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Abstract—Over the past two decades, the research community
has developed many approaches to study the Internet topology.
In particular, starting from 2007, various tools explored the
inference of subnets, i.e., sets of devices located on the same
connection medium which can communicate directly with each
other at the link layer.

In this paper, we first discuss how today’s traffic engineering
policies increase the difficulty of subnet inference. We carefully
characterize typical difficulties and quantify them in the wild.
Next, we introduce WISE (Wide and lInear Subnet inferencE),
a new tool which tackles those difficulties and discovers, in a
linear time, large networks subnets. Based on two ground truth
networks, we demonstrate that WISE outperforms state-of-the-
art tools. Then, through large-scale measurements, we show that
the selection of a vantage point with WISE has a marginal effect
regarding accuracy. Finally, we discuss how subnets can be used
to infer neighborhoods (i.e., aggregates of subnets located at most
one hop from each other). We discuss how these neighborhoods
can lead to bipartite models of the Internet and present validation
results and an evaluation of neighborhoods in the wild, using
WISE. Both our code and data are freely available.

Index Terms—WISE, subnet, flickering, warping, neighborhood

I. INTRODUCTION

For now nearly two decades, the Internet topology has been
investigated at multiple levels [1]. The most basic point of
view is the IP interface level where data is revealed through
hop-by-hop exploration performed by traceroute and its
variants (e.g., Paris traceroute [2]). Second, multiple
interfaces of a given router might be aggregated into a single
identifier through alias resolution, leading to a router level
view of the Internet topology. Finally, the higher level would
be the Autonomous System (AS) level modeling relationships
between ASes and is captured, for instance, through BGP
routing information.

Besides this academic view of the Internet topology, ad-
ditional intermediate levels have emerged over time. For
instance, Internet eXchange Points (IXPs) [3], [4] or Points-
of-Presence (PoPs) [5], [6] are more and more investigated.
This paper is in the scope of an another intermediate level:
sub-networks (or, more simply, subnets), i.e., a set of devices
that are located on the same connection medium and that can
communicate directly with each other at the link layer [7].
Exploring subnets is a way to enrich router level maps by
providing particular topological features of ISP networks.
Subnet inference has been studied as soon as 2007 [8], with
the introduction of an inference technique based on IP address
assignment practices.

State-of-the-art techniques for revealing subnets are based
on active probing and on-the-fly complex rules for building
each subnet [9], [10], [11]. However, those tools, usually

involving a single machine (or vantage point) to perform the
probing work, fail to reveal accurate subnets in the presence of
traffic engineering policies, such as load-balancing [12], [13],
applied by domains.

In this paper, we first review the most common phenomena
that increase the difficulty of subnet inference for such tools
and elaborate on what kind of traffic engineering policies
could cause them. Then, we introduce a novel tool, WISE
(Wide and lInear Subnet inferencE), that is designed to detect
these phenomena and take them into account while discovering
subnets. WISE not only carefully evaluates the IP addresses
considered for subnet inference, but also achieves it without
additional probing and in linear time (i.e., the execution time
will be proportional to the amount of involved IP interfaces).
Indeed, WISE is built to first collect the data it needs for subnet
inference, while previous state-of-the-art tools [9], [10], [11]
usually discovers subnets while probing.

This paper provides four contributions.
1) we characterize and evaluate modern subnet inference

challenges (Sec. II);
2) we introduce a new tool (WISE) that can work around

these issues while performing better than state-of-the-art
subnet inference tools [10], [11] (Sec. III). We validate
WISE with respect to state-of-the-art tools based on two
ground truths (Sec. IV);

3) by analyzing data collected with WISE from the
PlanetLab testbed, we evaluate the effects of changing
the vantage point from one measurement to another,
as encountered traffic engineering issues will likely
change as well (Sec. V). Through this, we demonstrate
that WISE can usually discover similar sets of subnets
despite vantage point change.

4) finally, we expand on our previous work [14] by dis-
cussing how subnets can be used as a first step towards
a comprehensive discovery of a target domain. We
present the concept of neighborhood (i.e., a location
bordered by subnets located at most one hop from
each other) and introduce the notion of peer, used to
locate neighborhoods with respect to each other. Then,
we discuss how a neighborhood-based graph can lead
to bipartite models of networks [15]. We elaborate on
these concepts by discussing how we modified WISE
to discover neighborhoods and their peers, by validating
them on our ground truth networks and by evaluating
their viability in the wild, using network snapshots
collected from PlanetLab nodes in Fall 2019.

WISE source code, our figures, and the scripts for generating
them (or scheduling a campaign) are all available online. 1

1https://github.com/JefGrailet/WISE
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II. SUBNET INFERENCE CHALLENGES

A. State-of-the-Art inference

A subnetwork, or subnet, consists in a set of devices, each
of them being identified by a unique IP address, that are all
connected together through the same connection medium. In
the Internet, a subnet can be a point-to-point link as well as
a local area network (LAN) isolated in the network topology.
From the perspective of a single vantage point, and in the
(near) absence of traffic engineering policies, interfaces of
a same subnet will appear as a set of IP addresses that are
consecutive with respect to the IP scope and that are located
at the same distance. This distance is typically estimated by
a Time-To-Live (or TTL) value which is the minimal TTL
value the vantage point can use in a probe packet to get a
reply from the targeted subnet interface. Interfaces are also
typically reached through a similar route in the network, i.e.,
the last interface(s) appearing in the routes towards distinct
subnet interfaces should be identical.

Ideally, a subnet should also contain at least one interface
that belongs to the last router crossed before entering the
subnet, and that therefore appears one hop closer to the
measurement vantage point than other subnet interfaces. In
TraceNET [9] and ExploreNET [10] terminology (as well
as TreeNET [11]), interfaces belonging to the subnet that
are not located on the last crossed router are called pivot
interfaces while the interface(s) located on this router are
called contra-pivot interfaces, as illustrated in Fig. 1 (pivots
are white squares, while contra-pivots are depicted by gray
squares). It should be noted that, while having a single contra-
pivot interface makes more sense at first glance, it is actually
possible to find more than one contra-pivot because routers
may implement back-up interfaces to reach critical subnets.
In practice, we have observed such a scenario in the academic
ground truth we used for our validation (see Sec. IV).

All state-of-the-art tools take advantage of those ideas to
reveal subnets. TraceNET uses traceroute-like probing
towards a set of target IP addresses and, then, analyzes the
collected routes to identify the subnets crossed to reach the
destinations. ExploreNET probes a growing range of IP
addresses consecutively (starting with a single initial target,
then building a /31 or /30, then a /29, etc.) to build a subnet
that keeps expanding as long as a few rules are fulfilled and as
long as responsive interfaces can be found. Finally, TreeNET
builds itself upon ExploreNET and provides algorithmic
corrections to better identify large subnets, especially when
the probed subnet lacks of responsive interfaces.

It should be noted that subnet inference has also been
explored with passive techniques, with tools that require to
send multiple probes in the network but with additional post-
processing (without probing) to infer the subnets. For instance,
IGMP probing [16] allows to reveal subnets by applying
several rules (e.g., routers must be connected through the same
Layer-2 device) to the collected data. However, nowadays,
IGMP probing is not anymore useful as it is heavily filtered
by operators [17]. Another technique, developed by Gunes and
Sarac [8], elicits subnets through IP address assignment prac-
tices [18], [19]. Finally, Cheleby [20] processes traceroute
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Fig. 1. Issues with the last interface(s) before the subnet (plain bullets). Plain
and dashed paths are different routes.

paths collected from a large amount of geographically diverse
PlanetLab nodes to infer subnets.

B. Subnet Inference Obstacles

Unfortunately, no matter the tool, state-of-the-art subnet
inference relies on strong hypotheses. For instance, all tools
assume that interfaces from a given subnet will necessarily
appear at the same distance in term of minimal TTL as long as
one uses the same vantage point, and that the last hop before
those interfaces will also be the same. We identify no less
than three phenomena that have the potential to violate those
assumptions: flickering IP addresses, warping IP addresses,
and echoing IP addresses.

