4, respectively. From 192 frequencies that are deter-
mined with the ECHO pipeline of Antoci et al. (2019) and listed
in Table A.1 of Saio et al. (2018a), we first excluded those with
amplitudes smaller than 5 ppm (all of which belong to fg3 and
fg4). We chose to do so because the small peaks show significant
outliers in the ν–

√
∆ν diagram, which may imply that many of

them do not correspond to prograde sectoral g modes or addi-
tional effects such as glitches are present. The physical origin of
them should be examined in a separate study. In addition, if mul-
tiple frequencies are found in a very narrow frequency range for
all of fg1–fg4 (cf. Fig. 4 of Saio et al. 2018a), we chose only the
one with the highest amplitude and discarded the rest. The num-
ber of the remaining frequencies is 79 in total, and is equal to
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Fig. 8. ν versus
√

∆ν diagram for KIC5608334 constructed from the
peaks in fg1 (m = 1).
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Fig. 9. Same as Fig. 8, but for fg2 (m = 2).

24, 30, 14 and 11 for fg1–fg4, respectively. We then constructed
the ν–

√
∆ν diagrams for each frequency group, which are shown

in Figs. 8–11. Table 3 provides the corresponding results of the
least-squares fitting, where only the open circles in Figs. 8–11
were used.

There are a few possible physical reasons for the discarded
points, which are indicated by filled circles in Figs. 8 and 9: they
might originate from an avoided crossing (as in Fig. 4) or from a
contamination of other types of frequencies (e.g. those of tesseral
modes or combination frequencies) than those of the prograde
sectoral g modes. These outliers are caused by the frequencies
with small amplitudes: they disappear if we exclude those with
amplitudes smaller than 100 and 20 ppm in fg1 and fg2, respec-
tively. We observe a small deviation of some of the open cir-
cles from the base lines in Figs. 8–11. It is possible that they
also originate from an avoided crossing or the influence of the
nonlinear mode interaction, as discussed in Saio et al. (2018a).
Although the estimates of νrot and P0 for fg1–fg4 are completely
consistent with each other within the errors, we cannot conclude
uniform rotation only from these results because the theoreti-
cal model of Saio et al. (2018a) indicates that there is little dif-
ference in the propagation cavity of the modes for the different
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Fig. 10. Same as Fig. 8, but for fg3 (m = 3).
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Fig. 11. Same as Fig. 8, but for fg4 (m = 4).

Table 3. Estimates of νrot and P0 for KIC 5608334.

νrot [µHz] νrot [d−1] P0 [103 s]

fg1 (m = 1) 26.0 ± 0.1 2.25 ± 0.01 4.4 ± 0.1
fg2 (m = 2) 25.9 ± 0.2 2.24 ± 0.02 4.2 ± 0.3
fg3 (m = 3) 25.8 ± 0.3 2.23 ± 0.02 4.1 ± 0.3
fg4 (m = 4) 25.9 ± 0.7 2.23 ± 0.06 4.2 ± 0.8
fg1–fg4 25.86 ± 0.09 2.234 ± 0.008 4.2 ± 0.1

groups, so the estimates for fg1–fg4 correspond to essentially
the same physical quantities. Based on these considerations, the
last row of Table 3 gives the estimates in the case where all the
points with open circles in Figs. 8–11 are simultaneously taken
into account in the fitting.

Saio et al. (2018a) estimate the internal rotation rate of the
star as 2.20 d−1 (25.5 µHz) by comparing the observed period
spacings with theoretical models by eye. Considering the rough-
ness of their estimate, we regard the small deviation in our
results outlined in Table 3 as non-significant. Saio et al. (2018a)
also note an isolated peak at 2.2397 d−1 (25.922 µHz) in the fre-
quency spectrum, which could be due to rotational modulation.
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If this is indeed the case, the derived surface rotation rate
agrees well with the average internal rotation rate in Table 3
(cf. Appendix E). Li et al. (2020) also analyse this star, but based
only on peaks belonging to fg1. They obtain νrot = 26.0±0.1 µHz
(2.25 ± 0.01 d−1) and P0 = (4.4 ± 0.2) × 103 s. These are
completely consistent with our results in Table 3.

3.3. Applicability of the method

3.3.1. Slow rotation

While the fundamental approximation of the present analysis,
√
λ ≈ m (cf. Eq. (8)), can be justified only when the spin param-

eter satisfies s � 1, we show in Appendix C that in principle the
ν–
√

∆ν diagram method may also work for s . 1. However, we
should stress that it is essential not to use the approximation of
√
λ ≈ m in the case of slow rotation, but to utilise the realistic

values shown in Fig. 1.

3.3.2. Mode identification

As described above, the ν–
√

∆ν diagram allows us to distinguish
prograde sectoral g modes from r modes (cf. Sect. 3.1), how-
ever other types of modes may complicate the mode identifica-
tion process. In this section, we discuss possible issues that may
influence mode identification.

Retrograde modes with ` = 1 and m = −1 behave differ-
ently from the prograde modes when plotted in both, the ν–

√
∆ν

as well as the P–∆P diagrams (cf. Bouabid et al. 2013). More
specifically, the sign of the slope is different: negative for retro-
grade and positive for prograde modes in the ν–

√
∆ν diagram.

