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Abstract
Efficiency is a central question in robotic developments nowadays. Robotic manipu-

lators are designed to be more energy efficient and safer for their surroundings. This

leads to the integration of lightweight and flexible components in the manipulators.

The resulting elastic behavior affects the overall precision of the system and needs

to be considered in the design of control laws. This work aims at developing tools

able to model the complex behavior of flexible spatial manipulators and generate

appropriate controls to achieve a given task.

Flexible robotic manipulators are modeled using a finite element approach allow-

ing the description of spatial systems in a general and systematic way. Differential

geometry tools are used to describe the kinematics and dynamics of the flexible sys-

tem: thanks to a formulation on the SE(3) matrix group, also known as the group of

rigid body motions, the equations describing the complex spatial motion of the sys-

tem are expressed in the local frame of the system and show reduced non-linearities

compared to traditional methods.

For trajectory tracking of robotic manipulators, the definition of appropriate

control inputs to drive the system is often based on the inverse dynamics of the sys-

tem. However, the inverse dynamics of flexible systems can exhibit unstable internal

dynamic behavior that needs to be taken care of. Here, based on a model of the

system, the inverse dynamics problem is solved by formulating it as an optimiza-

tion problem: an objective function is minimized under constraints imposed by the

tracking task. The proposed method is general enough to deal with systems having

serial or parallel kinematic topologies, flexible joints and/or links and even systems

with unstable internal dynamics.

The generated feedforward inputs are first applied on simulation examples. The

resulting behaviors of the flexible systems are discussed and compared to examples

available in the literature. Two real robotic system are then considered. It is shown

that realistic inputs can be generated with the method and that a reduction of

unwanted vibrations inside the arm is obtained. Also, the real output error from

the prescribed trajectory is reduced.
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Chapter 1

Introduction

The application fields of robotics and automation have been growing fast these past

years. Early robotic manipulators were constructed with very stiff and bulky links,

requiring a separation between the robot’s workspace and other human operators

workspace. Today, the use of automated manipulators is no longer limited to such

controlled environment. In fact, robotic manipulators are now integrated in envi-

ronments where human collaborators are present. Such human-robot interaction

applications require to improve both safety and efficiency of robotic arms. For ex-

ample, the Sawyer robot is a collaborative robot meant to share its workspace with

other human operators in a production process (see Fig. 1.1). In medical applica-

tions, the Da Vinci robot (see Fig. 1.2) is a surgical robot that assist the surgeon and

the medical staff to perform minimally invasive surgeries. Robots are also used in

daily life to assist people. The JACO robotic arm (Fig. 1.3) assists people with lim-

ited upper limb mobility. With such considerations, today’s robotic manufacturers

tend to use lightweight structures and increase the compliance of robotic systems.

As a result, robotic manipulators can become intrinsically safe as the severity of

potential collisions is reduced.

Robotic manipulators are usually made up of members, called links, connected

by articulated joints. Each joint allows certain relative motions between the con-

nected links. The system is thus naturally modeled as a multibody system (MBS).

By actuating the joints of the system, one is able to drive the end-effector of the

robot to desired targets. Attaching a tool to this end-effector allows the complete

robotic system to perform various tasks. Analyzing the environment of the task

is essential to plan efficient motions required to achieve it: this is called the path

planning process. Usually, two types of paths can be distinguished: a point-to-point

motion (PTP) or a trajectory tracking motion. In PTP motions, only the final

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Sawyer, a collaborative robot from Rethink Robotics, Hahn group
(picture from http://www.made-in-europe.nu/2017/05/eerst-sawyer-cobot-met-ce-
goedkeuring-in-de-benelux/).

Figure 1.2: Da Vinci surgical robot from Intuitive Surgical (picture from
www.wired.com/2009/09/surgical-robots/2/).