Before describing those phenomena, we introduce the notion
of trail. A trail denotes the last interface observed before a
given target IP address upon performing traceroute-like
probing. However, the IP address of the last hop before a given
target address is not always visible. Therefore, we generalize
the notion of trail such that it corresponds to the last non-
anonymous and non-cycling IP interface observed among the
hops preceding the target interface. In such a situation, we
also associate to the trail the amount of subsequent hops that
are either anonymous hops or cycling hops, called anomalies.

Flickering and warping are potential artifacts of IP load-
balancing occurring before the IP interfaces that appear in
trails. IP load-balancing [12], [13] leads to a subgraph that
is delimited by a divergence point (the router performing the
load-balancing, e.g., R1 in Fig. 1) followed, two or more hops
later, by a convergence point (e.g., R4 in Fig. 1a and R5

in Fig. 1b). This subgraph forms a diamond with multiple
branches between the divergence and convergence point. Au-
gustin et al. [12] considered a diamond being symmetric if all
parallel paths feature the same number of hops, otherwise it
is said to be asymmetric.

On one hand, flickering, as illustrated in Fig. 1a, refers
to a situation in which we observe multiple IP addresses
acting as the trail for pivot interfaces of a given subnet, all
of them being located at the same distance (in terms of TTL)
from the vantage point. We say these addresses are flickering
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because they usually appear in turns if we consider a bunch
of subnet interfaces that are close and consecutive regarding
the address space. We believe that flickering is mainly caused
by symmetric load-balanced paths. Performing alias resolution
between flickering addresses can confirm this assumption: in
several measurements of the autonomous system AS6453 (Tata
Communications), we were able to alias together more than
half of the detected flickering addresses, re-using a framework
that relies on IP fingerprinting [21] to pick the most suited
state-of-the-art alias resolution method [22]. Most addresses
could be aliased with Ally [23] and iffinder [24], both
methods being reliable on small sets of IP addresses. For
instance, on February 19th, 2019, 37 addresses out of the 62
detected flickering interfaces could be aliased together, and
there were as much as 84 aliased addresses on a total of 119
on the next day (using a different vantage point). 2

On the other hand, warping (illustrated in Fig. 1b) is likely
caused by asymmetric load-balancing. We indeed see the same
IP address acting as the trail for the pivot interfaces of a given
subnet while being observed at different distances (in terms
of TTL), depending on the pivot. In such a scenario, pivot
interfaces and their respective trails are thus reached through
different routes whose lengths vary from one probe to another.

Finally, echoing refers to a very specific issue that is the
consequence of the configuration of some specific brands of
routers. Upon the reception of a packet targeting a close-
by interface (i.e., one hop away) whose the TTL value has
expired, these routers will reply with a time-exceeded
message in which the source IP address will be the target
itself rather than an interface of the replying router. As a
consequence, the IP address acting as the trail is not an
interface of the ingress router (i.e., the last router crossed
before the subnet) but the target address itself. We therefore
say the trail is echoing the target.

C. Inference Obstacles in the Wild

During Fall 2018, we measured 22 different ASes (i.e.,
Autonomous Systems) from 22 different vantage points in the
PlanetLab testbed in order to quantify flickering, warping and
echoing. Measurements were performed on a daily basis and
each target AS was probed by a different vantage point over
the various runs, each vantage point being outside the target
AS. Doing so, we were able to investigate how the choice of
a vantage point may impact flickering, warping and echoing.

For each target AS, we plot a figure in which we show,
for each collected dataset, or snapshot, (X-Axis – snapshot
date in DD/MM format), the ratio of trails (Y-Axis) suffering
from flickering (dotted line), warping (plain line), and echoing
(dashed line). We compute a ratio as the number of trails
suffering from a given issue to the total number of discovered
trails (the same trail may thus appear multiple times). We do
so to avoid under-evaluating warping and flickering in our
figures. Indeed, as echoing trails are almost always unique,
they would appear as over-represented with a ratio based on
unique trails, while, in practice, they appear for much less
target IP addresses than both warping and flickering.

2https://github.com/JefGrailet/WISE/tree/master/Dataset/AS6453/2019/02

(a) AS6453. (b) AS3257.

Fig. 2. Examples of problematic trails over time (December 2018).

As this paper focuses on typical cases, we encourage readers
to check our public repository 3 to get access to all figures
(but also our scripts and snapshots). Fig. 2a shows the extent
of all three issues for AS6453, using snapshots collected
from late November 2018 to shortly before Christmas 2018.
With the exception of one snapshot collected from a vantage
point that had poor reachability (December 17th), all issues
appear in almost every snapshot. Three spikes (corresponding
in practice to six snapshots) are visible and are due to warping
trails ratio drastically increasing. Interestingly, the flickering
ratio also spikes but only for three of these six snapshots,
and stays below 20% (a fairly common observation with this
particular AS) for the first “hill” observed for warping trails.
This supports the idea that both issues are caused by different
kinds of traffic engineering (most probably load-balancing), as
we discussed in Sec. II-B.

For the sake of comparison, we also provide results for
AS3257 (GTT Communications) in Fig. 2b. Here, a large
majority of trails correspond to warping trails, no matter the
vantage point (first and last snapshots corresponding to Planet-
Lab nodes located at that same geographical location with poor
reachability). However, the ratio of trails that corresponds to
flickering trails vary a lot from one snapshot to another, further
supporting our hypothesis that both warping and flickering are
the results of different traffic engineering strategies. We finally
note that there is a low, yet noticeable quantity of echoing
trails in all snapshots. The weak variations might be simply
explained by the fact that the total of responsive interfaces
vary from one snapshot to another. Indeed, in the case of
AS6453, the small spikes in echoing trails match snapshots
that contained more responsive interfaces. In other words, the
presence of echoing trails is likely not a consequence of traffic
engineering, but rather a matter of what kind of device is used
in the surroundings of target addresses.

III. WISE

In order to address carefully the issues described in Sec. II,
we introduce a new tool called Wide and lInear Subnet
inferencE (WISE). Not only WISE is designed to provide
a renewed subnet inference taking account of the issues
previously discussed, but it is also designed to discover subnets
on wide ranges of IP addresses in a linear time. Indeed,
despite using multithreading and sometimes implementing
heuristics to speed up subnet inference, state-of-the-art tools
such as TreeNET [11] can still require either several days

3https://github.com/JefGrailet/WISE/tree/master/Evaluation/Obstacles
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Fig. 3. WISE overall design. WISE typically runs from a single vantage point,
sending probes over the Internet towards a target domain.

of measurements or several vantage points in order to fully
measure a target domain whose prefixes cover several millions
of IP addresses. Such an amount of resources can be a problem
to schedule large-scale measurement campaigns. This is why
WISE also puts the emphasis on achieving linear complexity
for all its major algorithmic steps (Sec. III-E).

Indeed, given a set of target IPv4 prefixes4 belonging to the
target domain5, WISE works as a succession of three stages:
target pre-scanning (Sec. III-A), target scanning (Sec. III-B),
and finally the subnet inference itself, consisting of an offline
inference algorithm (Sec. III-C) followed by a short post-
processing of the results (Sec. III-D). It is worth noting that
the two first stages are the only algorithmic steps requiring
active probing. Fig. 3 summarizes the design of WISE as a
flow-chart (right) and the typical deployment of WISE (left).
For the sake of readability, this paper will summarize the main
ideas behind each algorithmic step of WISE. Interested readers
can learn more about the implementation details by reviewing
the source code. 6

A. Target Pre-Scanning

The first step towards subnet inference, the aggregation of
IP interfaces under a single identifier on the basis of their
network location, is to check which IP addresses are alive
and reachable. This is the objective pursued by “target pre-
scanning”: it works by sending a single probe (typically an
ICMP one but UDP and TCP can also be considered) with
a large enough TTL value towards every possible IP address
encompassed by the initial target prefixes and awaiting for a
reply. If no reply is received within a given delay, the target
address will not be probed in subsequent steps.