One relevant question may refer to how we discriminate
prograde sectoral g modes with different azimuthal order m.
We believe that this is not a real problem. As in the case of
KIC 5608334 (Saio et al. 2018a), these modes with different m
usually appear in different groups in the frequency spectrum,
with smaller amplitudes for the group with higher frequencies.
Since the effect of the geometrical cancellation is more signifi-
cant for the modes with larger m, we may identify those groups
as the modes with m = 1, 2, . . . in the order of frequency. In par-
ticular, if there is only one group observed, and the ν–

√
∆ν dia-

gram confirms that it consists of the prograde sectoral g modes,
it is quite likely that the group is that of m = 1 modes.

Some possible confusion can be caused by the zonal modes
(m = 0), which are claimed to be observed in rare cases (cf.
Van Reeth et al. 2016; Li et al. 2020). In Fig. 12 we show the
` = 1 zonal modes of model (1) in the ν–

√
∆ν diagram. We

clearly observe very similar alignment of the points on a straight
line to that in Fig. 2. If we erroneously identify these as pro-
grade sectoral g modes with m = 1, we obtain the rotation rate
of νrot = 3.6 µHz (0.31 d−1), which is quite different from the true
value of 7 µHz (0.60 d−1). This example shows that it is danger-
ous to apply the method blindly. We therefore suggest for the
mode identification to use the information about the amplitude
in addition to the ν–

√
∆ν diagram. This point is demonstrated

in a particular case. Van Reeth et al. (2015) detect two series of
period spacings in KIC 4846809 (see Fig. 15 of the paper), in
which the shorter-period (higher-frequency) series have signifi-
cantly larger amplitudes. Both series cannot be prograde sectoral
g modes, because frequencies in the higher-frequency group
(with higher azimuthal order, m) are more likely to have smaller
amplitudes due to the more severe effect of the geometrical can-
cellation. We therefore argue that the higher-frequency (shorter-
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Fig. 12. Diagram of ν versus
√

∆ν for zonal modes of model (1). These
modes come from the ` = 1 modes in the limit of no rotation.
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Fig. 13. Diagram of ν versus
√

∆ν for KIC 4846809. The frequencies
between 17 µHz and 27 µHz are determined with the ECHO pipeline
of Antoci et al. (2019). The converged estimates for the parameters are
νrot = 15.7 ± 0.1 µHz (1.36 ± 0.01 d−1) and P0 = (5.8 ± 0.3) × 103 s.

period) series of KIC 4846809 corresponds to the prograde sec-
toral g modes with m = 1, which can be confirmed in the ν–
√

∆ν diagram shown in Fig. 13. This identification is consistent
with Van Reeth et al. (2016). The lower frequencies (longer peri-
ods) series cannot be identified by our method completely, while
Van Reeth et al. (2016) regard them as zonal modes.

Other types of modes, such as ` = 2 and m = ±1, can also
introduce confusion similar to that caused by the zonal modes.
They appear as a series with a negative slope in the P–∆P dia-
gram, which translates into one with a positive slope in the ν–
√

∆ν diagram. However, they are unlikely to have much larger
amplitude than prograde sectoral g modes when the stellar rota-
tion is fairly high and are, apparently, identified in only few
stars (Li et al. 2020). Such exceptional cases should carefully be
investigated in a separate study.

Having considered all of the above, we may propose a gen-
eral procedure for mode identification as follows:

1. The first step is to identify frequency groups, each com-
posing a cluster in the frequency spectrum of a given star. If this
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is not possible, it may be the case that the star rotates slowly and
that frequency splittings may be identified.

2. If one or more groups are present, mode identification is
required. From a practical point of view, it seems to be a good
initial guess that the group with the largest amplitude corre-
sponds to the prograde sectoral g modes of m = 1. For these
modes we expect to observe larger amplitudes because the geo-
metrical cancellation effect is significantly smaller in compar-
ison to other types of modes. We may find an exception for r
modes but only if the star rotates rapidly, or more precisely if the
spin parameter satisfies s & 1 (Saio et al. 2018a).

3. If the modes of the first group do not align in the ν–
√

∆ν
diagram and show a positive slope consistent with prograde sec-
toral g modes, then the frequency group with the second-largest
amplitudes should be examined.

4. This process should be repeated until prograde sectoral g
modes with m = 1 are found (or all of the frequency groups
have been checked). If there are two (or more) frequency groups
with similar amplitudes at each step, we may assume that the one
with the highest frequency originates from the prograde sectoral
g modes with m = 1.

5. Once the identification of the first group is successful (i.e.
m = 1), one may look for m = 2, 3, . . . modes that should be
located around the frequencies of the first group multiplied by
m.

We regard this procedure as a general guideline that is appli-
cable to the majority of the stars. The further details of the mode
identification should be examined carefully based on a large
sample of stars.