Figure 1.3: Kinova JACO® assistive robot from Kinova (picture from
www.kinovarobotics.com).

configuration of the manipulator is of importance and the transient behavior is not

much of interest. In this case, one often looks for the fastest or the most economi-

cal path between two configurations of the system. For trajectory tracking, on the

other hand, the configuration of the manipulator is specified at any time along the

trajectory and, therefore, the transient behavior of the manipulator between the

2



CHAPTER 1. INTRODUCTION

initial time and final time is important. Regardless of the type of motion that is

chosen, there are two main ways to specify it. As explained in [84], the motion of

the system can either be specified in the joint space or in the task space [31]. Since

robotic manipulators are usually controlled through their joints, specifying the mo-

tion in the joint space seems quite natural: the instructions are given in terms of the

position of each joints. On the other hand, in most robotic applications, the desired

task requires the positioning of a tool in the task space. Therefore, the latter is

actually more convenient when planning a path. Once the desired task and motion

are defined, one can look into the design of the control problem; whose purpose is

to provide suitable inputs to the system to drive it along a desired motion despite

outside disturbances. The whole process of a general robotic task is shown in the

block diagram of Fig. 1.4. Generally speaking, the controller can also be affected by

the robot behavior. As a consequence, it is often required to understand the dynam-

ics between the actuated joints and the end-effector. This is even more critical for

lightweight and compliant robots with elastic links and joints. Although such robots

can exhibit attractive features, their elasticity can negatively impact the precision

and stability of the system. As a result, the dynamics of the system can be more

challenging to control.

Figure 1.4: Block diagram of a robotic task.

This thesis presents a contribution to the control design of flexible manipulators

for trajectory tracking tasks. Relying on a geometric formulation of the dynam-

ics of flexible systems, efficient control laws are generated by solving their inverse

dynamics. In the coming sections, various control strategies for flexible manipula-

tor are first presented. Then, modeling techniques useful for the description of the

system’s dynamics are summarized. Next, some optimization solvers are presented.

Eventually, the objective and contributions of the present work are given.

1.1 Control design of mechanical systems

In general, a mechanical system has some actuators, or inputs, that induce a mo-

tion at the outputs of the system to achieve a given task. In mechanical systems,

flexibility can be present locally, e.g. when a spring is used to connect two rigid

3



CHAPTER 1. INTRODUCTION

components, or distributed in a structural component, e.g. when a slender and

deformable link is used. The motion of a mechanical system can be described by

rigid modes and flexible modes. If a system only has rigid modes, the mechanical

systems is a rigid system. Depending on the number of degrees of freedom (dof)

and actuators of the system, a rigid system can be fully actuated, under-actuated

[14, 15, 99] or over-actuated [48, 49]. In fully actuated rigid systems, the actuators

directly affect the rigid modes of the system. If a system only has flexible modes, it

can be considered as a flexible structure. The elastic motion can be controlled by

placing a number of actuators on the structure [30, 94]. When the actuators and the

outputs are located at the same place, one talks about collocated systems, otherwise,

one talks about non-collocated systems. In the present work, flexible systems which

have both rigid and flexible modes are considered. It is assumed that the number of

actuators is equal to the number of rigid modes in the system and that the flexible

modes are only indirectly controlled by the actuators. It is also assumed that the

number of outputs is equal to the number of actuators but that the actuators and

outputs are non-collocated. These assumptions are valid for a wide class of robotic

manipulators such as the Sawyer, Da Vinci or Jaco robots shown previously. As a

result, the flexible systems considered here have more dofs than actuators and are

under-actuated systems.

An example of a robot manipulator controller is depicted in Fig. 1.5. The pre-

scribed motion ypresc of the output y originates from the path planning process

(see Fig. 1.4). Based on a model, the feedforward control computes the reference

actuator positions qM,FF and reference actuator efforts uFF. The feedback control

effort uFB corrects the actual positions of the robot based on a measure of the error.

Therefore, the control efforts u = uFF + uFB sent to the robot originate from two

components: a feedforward control uFF and a feedback control uFB.

In the coming sections, a few techniques used for the design of feedback control

laws are first reviewed. Then feedforward design techniques for systems with various

characteristics are presented.

Figure 1.5: Schematic view of a general controller.
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CHAPTER 1. INTRODUCTION

1.1.1 Feedback control

Unpredicted disturbances from the environment can easily affect the control of a

mechanical system. In order to have a desired output behavior, such disturbances

can be compensated using a feedback controller. The output and state errors of the

arm can be monitored using sensors or estimators [86]. Appropriate compensation

uFB can then be designed.