In practice, WISE conducts pre-scanning by listing all target
addresses, randomizing their order and sharing the probing
load between multiple threads in order to speed up the whole
process. WISE also does a second pre-scanning with addresses
that were unresponsive during the first measurement round.
This second run is still scheduled with multiple threads but

4WISE is currently only implemented for IPv4.
5e.g., prefixes listed for the selected AS on http://bgp.he.net
6https://github.com/JefGrailet/WISE/tree/master/v1/

with the initial timeout value being doubled. This ensures
unresponsive addresses are indeed dead and not unreachable
because of some particular network conditions. Note that
WISE may allow a third pre-scanning run at user’s will.

B. Target Scanning

Once all live addresses have been found by WISE, the
next step consists in collecting the data required for subnet
inference (the so-called “target scanning”). For each interface,
we are only interested by two pieces of information: an
estimation of the distance as a minimal TTL value and its
trail, as defined in Sec. II-B. To obtain those details, for
every responsive IP address found in the target domain, WISE
performs hop-limited probing (i.e., traceroute) and stops
when it has received its first reply from the targeted IP
address. Then, WISE performs some backward probing to
ensure no reply could be obtained closer to the vantage point.
For reminders, backward probing consists in (re-)probing a
target IP while decrementing the TTL value of the probe
packets [25]. Interfaces revealed on the path to the target are
used to both estimate the distance in TTL and find the trail.

In practice, because knowing the complete path towards
each subnet interface is not useful for the subnet inference
step (see Sec. III-C), WISE does not perform a complete
traceroute towards each target IP address and uses heuris-
tics to minimize the amount of probes. Before the probing, IP
addresses are sorted in increasing order, based on their 32-
bit integer equivalent. As consecutive addresses could very
well be on the same subnet or in the same part of the
target network, they might be found at a similar (if not
identical) distance. Consequently, when WISE knows the TTL
distance required to reach a given IP address, it uses this
TTL in the first probe towards the next IP address in the list.
Depending on the outcome for this first probe, it will complete
the distance estimation and trail discovery by doing some
forward/backward probing, minimizing so the total amount of
probes sent to IP addresses that are consecutive with respect
to the IP scope.

The overall process is further sped up with multithreading,
and completed with a second probing round minimizing the
amount of situations where the last hops towards a given target
address are anonymous. Indeed, anonymous hops can also be
the result of temporary network filtering like rate-limiting.

At the end of the target scanning, WISE processes the data
collected in order to detect all flickering, warping, or echoing
trails. In particular, it will make a census of all flickering
trails and group those addresses depending on which addresses
they are flickering with. On that basis, it will conduct alias
resolution on each group to ensure we are in the scenario
described in Sec. II-B. Otherwise, WISE will avoid inferring
subnets on the basis of un-aliased flickering addresses. As
already mentioned in Sec. II-B, WISE re-uses a fingerprinting-
based framework [21], [22] to perform alias resolution.

C. Subnet Inference

The subnet inference in WISE consists in processing the
scanned IP addresses after sorting them with respect to the IP
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scope (i.e., sorted according to their value as a 32-bit integer)
to discover the subnets that best accommodate subsets of con-
secutive addresses. More precisely, WISE starts by removing
an address from the sorted list, builds a /32 subnet for it, then
progressively decreases its prefix length and retrieves from the
initial list all interfaces that are encompassed by this expanded
subnet. It then proceeds to check if encompassed addresses are
indeed on the same subnet, and lists aside other addresses as
potential contra-pivot(s) or outliers.

To check if an IP address belongs to the current subnet,
WISE first selects the first pivot IP address of the initial subnet,
denoted as the reference pivot. Then, the newly encompassed
IP addresses, which we will refer to as candidate interfaces,
are compared to this reference pivot to ensure both a candidate
and the reference interfaces are on the same subnet. To do so,
WISE checks up to five inference rules. All rules have the
same underlying idea: two interfaces, close with respect to
the IP scope, can only be on the same subnet if their trails
belong to the same device, and, if such a relationship cannot
be elucidated, they should at the very least be observed at
the same distance while their trails should behave similarly.
If both interfaces verify at least one rule, then they will be
considered as being part of the same subnet.

The five inference rules are the following:
• Rule 1: both interfaces have the exact same trail.
• Rule 2: both interfaces do not share the same trail, but

are located at the same TTL distance and their trails differ
in terms of anomalies (as explained in Sec. II-B).

• Rule 3: both interfaces are located at the same TTL
distance and exhibit echoing trails.

• Rule 4: both interfaces are located at the same TTL
distance and their trails are flickering with each other
and previously aliased.

• Rule 5: both interfaces are not located at the same TTL
distance and do not share the same trail. However, trail
addresses were aliased during the analysis of flickering
IP interfaces, meaning they belong to the same device
reached through asymmetrical paths.

It should be noted that rule 2 is a way to ensure that an
interface located at the same distance as all other interfaces
in a subnet is not eventually wrongly identified as an outlier
because its trail could not be discovered accurately (most
likely because of a measurement issue, such as rate-limiting or
periodical delay). While testing this rule, WISE also considers
replacing the reference pivot if the candidate address has a
better trail (i.e., less or no anomalies).

When all candidate interfaces have been checked, WISE
verifies how many of them were identified on the subnet.
Interfaces that are not identified as being on the subnet are
classified as potential contra-pivot(s) if they appear closer in
terms of distance and as outliers otherwise. If no potential
contra-pivot was discovered, WISE keeps expanding as long
as outliers are absent or in minority with respect to the whole
set of interfaces. 7 Otherwise, the subnet is shrunk, i.e., its
prefix length is incremented, the shrunk subnet is added to the

7By default, WISE considers outliers a minority if they make up less than
1/3 of the subnet. This can be changed at user’s will upon running WISE.

/26 (w/ contra-pivots; sound subnet)

No further expansion due to discovery of contra-pivots.

/26 (only pivots; undergrown subnet)

No further expansion due to overlapping above subnet.

/25 (only pivots; undergrown subnet)

No further expansion due to overlapping the two 
previously inferred subnets from above.

/25 block

/24 block 
(actual subnet)

IP processing

Fig. 4. Typical case of a subnet being chunked during inference.

results and not encompassed candidate interfaces are restored
for the inference of the next subnet.

If contra-pivot(s) are discovered and if pivots remain a
majority among interfaces, WISE stops the current inference
as the subnet already fulfills the ideal subnet definition pre-
sented in Sec. II-A. Doing so allows WISE to correctly infer
consecutive subnets (e.g., a succession of /30 subnets found
within the same /24 prefix) which the pivot interfaces share the
same trail and/or are seen at the same TTL distance, as long
as they all feature at least one contra-pivot interface. In the
case where there are more contra-pivot interface(s) than pivots
overall, the subnet is shrunk to avoid keeping an incoherent
subnet among the inference results. Indeed, said contra-pivots
are more likely pivot interfaces of another subnet.
WISE will also shrink and save a subnet if it starts overlap-

ping previously inferred (and potentially sound) subnet(s) upon
expansion. Finally, WISE also considers additional specific
scenarios during subnet inference (e.g., testing if the selected
pivot of a small subnet could be a contra-pivot after all, or
testing smaller hypothetical subnets when several contra-pivots
appear at once in a large subnet), each one being addressed by
a dedicated heuristic. We leave the details of those heuristics
to interested readers. 8 We also note that WISE currently does
not expand a subnet beyond the /20 prefix length, as we never
observed a /19 during our measurements and as /20 is also the
minimum prefix length discussed in previous works on subnet
inference [9], [10].