4. Discussion and conclusion

We propose the ν–
√

∆ν diagram as an asteroseismic tool to esti-
mate the average rotation rate (νrot) and the characteristic period
of the gravity-mode oscillations (P0) of γ Dor and SPB stars
from the frequencies of the prograde sectoral g modes. Our
method is endorsed by the fact that the prograde sectoral gmodes
are most commonly observed in (rapidly rotating) γ Dor stars
and SPB stars (e.g. Van Reeth et al. 2015; Pápics et al. 2017).
Although the method is based on the same asymptotic formula
of the low-frequency oscillation under the traditional approxi-
mation of rotation as in previous works (Van Reeth et al. 2016;
Christophe et al. 2018; Li et al. 2019, 2020), the biggest advan-
tage here is in its efficiency and simplicity. It is easy to get rough
estimates of νrot and P0 by plotting the diagram and applying a
linear fit, which the majority of the modes follow ideally. The
estimates of νrot and P0 can be derived from the abscissa inter-
cept and (the square of) the slope of the line, respectively. If no
clear alignment is visible, it is unlikely that the observed fre-
quencies correspond to prograde sectoral g modes. The diagram
thus also allows us to perform mode identification. In addition,
this tool can also be used to discuss the physics of oscillation
modes including the buoyancy glitch (Fig. 3) and the avoided
crossing (Fig. 4). The first rough estimates of νrot and P0 can be
improved by just a linear least-squares fitting with a few iter-
ations. It should be stressed that the method is free from any
time-intensive parameter search in two- (or more) dimensional
space. There is no need to constrain the ranges of any parame-
ters in advance or give any initial guesses. These properties are
important, especially when analysing a large sample of stars.

The method proposed in this paper depends on the eigen-
value of the Laplace tidal equation of the prograde sectoral g
modes being approximately equal to the square of the azimuthal

order, m2, if the spin parameter s is much larger than 1
(cf. Fig. 1). This implies that the mode frequencies are nearly
independent of νrot in the co-rotating frame (cf. Eq. (5)). This is
because the dispersion relation of the constituent waves (inter-
nal equatorial Kelvin waves) is independent of νrot when s � 1
and also because they propagate only along the equator in the
same limit. More details about the physical properties of the
modes, which may be called Kelvin g modes, are discussed in
Appendix D. While the mode frequencies are insensitive to νrot
in the co-rotating frame, we may infer νrot from those in the
inertial frame through the advection effect induced by rotation
(Doppler shift), which is represented by the second term on the
right-hand side of Eq. (4). The ν–

√
∆ν diagram allows us to rep-

resent this effect graphically.
While it is standard to assume that the rotation rate is con-

stant in the traditional approximation of rotation, this is not nec-
essary in the asymptotic limit. In the case where the rotation
rate weakly depends on the radius, the obtained estimate of νrot
should be interpreted as the average of the internal rotation rate
weighted by N/r (the Brunt–Väisälä frequency divided by the
radius), as is proposed by Ouazzani et al. (2019) and justified in
Appendix E.

We confirm that the estimate of νrot is highly correlated with
that of P0 (cf. Van Reeth et al. 2016; Christophe et al. 2018): the
correlation coefficient a, which is defined in Eq. (A.29), satisfies
a ≥ 0.98 in most cases presented in this paper. Such high val-
ues can be understood based on the ν–

√
∆ν diagram. Supposing

we have obtained the best-fit line on the diagram, if we slightly
increase (or decrease) the abscissa intercept (νrot) from the best-
fit value and perform a linear fit under this constraint, the slope
of the fitted line (

√
P0) is necessarily steeper (or shallower) than

the best-fit line because all the points in the diagram are located
in the upper right side of the abscissa intercept (the domain of
ν/m > νrot and

√
∆ν > 0). The reason for the high correlation

coefficient is that we take only prograde sectoral g modes into
account. We can, in principle, reduce the correlation by includ-
ing other types of modes, if available (cf. Li et al. 2019). In this
context, a natural extension of the present method would be to
include the other types of modes by deriving similar formulae to
Eq. (11).

We adopt conservative estimates of the formal uncertainties
in the present analysis, corresponding to 99% confidence inter-
vals calculated based on the goodness of the fit. Nevertheless,
Table 1 shows evidence that these values can significantly under-
estimate the true uncertainties. This is probably a common prob-
lem in any method based on the asymptotic frequency formula
under the traditional approximation of rotation and it should be
examined in detail in a future work. In order to evaluate the
total uncertainty, it is necessary to improve Eq. (11), which is
the fundamental relation of the present work. This can be done
by taking into account additional physical effects, including cen-
trifugal deformation, correction to the traditional approximation
of rotation, higher-order terms in the asymptotic frequency for-
mula, and the possible steep variation of the chemical composi-
tion profiles just outside the convective core.
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Appendix A: Linear least-squares fitting with
correlated errors

A.1. Simplifying assumptions

Here we describe the method of estimating νrot and P0 with their
uncertainties based on Eq. (11) in detail. We paid special atten-
tion to the treatment of the error correlation. The following three
assumptions are made for the sake of simplicity: (1) the errors
{εk} of the mode frequencies {νk} follow a Gaussian distribution
with the same (but unknown) standard deviation, σ, and those
of different modes are not correlated with each other; supposing
that the number of the mode frequencies is K +1, and that ε indi-
cates the (K + 1)-element vector whose kth element is equal to
εk, this assumption implies

E
(
εεT

)
= σ2IK+1, (A.1)

in which uT , E (a) and Ik generally mean the transpose of u, the
expected value of a and the identity matrix of size k, respec-
tively; (2) because the relation νk+ 1

2
� |∆νk | holds for any data

sets we use in this paper, the frequency errors affect only the ver-
tical position of the modes (symbols) in the ν–

√
∆ν diagram; (3)

since fk, which is defined by Eq. (12), is generally close to 1, the
frequency errors have negligible impact on fk.

A.2. Formulation in the vector form

We assume for the moment that the K + 1 mode frequencies
have consecutive radial orders and the same azimuthal order m,
so that there are K relations in the form of Eq. (11). This assump-
tion is not essential (cf. the second paragraph of Appendix A.3).
Neglecting the second- and higher-order terms in {εk}, we may
rewrite those relations as

y = Xθ + e, (A.2)

in which e represents the error term caused by {εk}. The defini-
tions of the symbols in Eq. (A.2) are given as follows: the kth
element of the K-element vector y is given by

yk = fk (νrot)

√
∆kν

m∆kn
(k = 1, 2, . . . , K); (A.3)

the K × 2 matrix X is defined by

X =


1 ν1+ 1

2
/m

...
...

1 νK+ 1
2
/m

 ; (A.4)

the 2-element vector θ is provided by

θ =

(
−νrot

√
P0√

P0

)
; (A.5)

the kth element of the K-element vector e is given by

ek = hk (εk − εk+1) (k = 1, 2, . . . , K), (A.6)

in which

hk = −
yk

2∆kν
(k = 1, 2, . . . , K). (A.7)

We note that e can be expressed by

e = HQε, (A.8)

where K × K diagonal matrix H and K × (K + 1) matrix Q are
defined by

H =


h1

. . .
hK

 (A.9)

and

Q =


1 −1

. . .
. . .
1 −1

 , (A.10)

respectively.

A.3. Error correlation

The variance-covariance matrix of the error vector e can be cal-
culated from Eqs. (A.1) and (A.8) as

C = E
(
eeT

)
= σ2C0, (A.11)

in which C0 = HQQT H. We separate C0 from C because C0 can
be calculated from the mode frequencies, whereasσ is unknown.
The fact that C is a tridiagonal matrix means that any two suc-
cessive elements of e are correlated with each other. The inverse
of C can be expressed by

C−1 = σ−2C−1
0 , (A.12)

in which the (i, j) element of C−1
0 is given by

(
C−1

0

)
i, j

=
i j

hih j

[
1

max (i, j)
−

1
K + 1

]
(i, j = 1, 2, . . . , K).

(A.13)

It has so far been assumed that the K relations in the form of
Eq. (11) are all included in the analysis. We may have neglected
some of them because they produced outliers in the ν–

√
∆ν dia-

gram. The possible reasons include avoided crossings, which
cannot be described by the traditional approximation of rota-
tion, and contamination of other types of modes than the pro-
grade sectoral g modes. In this case, the expression of C (and
its inverse) should be modified accordingly. For example, if
we discard the kth element of Eq. (A.2) for 1 < k < K, the
remaining relations are separated into two groups, one with the
1, . . ., (k − 1)th elements and the other with the (k + 1), . . ., Kth
elements. Since ek−1 is not correlated with ek+1 (cf. Eq. (A.6)),
there is no error correlation between the two groups. The modi-
fied expression of C−1

0 is composed of two diagonal blocks both
in the form of Eq. (A.13) with K replaced by the block size,
which is equal to k − 1 and K − k for the first and second blocks,
respectively. This treatment can easily be generalised as follows:
supposing that the relations are separated into J different groups
with no error correlation, C−1

0 should be composed of J diagonal
blocks in the form of Eq. (A.13). Based on this, it is possible to
include the mode frequencies with different azimuthal order m in
the analysis because the errors of any two relations with different
m in the form of Eq. (11) are not correlated with each other. The
different values of m correspond to different diagonal blocks of
C−1

0 , and each can generally consist of multiple diagonal blocks
in the form of Eq. (A.13).
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A.4. Linear least-squares fitting

The problem of the linear least-squares fitting in the pres-
ence of error correlation is discussed in the literature (e.g.
Eadie et al. 1971; Gough & Sekii 2002). The key idea is to mul-
tiply Eq. (A.2) by an appropriate K × K regular matrix from the
left side so that any two elements of the resultant error vector are
not correlated with each other. Once the error correlation disap-
pears, we can adopt the standard procedure of the least-squares
fitting. The procedure can be rewritten in terms of the original
variables. In fact, we should find such θ that minimises

(y − Xθ)T C−1
0 (y − Xθ) (A.14)

for given y, X and C−1
0 . The solution is given by

θ̂ = AXT C−1
0 y, (A.15)

where A is a 2 × 2 matrix defined by

A =
(
XT C−1

0 X
)−1

. (A.16)

Vector θ̂ is the best linear unbiased estimator of θ, whose
variance-covariance matrix is provided by

cov
(
θ̂
)

= σ2A . (A.17)

On the other hand, the residual sum of squares divided by K − 2
yields the minimum variance unbiased estimator of σ2,

σ̂2 =
1

K − 2

(
y − Xθ̂

)T
C−1

0

(
y − Xθ̂

)
. (A.18)