D. Subnet Post-Processing

As WISE stops subnet growth as soon as it finds one
or several contra-pivot(s), the positioning of such interfaces
among the scope of a subnet can influence the inference results
at first. For instance, if WISE discovers the first pivot interfaces
and the contra-pivot interface of an actual /24 subnet early
enough, it will produce an undergrown subnet (e.g., a /26)
and will infer undergrown subnets for the remaining pivots of
the actual subnet, as the inference algorithm forbids to grow
a subnet further if it starts overlapping a previously inferred
subnet. Fig. 4 depicts such a problematic scenario.

Rather than modifying the inference algorithm itself by
allowing growth beyond contra-pivot discovery, minimizing so

8https://github.com/JefGrailet/WISE/tree/master/v1/
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the risks of overgrowing subnets, WISE mitigates this problem
in two ways. First, WISE implements an heuristic that consists
in processing backwards the list of IP interfaces during the in-
ference. Indeed, many of our observations showed that contra-
pivots are usually found among the first subnet addresses.
Going backwards therefore ensures we can maximize the size
of the inferred subnets as soon as possible.

Second, WISE conducts a short post-processing stage after
the inference to aggregate consecutive (i.e., with respect to
the address space) subnets that might be chunks of a larger
subnet. This stage consists in processing the list of inferred
subnets iteratively. Each time WISE comes across a subnet
which could not be expanded furthermore (we will refer to it
as an undergrown subnet) because it overlapped a previously
inferred subnet during the inference, it decrements its prefix
length and lists all newly overlapped subnets. It then evaluates
whether the overlapped subnets are compatible, i.e., whether
any of their interfaces are on the same subnet as the selected
pivot of the undergrown subnet, re-using the five rules of
inference mentioned previously. If all overlapped subnets are
compatible, WISE performs several checks to ensure the
subnet which would be obtained by merging them would be
sound. It notably ensures that at most one subnet with contra-
pivot(s) is listed, not only because having several such subnets
would lead to an ill result, but also because it corresponds
to the problematic scenario we described before and which
the post-processing is meant to solve. WISE also checks
if the pivots found in the hypothetical merged subnet are
still in majority. If the merging scenario passes all tests, the
expansion of the initially undergrown subnet resumes and goes
on until a bad merging scenario is encountered or until a /20
is considered. When a bad merging scenario is encountered,
WISE goes back to the previous prefix length, performs the
merging (if any is needed) and looks for the next undergrown
subnet in the list of inferred subnets.

It is worth noting that, at the end of post-processing, WISE
also performs additional tasks to complete the inference data.
In particular, it computes the longest prefix that would contain
all interfaces for each incomplete subnet (i.e., missing contra-
pivot interface(s)) as aside information. Indeed, a sparse subnet
without contra-pivot(s) can feature a prefix larger than what
is needed to encompass all its interfaces. WISE also uses an
alternative definition of a contra-pivot interface for subnets
where the distance of pivot IPs vary considerably: in such
a situation, the sole or few IPs(s) which do not have a
matching trail are identified as contra-pivot interfaces. WISE
does this detection at the very end of post-processing, as a best
effort strategy for subnets where TTL isn’t reliable enough to
identify contra-pivot interfaces.

E. Complexity

We argue that the subnet inference (as described in
Sec. III-C) has a linear complexity with respect to the amount
of addresses to aggregate in subnets. Indeed, upon evaluating
new interfaces of a growing subnet, WISE compares each
candidate interface with the reference interface only once.
An interface is only compared twice or more when subnet

shrinkage occurs. There are two possible worst cases that
could lead to a given interface being compared multiple times.
In a first scenario, the network exclusively consists of small
subnets featuring only one interface (e.g., a /32 or /31 prefix).
Upon expanding the subnet, one or two other IP addresses will
be encompassed, but as they will not be compatible with the
current interface, they will be put back in the list of interfaces
and therefore considered a second or even a third time with
the next subnets. Therefore, in this scenario, all addresses are
considered up to a bounded amount of three times. In the
second worst scenario, the network consists of consecutive
subnets whose prefix length progressively increases (e.g., a
/25, then a /26, then a /27, etc. all contained in a /24 prefix).
Indeed, the last expansion (assuming it occurs) of the first will
encompass all other addresses, but as they are on different
subnets, they will be put back in the list, after what the same
scenario will occur again but on a smaller scale. In the end,
the interfaces of the smallest subnet will be compared as many
times as they are subnets. As a consequence, the total amount
of comparisons is bounded by N + N/2 + N/4 + ... = 2N
(where N is the amount of live interfaces considered by the
inference). Given that WISE does not go below the /20 prefix,
this specific worst case even has an upper bound for the
amount of processed interfaces. Therefore, the complexity of
subnet inference in WISE is linear.

We also argue that the complexity of post-processing is
linear as well. Indeed, the worst case for post-processing
would consist in overlapping several times the same sub-
nets. The worst possible situation would be to consider a
large undergrown subnet followed by a set of consecutive
undergrown subnets with a progressively increasing prefix
length (e.g., a /24, then a /25, etc. all encompassed in the
same /23 prefix). An expansion of the first undergrown sub-
net would encompass all subsequent subnets. If merging all
subnets does not produce a sound subnet, the first subnet
is put back and the same scenario repeats itself with the
second subnet and all subsequent subnets. Under the condition
that all merging scenario fails, we will evaluate a total of
N + (N − 1) + (N − 2) + ...+ 1 = N × (N − 1)/2 subnets
(where N is the amount of subnets), which is quadratic.
However, due to the bounded size of subnets (i.e., max /20
in WISE), the very worst case would be to have a sequence
of 12 undergrown and incompatible subnets where the first
subnet would be a /21. Assuming evaluating the compatibility
of subnets for a merging is in O(1) due to the light operations
(e.g., comparing pivots with the five rules of inference), we can
therefore consider post-processing to have linear complexity.
In practice, as WISE only considers a merging scenario upon
finding an undergrown subnet among inferred subnets, post-
processing will be a very light step if inference worked well
and produced few undergrown subnets.

IV. VALIDATION

In this section, we validate, relying on two ground truth
topologies, the ability of WISE to accurately reveal subnets
and to perform overall better than state-of-the-art tools.
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A. Methodology

To validate WISE, we measured two ground truth topolo-
gies with both WISE and a state-of-the-art tool: TreeNET.
TreeNET [11] is a topology discovery tool built upon
ExploreNET [10] that improves its subnet inference and
execution time by adding subnet refinement algorithms and
various heuristics. The last version of TreeNET allows one
to output inferred subnets before any refinement (providing so
topologies as seen by ExploreNET) and after refinement.
Doing so, we can compare WISE to both TreeNET and
ExploreNET regarding subnet accuracy in a single shot. We
fully describe our validation approach and provide some useful
scripts in our online repository. 9

Our ground truth networks consist of an academic network,
spanning over roughly a /16 prefix (i.e., a bit more than
65,355 addresses), and the backbone of a major Belgian ISP,
encompassing hundreds of thousands of IP addresses. 10 For
each ground truth, we ran both WISE and TreeNET from a
single vantage point located inside the academic network and
from a PlanetLab node outside of the Belgian ISP, respectively.
Both measurements were run in September 2019.

B. Results

To compare the accuracy and performance of WISE with
the state of the art, we introduce the notion of subnet distance,
computed as follows: for each subnet prefix in a ground truth,
we look for similar subnet prefixes in our data, either identical
or overlapping, and compute the difference in bits between
the prefix lengths. A subnet distance of 0 corresponds to a
perfect inference, meaning the inferred subnet prefix perfectly
matches the ground truth prefix. Negative subnet distance
values correspond to overgrown subnets, while positive values
refer to undergrown subnets.