The corresponding estimator of νrot is naturally found to be

ν̂rot = −
θ̂1

θ̂2
· (A.19)

Neglecting the second- and higher-order terms in {εk}, we can
show that ν̂rot is unbiased. Its variance is accordingly calculated
as

var (ν̂rot) = σ2ν̂2
rot

A11

θ̂2
1

−
2A12

θ̂1θ̂2
+

A22

θ̂2
2

 · (A.20)

The uncertainty in ν̂rot can be estimated based on the fact that

t =
ν̂rot − νrot

s (ν̂rot)
(A.21)

follows Student’s t-distribution with K − 2 degrees of freedom.
Here, s (ν̂rot) stands for the standard error of ν̂rot defined by

s (ν̂rot) = σ̂ν̂rot

A11

θ̂2
1

−
2A12

θ̂1θ̂2
+

A22

θ̂2
2


1
2

· (A.22)

The q% confidence interval of νrot is provided by

ν̂rot − t0s (ν̂rot) < νrot < ν̂rot + t0s (ν̂rot) , (A.23)

in which t0 is such a value that the probability of |t| ≤ t0 is equal
to q/100. Alternatively, t0 can be set (for K > 4) to

t0 =

√
K − 2
K − 4

, (A.24)

which corresponds to one standard deviation.

The way of estimating P0 is analogous. All we need to do
is replace the expressions for the estimator, its variance and the
standard error with

P̂0 = θ̂2
2, (A.25)

var
(
P̂0

)
= 4σ2P̂0A22 (A.26)

and

s
(
P̂0

)
= 2σ̂

√
P̂0A22, (A.27)

respectively.
Finally, the covariance and the correlation coefficient

between ν̂rot and P̂0 can be computed as

cov
(
ν̂rot, P̂0

)
= 2σ2ν̂rotP̂0

 A12

θ̂1θ̂2
−

A22

θ̂2
2

 (A.28)

and

a =
cov

(
ν̂rot, P̂0

)
√

var (ν̂rot) var
(
P̂0

) , (A.29)

respectively.

Appendix B: Application to SPB stars

In this section, we apply the ν–
√

∆ν diagram method to SPB
stars. First we validate the method based on a typical evolution-
ary model, and then apply it to KIC 3459297.

B.1. Validation based on a model

As in the case of Model A for γ Dor stars (cf. Sect. 3.1), we
use the stellar evolution code cles (Scuflaire et al. 2008) to
construct a 4 M� model of an SPB star. The model parameters
are summarised in Table B.1. The details on how this model
is calculated are the same as in Model A (cf. Christophe et al.
2018), however we note that turbulent diffusion is included to
approximate the effect of rotationally-induced mixing, which
smoothes the chemical composition profiles outside the con-
vective core. The eigenfrequencies of the prograde sectoral g
modes with m = 1 are computed using the acor oscillation code
(Ouazzani et al. 2012, 2015) with a uniform rotation frequency
of 7 µHz (0.60 d−1). The range of radial orders is between −50
and −18. The results are shown in Fig. B.1.

We confirm that also in the case of an SPB star all modes
follow a nearly perfect linear trend, which is similar to model
(1) shown in Fig. 2. Our estimates for the rotational frequency
νrot and the characteristic period P0 are provided in Table B.2.
Strictly speaking, these estimates are slightly smaller than the
true values by 0.9% and 4% for νrot and P0, respectively, which
is similar to the case of Model A listed in Table 1. We find that
this is an intrinsic limitation of the method, which relies on the
asymptotic formula under the traditional approximation of rota-
tion. Nevertheless, since the two parameters are recovered rea-
sonably well, we consider that the method can be applied to not
only γ Dor stars, but SPB stars as well.

A106, page 12 of 15



M. Takata et al.: A diagnostic diagram of γ Dor and SPB stars

8 10 12 14
νk+ 1

2
/m [µHz]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

√ ∆
kν
/

( m
∆

kn
) [

( µ
H

z)
1 2
]

it. 4

0.00

0.05

0.10

0.15

0.20

√ ∆
kν
/

( m
∆

kn
) [

d−
1 2
]

0.6 0.8 1.0 1.2
νk+ 1

2
/m [d−1]

Fig. B.1. Diagram of ν versus
√

∆ν for a typical model of SPB stars.

Table B.1. Parameters of a typical evolutionary model of an SPB star.

Mass Radius Teff Luminosity Age

4.00 M� 3.19 R� 1.38 × 104 K 331 L� 101 Myr
Xc Yini Zini αMLT Dt

0.360 0.270 0.0142 1.8 700 cm2 s−1

Notes. The columns describe the following parameters: Teff is the effec-
tive temperature; Xc is the hydrogen mass fraction at the centre; Yini
and Zini are the initial mass fractions of helium and heavy elements,
respectively; αMLT is the mixing length parameter of convection; Dt is
the coefficient of turbulent diffusion.

Table B.2. Estimates of νrot and P0 for the evolutionary model of an
SPB star, the parameters of which are summarised in Table B.1.