It is worth mentioning that, in general, we prefer subnet
distance to be positive (i.e., undergrown subnets). Indeed, the
lack of live interfaces in a part of the subnet address space can
prevent the inference of its true prefix length, and therefore, an
undergrown subnet can still be faithful to the actual topology.
For instance, a /24 sound subnet (i.e., containing both pivots
and contra-pivot(s)) where only addresses in the first half are
live will typically be revealed as a /25 by WISE. Overgrown
subnets, on the other hand, typically spans over multiple actual
subnets and cannot be considered as faithful to the topology.

To visualize the subnet distance, one can compute the ratios
of ground truth prefixes being overlapped by inferred subnets
for each possible possible subnet distance and plot a curve
where the X-axis gives the subnet distance while the Y-axis
gives the ratio of ground truth prefixes matched by inferred
subnets for the given subnet distance. Ideally, such a curve
should present a peak centered around the subnet distance of
0, therefore corresponding to a perfect inference. It is worth
noting that, by design, several undergrown subnets can be
overlapped by a same ground truth prefix. To ensure a ground
truth prefix is matched to at most one inferred subnet while

9https://github.com/JefGrailet/WISE/tree/master/Evaluation/Validation
10No data for them is provided for security and confidentiality concerns.

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11
Difference with ground truth prefixes

10

20

30

40

50

60

70

R
at

io
 o

f g
ro

un
d 

tr
ut

h 
pr

ef
ix

es
 (%

)

WISE TreeNET ExploreNET

(a) Academic network (coverage: 98% / 86% / 81%).

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11
Difference with ground truth prefixes

10

20

30

40

50

R
at

io
 o

f g
ro

un
d 

tr
ut

h 
pr

ef
ix

es
 (%

)

WISE TreeNET ExploreNET

(b) Belgian ISP backbone (coverage: 91% / 89% / 75%).

Fig. 5. Subnet distance of inferred subnets on our ground truths.

computing our ratios, we only take the largest undergrown
subnet into account in this scenario. Doing so allows us to
also compute the overall ratio of ground truth prefixes being
matched to any inferred prefix, which we will denote as the
ground truth coverage, by summing all ratios together.

Fig. 5 provides the visualization of subnet distance we
previously described for both our ground truth networks. The
captions of both figures also give the ground truth coverage
obtained by WISE (plain line), TreeNET (dashed line), and
ExploreNET (dotted line), in this order. The green vertical
line at subnet distance 0 is a marker for the perfect situation.
Additional green dotted lines at subnet distance of -1 and 1
highlight the inferred prefixes differing by at most one bit.
Generally speaking, both figures show that WISE is able to
reveal more (nearly) exact prefixes than TreeNET, going
as far as 60% of exact prefixes on the academic network.
WISE also tends to infer more undergrown subnets (positive
subnet distance) than TreeNET. As explained earlier, this is a
desirable result, as undergrown subnets can still be a realistic
estimation. Moreover, the coverage achieved by WISE is better
in both cases, especially with the academic ground truth. We
explain this by the fact that ExploreNET can sometimes
discard small subnets due to a lack of live interfaces. Since
TreeNET refines (and expands) subnets initially discovered
by ExploreNET [11], its coverage can improve but some-
times at the cost of too overgrown subnets (in the case of
the Belgian ISP). Finally, as both our ground truths had few
occurrences of flickering or warping IPs, we expect WISE to
behave better than other tools in worse contexts.

We now take a look at performance during the subnet
inference step of WISE and TreeNET, taking account of
the probing stage of WISE which collects the required data
(the subnet inference itself being offline). We deliberately
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TreeNET WISE

Academic network Execution time 52’30 28’34
Amount of probes 18,065 26,175

Belgian ISP Execution time 9:51’10 24’14
Amount of probes 277,819 213,840

TABLE I
PERFORMANCE OF TREENET AND WISE.

omit the pre-scanning stage (Sec. III-A) from our comparison
because TreeNET uses a similar technique to make a census
of live interfaces before its subnet inference. Table I shows
the execution time of both TreeNET and WISE on each
network as well as the total amount of probes sent by each.
In both situations, WISE completes its probing and its subnet
inference much faster than TreeNET, and this is especially
true on a large network such as the Belgian ISP. Indeed, the
subnet inference as performed by TreeNET required hours of
execution while WISE only took about half an hour, mostly
because TreeNET infers a subnet and probes its interfaces at
the same time (the amount of targets increasing with smaller
prefix lengths), while WISE performs lightweight probing on
the initial live IP addresses at a steady rate, leaving subnet
inference for later. The addition of multithreading further
increases the gap in execution time, though this also makes
WISE more intensive in terms of probing. Hopefully, this
method of probing remains very reasonable: in the case of the
Belgian ISP, WISE sent on average 147 probes per second,
which amounts to 8,232 bytes of data, assuming our typical
probe is an ICMP probe (32 bytes) encapsulated in an IP
packet (24 bytes overhead).

V. EVALUATION IN THE WILD

This section discusses data collected in the wild using the
PlanetLab testbed. We use this data to show that WISE can
find a good amount of sound-looking subnets in the wild as
well as to demonstrate that WISE is able to re-discover the
same subnets in a target domain whatever the vantage point
location used in a measurement campaign. Our full dataset is
publicly available online. 11

A. Subnet Soundness Rules

In the absence of a ground truth to assess the measurements
validity, we have to define criteria indicating whether a given
subnet is sound or aberrant. Ideally, a subnet should be as close
as possible to the ideal definition used by state-of-the-art tools,
but we should let room for situations where distances towards
pivots (TTL-wise) are not all equal. We therefore define three
rules for ensuring the soundness of a subnet: the contra-pivot
rule, the spread rule, and the outlier rule.

The contra-pivot rule states that an ideal subnet should
feature at least one contra-pivot interface, as a subnet lacking
one could be only a part of a larger subnet. The spread rule
states that, in the presence of contra-pivots, these interfaces are
either in minority for large subnets, either no more common
than pivots for small subnets (i.e., the prefix length 29 or
greater). Finally, a subnet fulfilling the outlier rule is a subnet
containing no other interfaces than pivots and contra-pivots. A
subnet satisfying the three rules is considered as sound, and if

11https://github.com/JefGrailet/WISE/tree/master/Dataset

the TTL distances of the pivots are identical while the contra-
pivot(s) is (are) found exactly one hop sooner, then the subnet
satisfies the ideal definition of previous state-of-the-art subnet
inference tools.

It is worth noting that revealing a given subnet prefix from
different vantage points does not mean that the prefixes will
meet exactly the same soundness rules. For instance, it is
always possible that the subnet revealed from vantage point
X features an outlier, while the same subnet revealed from
vantage point Y will exhibit highly varying distances, making
the contra-pivot interface detection difficult (which the final
check of post-processing, mentioned in Sec. III-D, attempts
to achieve). Our rules are thus also a good indicator on how
various vantage points (and, consequently, the different paths
towards the targeted domain) can increase the difficulty of
inferring a given subnet, notably due to traffic engineering, as
discussed in Sec. II.

B. Measurement Methodology

Starting from December 28th, 2018 up to the end of Febru-
ary 2019, we measured 27 different ASes of varying sizes
(from small stub ASes to large transit ASes covering roughly
four millions of IP addresses) from the PlanetLab testbed. To
select representative ASes, we relied on a dataset from CAIDA
providing the AS class (i.e. Tier-1, Transit, or Stub) [26]
and on the ASRank website 12 also maintained by CAIDA.
We measured again a subset of these ASes 13 in September
2019. Two more campaigns have also been carried out in
November and early December 2019, and all three campaigns
also collected neighborhood data (see Sec. VI). Each targeted
AS has been probed with WISE using a single PlanetLab node
at once (located outside of the AS), therefore getting a single
dataset (which will also refer to as snapshot), before being
re-probed from a different node. Just like in Sec. II-C, we
changed of PlanetLab node at each snapshot to eventually
assess the effects of measuring a same target domain from
different vantage points. This was implemented in practice by
doing a rotation of our vantage points after getting the latest
snapshot of each measured AS.

C. Observations in the Wild

To assess the soundness of our measurements, we first plot
the amount of subnets collected for a given AS over a given
period of time and show how many of these subnets fulfill
a certain amount of rules (as presented in Sec. V-A). As we
measured 27 ASes in early 2019 and a subset of the same
ASes in Fall 2019 and scheduled several campaigns, we only
focus here on the most typical cases to elaborate on how WISE
performs in the wild.

Fig. 6 shows our results for AS6453 with the data collected
in September 2019. More specifically, Fig. 6a depicts the
amounts of inferred subnets (bottom part) and their sound-
ness as ratios (top part) while Fig. 6b shows the ratios of
problematic trails observed for the same measurements in the

12http://as-rank.caida.org/
1317 of them, omitting the smallest ASes from the previous campaign.
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Fig. 6. Observations made on AS6453 (September 2019).
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Fig. 7. Observations made on AS3257 (September 2019).

same manner as in Sec. II-C, for the sake of comparison.
Fig. 7) provides the same kinds of figures for AS3257, again
using the data collected in September 2019. The first major
result highlighted by these figures is that a large majority
(>90%) of subnets fulfill at least one rule, and a quick look
at the data shows that this rule is usually the outlier rule. In
other words, WISE can infer subnets that are free of outliers
most of the time. The other result is that the amount of
subnets fulfilling all three rules is also considerable, with
several snapshots having more than 60% of such subnets in
the case of AS6453. The ratios of subnets fulfilling only
two rules is fairly low, however, but they all correspond to
cases where there is at least one contra-pivot and where the
presence of outliers or the amount of contra-pivots violates the
outlier rule or the spread rule, respectively. Another interesting
result is that WISE is rather constant in terms of soundness
despite the varying difficulties encountered with the selected
ASes, as shown by Fig. 6b and Fig. 7b. We note, however,
that the ratio of sound subnets (i.e., fulfilling all rules) can
sometimes face a sudden drop. Interestingly, this drop can
correspond to cases where WISE discovered more or less
subnets than in previous measurements. As the amount of alive
IP addresses did not change much between snapshots, this
suggests subnets discovered during previous measurements
were actually chunked because of new difficulties induced by
additional traffic engineering.

We also take a look at the persistence of subnets across
various snapshots. A subnet is said to be weakly persistent if
its prefix is present in two snapshots collected from different
PlanetLab nodes. It is said to be strictly persistent if both
subnets from each snapshot fulfill the same amount of rules
(defined in Sec. V-A). A weakly persistent subnet demonstrates
two things: first, changing the vantage point from one run of
WISE to another can lead to additional issues as described in
Sec. II-C. Second, this shows WISE can re-discover the same
subnets despite these additional issues to a great extent.

Fig. 8 shows the persistence of subnets for the same ASes
as before on the same dates, using each time the chronolog-
ically first snapshot as reference dataset (i.e., all subsequent
snapshots are compared to this first one). The results show
that the subnets discovered by WISE have a good persistence
overall, with a majority of strictly persistent subnets in both
situations for most snapshots. The noticeable amount of per-
sistent subnets fulfilling a different amount of rules for each
snapshot shows, on the other hand, that each measurement
comes with a certain amount of subnets that differs from
previous measurements. An interesting observation to make is
that the persistent subnets drop (both in the weak and the strict
sense) on September 16th, 2019 for AS3257 correlates with the
drop of subnets fulfilling all rules on the same date (compare
Fig. 7a with Fig. 8b). Moreover, the amount of subnets being
weakly persistent is noticeably greater than for any other
snapshot, supporting so the idea that traffic engineering or
measurement issues can both decrease the soundness of the
inferred subnets and cause previously measured subnets to
appear differently as well. In particular, outliers can appear
from one snapshot to another, or warping interfaces can make
the distances of both pivots and contra-pivots vary.



10

06/09
07/09

08/09
09/09

10/09
11/09

12/09
13/09

14/09
15/09

16/09
17/09

Dataset

5000

10000

15000

#
 s

ub
ne

ts
 (

w
.r

.t
. 0

4/
09

)

Strictly persistent Persistent No equivalent

(a) AS6453.

06/09
07/09

08/09
09/09

10/09
11/09

12/09
13/09

14/09
15/09

16/09
17/09

Dataset

5000

10000

15000

20000

25000

#
 s

ub
ne

ts
 (

w
.r

.t
. 0

4/
09

)

Strictly persistent Persistent No equivalent

(b) AS3257.

Fig. 8. Persistence of subnets (September 2019).

To give a practical example, one can look at the sub-
net 129.242.88.0/21 WISE regularly discovered in AS224
(UNINETT). In most measurements, the subnet appears with a
single contra-pivot and very regular distances (all pivots being
located at the same TTL), a result that can be seen in the
snapshots collected on February 2nd, 2019 and September 4th,
2019. However, on February 8th and February 10th, the same
subnet appeared with highly varying TTLs, with the former
snapshot having pivots at respectively 16 or 18 hops and the
latter at 21 and 24 hops. A similar change was observed on
September 15th, where the pivots were this time found at either
20 or 21 hops from the vantage point. Hopefully, the contra-
pivot always appearing sooner, all inferred subnets remained
sound with respect to our usual criteria.

Overall, our measurements show that, while choosing the
vantage point is still important to maximize accuracy of the
subnet inference, a tool such as WISE can mitigate pretty
well traffic engineering issues with a few exceptions. Due to
the variety and quantity of results, we encourage readers to
take a look at our public repository 14 to see all figures. In
particular, we also provide figures showing the distribution
of subnet prefix lengths in our snapshots. These additional
figures demonstrate WISE can discover all kinds of prefix
length though the distribution of these lengths will usually
follow a power-law shape (/30 and /31 being the most common
prefixes), as already showed by previous research [10].

VI. TOPOLOGY INFERENCE

In this section, we discuss the potential for inferring a
comprehensive map of the target domain by taking advantage

14https://github.com/JefGrailet/WISE/tree/master/Evaluation
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Subnet S1

Subnet S3

Subnet S2

Fig. 9. An illustration of the concept of neighborhood.

of the subnet data inferred by WISE. Sec. VI-A first presents
the key concepts (in particular, the notion of neighborhood)
one could use to achieve this and briefly reviews the net-
work modeling they could lead to. Then, Sec. VI-B briefly
explains how we modified WISE in order to integrate those
concepts and collect neighborhood data. Sec. VI-C discusses
the soundness of the concept of neighborhood by confronting
inference results with the same ground truth networks as in
Sec. IV. Finally, Sec. VI-D analyzes data collected from the
PlanetLab testbed in Fall 2019 to demonstrate the viability of
neighborhoods and associated concepts. Again, all our scripts
are available in our online public repository 15.

A. Concepts

A first key observation one can make when looking at
subnet data is how often a group of subnets share an identical
trail (outside subnets built around the 3rd rule of inference –
see Sec. III-C). In fact, this observation suggests that such
subnets are located close to each others: since their trails
are identical, and as the trail is typically provided by an IP
interface discovered with traceroute-like probing, then
these subnets are all accessed via a same last-hop router
which is at the very least part of a mesh bordered by these
subnets. We call such a place a neighborhood. We formally
define a neighborhood as a network location bordered by a
group of subnets at most at one hop apart from each other.
In practice, we infer that subnets are one hop away from
each other if they have the same trail, and the so-called
“network location” can actually consist of either a single
router, either a mesh of routers that could also be implemented
with Layer-2 devices (e.g., Ethernet switches). Fig. 9 depicts
the concept of neighborhood, with the dashed oval modeling
the neighborhood bordered by subnets S1, S2, and S3, all
having the same trail.