νrot [µHz] νrot [d−1] P0 [103 s]

Iteration 1 6.88 0.595 7.55
Iteration 4 6.94 ± 0.01 0.600 ± 0.001 7.78 ± 0.04
True value 7 0.605 8.08

B.2. KIC 3459297

We use the frequencies of KIC 3459297 that are listed in
Table A.2 of Christophe et al. (2018). While those frequencies
distribute in three separate groups (cf. Fig. 8 of Christophe et al.
2018), we ignore the lowest-frequency group below 1.5 µHz
because it probably originates from instrumental effects or the
artefacts introduced during data analysis. The group between 9
and 14 µHz and that between 23 and 31 µHz are referred to as
fg1 and fg2, with 24 and 8 frequencies, respectively. We identify
the frequencies in fg1 and fg2 as those of prograde sectoral g
modes with m = 1 and m = 2, respectively.

The ν–
√

∆ν diagram is shown in Fig. B.2. As in the case
of KIC 5608334, which is discussed in Sect. 3.2.2, we discard
four frequencies (10.219, 10.354, 11.233 and 24.903 µHz) from
the list because there is another frequency very close to each of
them with higher amplitude. We also exclude the two red points
in Fig. B.2 in the νrot and P0 fitting because they do not follow
the same linear trend as the other modes. These peaks might indi-
cate the presence of a buoyancy glitch (cf. Fig. 3) or an avoided
crossing (cf. Fig. 4).
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Fig. B.2. Diagram of ν versus
√

∆ν for KIC 3459297. The red and blue
circles correspond to the frequencies in the first group (with m = 1) and
the second group (with m = 2), respectively. The dashed and solid lines
are the fitting results of all the modes in iterations 1 and 5, respectively.
The two red filled circles are excluded from the fit.

Table B.3. Estimates of νrot and P0 for KIC 3459297.

νrot [µHz] νrot [d−1] P0 [103 s]

fg1 (m = 1) 6.80 ± 0.09 0.588 ± 0.008 6.9 ± 0.3
fg2 (m = 2) 7 ± 1 0.6 ± 0.1 9 ± 4
fg1 and fg2
99% CI 7.0 ± 0.1 0.61 ± 0.01 7.7 ± 0.3
1σ CI 7.00 ± 0.05 0.605 ± 0.004 7.7 ± 0.1
P17 7.3 ± 0.5 0.63 ± 0.04 8 ± 1
C18 6.85 ± 0.07 0.592 ± 0.006 7.0 ± 0.2

Notes. The values in the second and third row correspond to the 99%
confidence intervals.
References. P17: Pápics et al. (2017); C18: Christophe et al. (2018).

The estimates for νrot and P0 are given in Table B.3,
where the second and third row are obtained by using the
peaks in fg1 and fg2, respectively. Our results (fifth and sixth
row of Table B.3) clearly reproduce the values published by
Pápics et al. (2017) and Christophe et al. (2018). Pápics et al.
(2017) identify the frequencies in fg2 as those of prograde sec-
toral g modes with m = 2, whereas Christophe et al. (2018) do
not take those frequencies into account. In Fig. B.2 we show that
the blue symbols corresponding to the modes in fg2 follow a
similar linear trend as the red circles (m = 1 modes), support-
ing the mode identification of Pápics et al. (2017). The estimates
for νrot are consistent within 2σ among the three independent
analyses.

Appendix C: Case of slow rotation

The method to determine νrot and P0 based on the ν–
√

∆ν dia-
gram is inspired by the approximate expression for the eigen-
value of the Laplace tidal equation, λ, which is given by Eq. (8).
Because this relation is accurate only when the spin parameter s
is much larger than 1, it is important to check whether the same
method can be applied even for (0 ≤) s . 1, which implies the
case of slow rotation.

For this purpose, we reduce the rotation frequency of model
(1) (cf. Sect. 3.1) from 7 µHz to 3 µHz, and calculate the
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Fig. C.1. Diagram of ν versus
√

∆ν for Model As that rotates with the
frequency of 3 µHz.

Table C.1. Estimates of νrot and P0 for Model As.

νrot [µHz] νrot [d−1] P0 [103 s]

Iteration 1 2.32 0.20 3.4
Iteration 6 3.08 ± 0.05 0.266 ± 0.005 4.60 ± 0.04
True value 3 0.259 4.579

frequencies of prograde sectoral g modes with m = 1 and radial
orders between −31 and −17. The corresponding range of the
spin parameter is between 0.70 and 0.37.

Figure C.1 shows the ν–
√

∆ν diagram for this slowly-
rotating model (Model As). Although Eq. (8) is not very accu-
rate for these modes (cf. Fig. 1), we still observe that all modes
follow the linear trend in the diagram. We thus cannot find any
qualitative difference from the fast-rotating case in Fig. 2.

Table C.1 provides the estimates for νrot and P0, which are
larger than the true values by only 3% and 0.5%, respectively.
Comparing these results with the case of fast rotation in Table 1,
we find the following: (1) larger relative uncertainties for the
case of slow rotation by about an order of magnitude for νrot and
multiple factors for P0; (2) larger differences between the outputs
of the initial and last iterations in spite of the similar number of
iterations necessary for the convergence (5 and 6 for model (1)
and Model As, respectively). The reason for point (1) is the dif-
ference in the number of frequencies that are considered in the
analyses. If we extend, to include all the modes between n = −17
and n = −52, the uncertainties of νrot and P0 are reduced to val-
ues similar to model (1). Point (2) is simply because the devi-
ation from Eq. (8) is more significant. We may still regard that
this approximation remains reasonably good even in the limit of
slow rotation. In fact, the limiting value of

√
λ =

4√m (m + 1)
for the non-rotating case is different from the approximation of
√
λ =

√
m by only about 20% for m = 1. Therefore, the fac-

tor fk given by Eq. (12) changes during iterations by maximum
this amount. This property helps the iterative procedure to be
robust. However, in the case of slow rotation it is crucial to use
the accurate numerical values of λ, which are shown in Fig. 1,
rather than its approximate form of m2 for s � 1. A failure to do
so will impact the accuracy of νrot and P0.

The method also works for a slow rotation because the
asymptotic formula for the oscillation frequencies under the

traditional approximation of rotation (cf. Eq. (5)) can be justi-
fied even in the limit of |s| � 1. In fact, it can generally be
shown that, for |s| � 1, λ is given by

λ ≈ ` (` + 1) − ms (C.1)

(Longuet-Higgins 1968), from which we can derive

νn,`,m − νn,`,0 ≈ m
(
1 −

1
` (` + 1)

)
νrot. (C.2)

Equation (C.2) is the standard formula of the rotational splitting
for the high-order g modes in the case of very slow rotation (cf.
Cowling & Newing 1949; Ledoux 1951). Of course, it is more
practical in that case to use the rotational splittings rather than
the ν–

√
∆ν method to determine νrot, while P0 can be measured

directly from the period spacing.
In conclusion, we find no serious problem in applying the

method of the ν–
√

∆ν diagram to the case of slow rotation if
prograde sectoral g modes are properly identified.

Appendix D: Physics of the prograde sectoral g
modes

D.1. Constituent waves

Prograde sectoral g modes are composed of internal equatorial
Kelvin waves when the spin parameter s is much larger than
1 (cf. Townsend 2003). This can be understood from the com-
mon physical properties between the Kelvin waves and the pro-
grade sectoral g modes, which are described in meteorology
and oceanography literature (e.g. Gill 1982). These waves are
trapped in the equatorial region, with their displacement pre-
dominantly parallel to the equator. Their horizontal propagation
is in the same longitudinal direction as the rotation, while they
also propagate in the radial direction because of the buoyancy
force. Unlike the other gravito-inertial waves, they are restored
only by the buoyancy force, whereas the Coriolis force does
not influence the wave propagation except for controlling the
range of the equatorial confinement by contributing to the force
balance (geostrophic balance) in the latitudinal direction. This
explains why the dispersion relation does not depend on the rota-
tion rate. Having understood the preceding properties, we may
call the prograde sectoral g modes: “Kelvin g modes”. We note
that Kelvin modes are sometimes referred to as f modes, oscil-
lation modes of non-rotating stars that consist of surface gravity
waves (e.g. Chandrasekhar & Lebovitz 1964; Cox 1980). There
should be no confusion between the two types of Kelvin modes
of totally different physical characters. The Kelvin waves in the
rotating case originate from Thomson (1880), while Thomson
(1863) studies the oscillation modes of a liquid sphere (a homo-
geneous incompressible spherical body), which correspond to
the surface gravity modes.

D.2. Variation in λ

When there is no rotation (with the spin parameter of s = 0),
the Laplace tidal equation is reduced to the standard associated
Legendre differential equation, so that we obtain the eigenvalue
of λm,m = m (m + 1) for the prograde sectoral g modes. As
demonstrated in the previous studies (e.g. Bildsten et al. 1996;
Lee & Saio 1997), λm,m monotonically decreases as s becomes
large, and is asymptotically equal to m2 as s→ ∞.

We may interpret the transition from λm,m = m (m + 1) for
s = 0 to λm,m = m2 for s → ∞ as being caused by the change
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in the geometry. When s = 0, the system is totally spherically
symmetric, so that the horizontal propagation of the waves can
reach all over the (two-dimensional) sphere. From a mathemati-
cal point of view, the eigenvalue, m (m + 1), is that of the angular
part of the Laplace operator, whereas it is physically determined
by the quantisation condition that the constituent waves are in
phase before and after travelling around the sphere (e.g. Gough
1993). On the other hand, the propagation region of the waves
degenerates towards the equator (one-dimensional sphere) in the
limit of s → ∞. In addition, the geostrophic balance forces the
latitudinal (θ) component of the displacement to be zero, leaving
only the longitudinal (φ) component. Therefore, only the lon-
gitudinal waves along the equator are allowed. The eigenvalue
of λm,m = m2 can again be obtained by the quantisation condi-
tion, which requires the same phase of the waves before and after
going around the equator. We can formally show that the Laplace
tidal equation for p′ (the Eulerian perturbation to the pressure)
is reduced to −m2 p′ = −λp′, which means

∂2 p′

∂φ2 = −λp′, (D.1)

at the equator (θ = π/2) under the condition of the geostrophic
balance. Equation (D.1) is equivalent to the spatial part of the
wave equation at the equator.

D.3. Contribution of the spheroidal and toroidal components

We may discuss the decrease in λ as s increases from a different
point of view than the one in Appendix D.2.