The concept of neighborhood has, in fact, been already
introduced and put to practice by previous research. Indeed, as
sound subnets usually have at least one contra-pivot interface
that should be located on the ingress router (i.e., the router
providing access to the subnet), then contra-pivot interfaces
belong to the single router or the mesh of routers which is first
identified as a neighborhood. If we list all such interfaces along
with the trail of the subnets, we obtain a handful of good can-
didates for alias resolution which can be excluded from being

15https://github.com/JefGrailet/WISE/tree/master/Evaluation/
Neighborhoods/
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Fig. 10. The concept of (neighborhood) peer. Nb is a (direct) peer of Na

because tb appears before ta in the routes towards pivot IPs of subnets
bordering Na.

aliased with any other live IP addresses observed in the target
domain. Discovering neighborhoods therefore acts as a form
of space search reduction for alias resolution. TreeNET [11],
[22] explored this idea by collecting traceroute records
towards inferred subnets in order to build a tree-like map of
the target network, designed to infer neighborhoods, therefore
to discover sets of alias candidates. One can then perform
alias resolution on each set by using fingerprinting [21] to
identify the most suitable alias resolution technique among
a selection of state-of-the-art methods (such as Ally [23]
and iffinder [24]). Alias resolution based on fingerprinting
is still being used in WISE upon investigating flickering IP
addresses, as explained in Sec. III-B.

We however argue that neighborhoods are not only useful
for alias resolution, but also to infer the whole topology of
the target domain. Using limited information, it is indeed
possible to infer how neighborhoods are located with respect
to each other, using the notion of peer. In the context of a
neighborhood-based topology discovery, for a given neighbor-
hood Na with a trail denoted ta, a second neighborhood Nb

with trail tb is a peer of Na if and only if tb appears prior
to ta in the routes towards pivot IP addresses of the subnets
bordering Na. In an ideal situation where trails are anomalies-
free (i.e., no cycles or anonymous hops were observed), this
means that, in practice, the last two hops before pivot IP
interfaces of the subnets surrounding Na are tb, ta in the
same order. In a less ideal situation where there would be
intermediate hops between tb and ta (for instance) and no
possible tc belonging to a third neighborhood in between, we
say that Nb is a remote peer of Na. On the opposite, when
there are no intermediate hops between tb and ta, we say that
Nb is a direct peer of Na. Fig. 10 depicts the concept of
neighborhood peer, using a direct peer for the example.

By discovering all neighborhoods within a target network
and their respective peers, it could be possible to build a
neighborhood-based graph of the target domain. In particular,
one can infer the subnets acting as links between the neighbor-
hoods, notably by identifying the subnet encompassing a trail
associated to a given neighborhood and which neighborhood
it belongs to. Doing so, one can even consider a bipartite
model 16 where one set (or party) gathers neighborhoods while
the second gathers the subnets which connect the neighbor-

16A bipartite graph is a graph in which vertices can be divided into two
disjoint sets, > and ⊥, such that every edge connects a vertex in > to one
in ⊥. Bipartite graphs are a fundamental object in computer science and, as
such, are widely studied [27], [28], [29].
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Fig. 11. A toy network, viewed with a neighborhood-based perspective. In
both models, what N2 could consist of (L3/L2) is shown.

hoods. Such a model can be further deepened by inferring the
router(s) found inside the neighborhoods via alias resolution.
Then, the set of the neighborhoods can be replaced with a new
party of routers (Layer-3), itself being part of a second bipartite
graph where the other set consists of the hypothetical Layer-2
devices that glue the routers found in a same neighborhood
into meshes. Individual routers can be matched to the subnets
depending on the contra-pivot interfaces they bear. A L2-
L3 bipartite model of computer networks has already been
proposed in the past [15], but had to tie routers not connected
via a L2 device with imaginary L2 devices. Starting with
a neighborhood-based model can overcome this limitation
thanks to subnets, in addition to highlighting the places in the
network where L2 equipment might be present. Fig. 11 shows
a toy network viewed from a neighborhood-based perspective,
first seen as a graph where neighborhoods are vertices while
subnets act as edges (Fig. 11a), then as a (double) bipartite
graph (Fig. 11b). Both figures show the hypothetical devices
corresponding to the neighborhood N2 (or any other), to be
discovered via alias resolution.

However, before going as far as building bipartite models of
the Internet, we first assess the viability of both the concept
of neighborhood and the concept of peer. In particular, we
have to ensure we can find direct peers that could be used
to locate neighborhoods next to each other most of the time.
We therefore upgraded WISE such that it can also discover
neighborhoods and their peers after first discovering subnets.
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B. WISE Upgrade

Neighborhood inference in WISE starts at the end of the
subnet inference, i.e., after subnet post-processing (as de-
scribed in Sec. III-D). In order to properly discover neigh-
borhoods and their peers, WISE first collects additional data:
routes towards subnets that are long enough for discovering
potential peers. This is done in two steps: first, WISE makes
a census of all IP interfaces appearing in anomalies-free trails
for pivot IP addresses from any subnet it inferred. We will refer
subsequently to these IP addresses as peer IPs. Second, WISE
selects, in each subnet, up to five pivot IP interfaces 17 towards
each it will perform a backwards partial Paris traceroute,
i.e., WISE starts by sending a probe with a TTL value adjusted
to reveal the route hop just before the trail of the target IP
address, then checks if the resulting interface is a peer IP,
excluding this possibility if said interface is identical to the
trail IP or an alias of said trail IP. If the interface is not a peer,
WISE sends a new probe with a decreased TTL value. WISE
will only perform a full traceroute measurement if the
route towards some target IP address has no peer IP at all. In an
ideal situation where the peer is direct (as explained at the end
of Sec. VI-A), the partial route only consists of one additional
hop: the peer IP. Thanks to this design, WISE collects just
enough data for neighborhood inference, minimizing so the
amount of probes and the execution time, further sped up with
multithreading.

Like the subnet inference itself (Sec. III), the rest of neigh-
borhood inference is done entirely offline, in two simple steps:
subnet aggregation and peer discovery. The subnet aggregation
simply consists in gathering together subnets sharing the same
trail, and if not, applying a best effort strategy that will
approximate the notion of neighborhood. In practice, WISE
goes through the list of subnets and puts them in a map (e.g.,
a hashmap with O(1) access) on the basis of their associated
trail, except for subnets built with the 3rd inference rule
(echoing trails, see Sec. III-C) which gets another treatment
afterwards. After this processing, each list of subnets (one
per trail) is equivalent to a neighborhood. For flickering
trails, we also further gather together lists corresponding to
previously aliased trails. For the subnets built on the 3rd rule,
WISE further separates them based on their typical pivot TTL
distance but also the non-anonymous IP addresses appearing
before their trails, as a best effort approximation of what the
neighborhood may have looked like if there was no echoing.

Once subnets are aggregated into neighborhoods, WISE
ends with the so-called peer discovery. For each neighborhood,
WISE takes a look at the routes towards pivot IP interfaces
and makes a census of all peer IPs at the first hop before the
trail. If no peer IP can be found, it then looks at the second
hop before the trail, and so on and so forth. As soon as WISE
has to look beyond the first hop before the trail, the peers it
will discover will not be direct. Peer discovery stops as soon
as at least one peer IP is discovered, whether it is a direct peer
or not, or when the routes have been completely reviewed, in
which case the neighborhood is considered as having no peers.

17Five is a default value chosen to have representative routes for large
subnets; it can be modified when running WISE.

Academic network Belgian ISP
True positives rate 77.27% 70.06%
True negatives rate 99.33% 99.83%
False positives rate 0.67% 0.17%
False negatives rate 22.73% 29.94%
Accuracy 98.13% 96.13%
Matched routers 60 91
Matched neighborhoods 45 133
Exact matches 26 (45.76%) 48 (52.75%)
Best effort neighborhoods 1 (2.22%) 106 (79.70%)

TABLE II
VALIDATION OF OUR NEIGHBORHOODS (GROUND TRUTH NETWORKS).