We first note that λ can be regarded as a measure of the diver-
gence of the horizontal components of the displacement,

∇h · ξh =
1

sin θ
∂

∂θ

(
sin θ ξθ

)
+

1
sin2 θ

∂ξφ

∂φ
, (D.2)

in which ξθ and ξφ are the θ and φ components of the horizontal
displacement ξh, respectively. Under the traditional approxima-
tion of rotation, the angular dependence of the eigenfunctions is
described by the Hough functions, Θ (cos θ), which are the solu-
tions of the Laplace tidal equation. Based on this, the following
can be shown:

λ2 =

∫ 1
−1

∣∣∣∇h · ξh

∣∣∣2 dµ

Ξ2
h

∫ 1
−1 Θ2 (µ) dµ

, (D.3)

where Ξh indicates the (common) radial dependence of ξθ and
ξφ. The denominator on the right-hand side of Eq. (D.3) is just a
normalisation factor.

Next, we may suppose to express ξh by a sum of two parts,
the spheroidal and toroidal components, which are linear combi-
nations of the terms in the form of

∇hY`,m =

(
eθ

∂

∂θ
+ eφ

1
sin θ

∂

∂φ

)
Y`,m (D.4)

and

−er × ∇hY`,m =

(
eθ

1
sin θ

∂

∂φ
− eφ

∂

∂θ

)
Y`,m, (D.5)

respectively. Here, Y`,m (θ, φ) is a spherical harmonic of degree
` and azimuthal order m, while er, eθ and eφ indicate the unit
vectors in the r, θ and φ directions, respectively. Given that ξh
is expanded into the series, we may regard that λ is fixed by

an average of the contribution of each term in the both compo-
nents, specified by Eqs. (D.4) and (D.5). In the absence of rota-
tion, the eigenfunction, ξh, is contributed by only one term of the
spheroidal component, which satisfies

∇h · ∇hY`,m = −` (` + 1) Y`,m. (D.6)

We can thus understand λ = ` (` + 1) in this case. Although the
toroidal component also contributes to ξh when s , 0, ∇h ·ξh has
no sensitivity to the component (divergence free). From these
considerations, we may interpret that the gradual decrease in
λ as s increases is caused by the decaying contribution of the
spheroidal components to ξh, which implies the growing contri-
bution of the toroidal components.

Appendix E: Differential rotation

In the description of stellar oscillations under the traditional
approximation of rotation, it is usually assumed that the rota-
tion rate, νrot, inside the stars is uniform. However, if we assume
that the wavelength of the oscillations is much shorter than the
scale height of the equilibrium structure, which can be justified
for the low-frequency oscillations of γ Dor and SPB stars, we
can show that the effect of weak differential rotation on the pul-
sation frequencies ν is negligibly small (cf. Dziembowski et al.
2007; Mathis 2009; Van Reeth et al. 2018).

Under the assumptions that νrot is a function of only the
radius, r, and that the scale height of the variation in νrot is much
longer than the wavelength of the oscillations, we can show that
the form of the eigenmode condition, given by Eq. (1), remains
the same. The only differences are found in that the oscillation
frequency in the rotating frame, νco, and the spin parameter, s,
in Eq. (2) are not constant, but dependent on r through the r-
dependence of νrot. We may thus formulate the (leading-order)
change in the eigenfrequency, δν, due to the variation of νrot in
the radial direction. Neglecting the frequency dependence of r1
and r2 in Eq. (1), we can derive

δν =
2
s

1 +
ms
2
−

(
1 +

1
2
∂ ln λ`,m
∂ ln s

)−1 〈δνrot〉 . (E.1)

Here, δνrot means the deviation of νrot from some constant value,
νrot, 0, while 〈 f 〉 generally indicates the average of f defined by

〈 f 〉 =

∫ r2

r1

N
r f dr∫ r2

r1

N
r dr

=
P0

2π2

∫ r2

r1

N
r

f dr. (E.2)

We note that s and the partial derivative of λ`,m in Eq. (E.1)
are evaluated for νrot = νrot, 0. Because the choice of νrot, 0 is
arbitrary (so far as δνrot remains small), we can particularly set
νrot, 0 = 〈νrot〉, for which we find 〈δνrot〉 = 0 and hence δν = 0 for
any modes from Eq. (E.1). Thus, the oscillation frequency spec-
trum is not changed for any different rotation profiles if their
averages 〈νrot〉 are the same. In other words, the mode frequen-
cies are sensitive to only the average 〈νrot〉, and insensitive to
any variation around it. We can thus interpret the estimate of
the (uniform) rotation rate inferred from the oscillation frequen-
cies as 〈νrot〉. According to the evolutionary models of γ Dor and
SPB stars, the weight function N/r generally gets larger in the
deeper layers, takes a maximum just outside the convective core
with a sharp peak (due to steep gradients in the distribution of the
chemical compositions), and drops to essentially zero in the con-
vective core. Therefore, the average 〈νrot〉 is mainly weighted in
the layers near but outside the convective core. The rotation fre-
quency of slow rotators that is inferred from high-order g modes
is essentially the same average, 〈νrot〉 (e.g. Goupil et al. 2013).
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