C. Observations on the Ground Truth Networks

In order to ensure the concept of neighborhood is sound with
respect to actual networks, we confronted new measurements
(from late September 2019) with the same ground truth
networks as in Sec. IV, with a change: we probed this time
the whole Belgian ISP rather than just its backbone. Our
partners provided us, for each network, a list of all IPv4
prefixes associated to each router. By comparing the first
IP addresses of these prefixes with the first IP addresses of
our subnets, we can match the majority of prefixes with our
inferred subnets and check how many prefixes associated to a
given router were found around the same neighborhood. For
the sake of completeness, we also asked our partners to provide
us details on how routers were grouped in their network, since
a neighborhood can conceptually consist of several devices.

To validate our neighborhood discovery, we consider every
possible pair of prefixes identified in both the ground truth
networks and our measurements and classify them. A pair
found both around the same router ID (or distinct IDs from
a known group) and the same neighborhood is classified as a
true positive. A pair appearing around the same neighborhood
but not around the same router (or group) is a false positive.
Likewise, two prefixes that are not around the same router (or
group) nor around the same neighborhood constitute a true
negative, and a pair found around a same router (or group)
but not around the same neighborhood is categorized as a
false negative. To complete our analysis, we also define an
exact match as a router whose all prefixes exactly appear in
the same inferred neighborhood. Finally, due to the Belgian
ISP ground truth network having a high amount of echoing
devices, lots of subnets found within it were discovered
through the 3rd subnet inference rule, and, consequently, most
of its neighborhoods were built with a best effort strategy (as
discussed in Sec. VI-B). We therefore define the best effort
ratio as the ratio of neighborhoods built with such a strategy
or around a trail including anomalies (e.g., anonymous hops).

Table II provides the results of our validation. The first
major result is the very low false positives rate: less than 1% in
both situations, therefore showing the concept of neighborhood
and how we infer it so far will rarely produce aberrant results
with respect to the topology. On the contrary, as demonstrated
by the false negatives rate, it is a rather pessimistic one, yet
it can be reasonably trusted with 77% of true positives for
the academic network and 70% for the Belgian ISP. Careful
analysis of our measurements showed that false negatives are
typically the results of incomplete subnets that are missing
from large neighborhoods due to measurement issues. For
instance, a subnet can be observed through an unique path
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(therefore having a unique trail), or with a trail that includes
anomalies due to network delays at the time of measurements.
Moreover, in some situations, only the contra-pivot interface
of the subnet has been seen during the measurements, and
falsely identified as a pivot interface. As a consequence, if
the subnet is not associated to a new neighborhood, it will
be erroneously associated to another neighborhood, creating
some false positives. Nevertheless, the results of our validation
demonstrate that our inference offers a first good approxima-
tion of the topology, with around half of the devices being
matched exactly with one neighborhood in both situations.
This is especially a good result in the case of the Belgian
ISP: as almost 80% of the neighborhoods were inferred with
best effort strategies, the regular (and allegedly more reliable)
approach could not have been used, and this shows that best
effort methodology can be a good approximation too.

D. Observations in the Wild

We now assess the viability of the concept of peer by
reviewing the peers discovered for the neighborhoods inferred
by WISE during our latest measurement campaigns from the
PlanetLab testbed. In particular, we want to evaluate the poten-
tial of such a concept for locating discovered neighborhoods
with respects to each others, which would constitute a first
step towards the construction of a comprehensive map of the
target domain as discussed in Sec. VI-A. To do so, we evaluate
respectively the typical distance between a neighborhood and
its peers (in terms of hop count) and the typical amount of
peers (as individual IPs) for a neighborhood.

We first evaluate the typical distance between a neigh-
borhood and its peers, as a difference in TTL which exists
between the trail associated to the neighborhood and the first
peer IP(s). A TTL difference of 1 means the peer(s) are direct,
i.e., the neighborhood is right next to them. A higher TTL dif-
ference means there are unseen intermediate hops between the
neighborhood and its peer(s). Ideally, we should have as many
direct peers as possible, as the opposite would mean we have
an incomplete picture of the target AS – unless said AS is split
in several components that are not connected to each others.
To do so, we processed all the neighborhood data collected
for all snapshots for a given AS and a given campaign and
computed the ratios of neighborhoods for each difference of
TTL, from 1 to the highest difference observed in the data.
As our data contains a noticeable amount of neighborhoods
containing a single incomplete subnet (often the result of a
measurement issue), we weighed each neighborhood by their
amount of aggregated subnets while computing our ratios. This
means in practice that, if we have for instance a ratio of 85%
of direct peers (TTL difference of 1), there is an equal chance
that the neighborhood bordered by a subnet picked at random
will have direct peers. Finally, we stacked the ratios to produce
a Cumulative Distribution Function (CDF).

Fig. 12 shows such a CDF for AS6453, using 12 snapshots
collected for it from November 19th, 2019 to December 6th,
2019. The CDF shows two interesting results. First, for a
subnet picked at random, there is a likelihood a bit higher
than 90% that the neighborhood it borders will have direct
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Fig. 12. CDF of the difference in TTL between a neighborhood and its
peer(s), using data collected for AS6453 (12 snapshots in Fall 2019).
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Fig. 13. CDF of the amount of peers of a neighborhood bordered by a random
subnet, using data collected for AS6453 (12 snapshots in Fall 2019).

peers, meaning the concept of peer is indeed viable in this
context. Second, the curve does not reach 1 at the end. This
means that there is a small probability for a random subnet
to border a neighborhood that has no peer. In practice, such a
neighborhood is usually one of the closest neighborhoods with
respect to the vantage point, or to put it in another way, one
of the entry points of the target network from the perspective
of the vantage point. A neighborhood without peers can also
be an ill measurement or simply an isolated component of the
target domain. Similar CDFs were computed for other ASes
probed during the same campaign, all available online 18, and
usually show a chance between 80% of 90% for a random
subnet to border a neighborhood with direct peer(s).

We computed a second kind of CDF with the same data
and methodology, but instead of showing the typical difference
in TTL between a neighborhood and its peers, we show the
typical amount of peers. Fig. 13 shows the result for AS6453
with the same data as for Fig. 12. The curve shows that
there is only a probability between 60% and 70% that the
neighborhood bordered by a subnet randomly picked will have
a single peer. In other words, neighborhoods with multiple
peers are not uncommon or have a considerable place in the
topology of the target domain, which implies that they are
reached from the vantage point through multiple paths. In
practice, as peers consist of single IP addresses at this stage
of the discovery, one should ideally use alias resolution when
confronted to a neighborhood with several peers in order to
tell whether these peers belong to separate devices or to a
same one. In the second case, said device could therefore be a
convergence point in a load-balancing architecture (much like

18https://github.com/JefGrailet/WISE/tree/master/Evaluation/
Neighborhoods
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in the obstacles to subnet inference we discussed in Sec. II)
or the convergence point of MPLS tunnels [30]. We leave this
part of the topology inference for future work.

VII. CONCLUSION

In this paper, we characterized various subnet inference
challenges and quantified them in the wild. Then, we intro-
duced WISE, a new subnet inference tool capable of perform-
ing subnet inference while taking those issues into account. As
our validation on two ground truth networks demonstrated, not
only WISE produces more sound subnets than state-of-the-art
tools, but it also outperforms them in terms of execution time,
thanks to its design emphasizing linear complexity.

Measurements in the wild with WISE showed that carefully
designing subnet inference to take into account warping and
flickering IP addresses in particular can mitigate very well
the effects of traffic engineering that vary from one vantage
point to another. Further research into the selection of a good
vantage point could be one of the next steps for achieving
accurate subnet inference.

Finally, we also reviewed how we could use the results of
subnet inference to infer more from the target domain, with
the possibility of studying it with a bipartite model [15]. We
reviewed the concept of neighborhood [11], [22] and intro-
duced the related notion of peer. By validating measurements
on our ground truth networks and evaluating data collected
in the wild from PlanetLab, we demonstrated the viability of
both concepts. We leave their applications for future work.
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