In [28], a feedback control law is constructed based on a measurement of the end-

effector position using an optical device. Additional care was taken to reduce noise

from ambient light conditions. To monitor the elastic deflections of the flexible links,

strain gauges [46, 72, 80] or optical systems [60] can be used. In [111], accelerometers

fixed at the end-effector of the ELLA robot are used to estimate the states of the

system required for the feedback control.

Once the error is measured, classical proportional-integral-derivative (PID) feed-

back and its variants can be implemented quite easily on each joint independently.

Linear quadratic regulators (LQR), such as in [56], are also widely used in rigid and

flexible manipulators. In [92], the combination of a Kalman filter and a sliding mode

technique is used to estimate and control the states of a flexible manipulator in a

robust way. A sliding mode strategy has also been used in [69] for the control of a

two link flexible manipulator. Feedback linearization, which linearizes the states of

a non-linear system thanks to a change of variable, have been applied in [110] for

the control of elastic robots.

Eventually, all feedback techniques react to existing error appearing in the system

in order to insure a robust control of the output. To complement this action, a

feedforward control can be designed to generate motions and control inputs that

have reduced error in the open loop and undisturbed case.

1.1.2 Feedforward control

In parallel to the feedback control, the feedforward control generates the reference

actuator position qM,FF and reference actuator efforts uFF. Without outside distur-

bances and errors, these reference inputs are constructed to obtain an ideal behavior

of the system.

By analyzing the dynamics of a flexible system, the inputs can be processed with

filtering techniques to avoid exciting the resonance frequencies of the system. For

example, using low-pass or band-stop filters with appropriate frequency parame-

ters [81], no energy corresponding to resonance frequencies is transmitted and little

residual vibrations are induced in the system. Such filtering technique requires lit-

5



CHAPTER 1. INTRODUCTION

tle computation time but may limit the actuation bandwidth, which penalizes the

performance of the control system.

Input shaping methods, explained in [104, 80, 34, 30], require the analysis of

system’s impulse response. With appropriate amplitudes and delays [71], a sequence

of impulses, called the input shaper, is constructed. A new input is then generated

by convolving any desired input with the input shaper, leading to a sum of scaled and

delayed desired inputs. This resulting shaped input enable to reduce the residual

vibrations in the system at the end of the trajectory as it is shown for the TUDOR

robot in [72].

The above filtering and shaping techniques are mainly designed for linear sys-

tems. Also, they are mostly applied for PTP motions and less adapted for trajectory

tracking problems. In the latter, the transient behavior of the system during the

motion is important. Therefore, in trajectory tracking problems, the definition of

the control inputs can be stated as an inverse dynamics problem, defined as follows:

Given a prescribed output trajectory ypresc(t), what are the inputs uFF(t) that will

drive the actual output y(t) along this desired trajectory?

A brief overview of techniques used to solve such inverse dynamics problem is

now given. A more comprehensive explanation of the applicability of each technique

will be detailed in Chapter 2.

For the case of fully actuated rigid manipulators, one well spread method is the

computed torque method [31, 47]. This method directly substitutes the output y in

the equations of motion of the system by the prescribed trajectory ypresc(t). Since

the system is fully actuated, the input efforts uFF are directly given by the equations

of motion and correspond to a compensation of the inertia, gyroscopic and external

forces applied on the system.

Some under-actuated manipulators are classified as flat systems, so that flatness

based methods can be used. A system is flat if one can find a flat output of the

system for which the prescribed trajectory ypresc(t) defines the control inputs and

all states of the system in an algebraic way [34, 111]. Flatness based methods are

strongly related to feedback linearization methods as it is discussed in [116, 117].

However, finding such flat output may not be straightforward or even possible in

general.

Many under-actuated systems are not differentially flat and, in such cases, the

input is influenced by the internal dynamics of the system as it will be detailed in

Chapter 2. The stability of the internal dynamics strongly affects the computation

of the inverse dynamics solution. This stability can depend on several factors: the

localized or distributed nature of the flexibility, the parameters of the system, the

6



CHAPTER 1. INTRODUCTION

localization of the actuators, the choice of the system’s output, etc. If the internal

dynamics of the system is stable, the system is minimum phase and the inputs uFF

of the system can be found by time integrating the equations of motion from an

initial state [58, 78, 98].

In contrast, if the internal dynamics of a system is unstable, the system is non-

minimum phase and it can lead to unbounded solutions if not dealt with properly.

Here is a review of some techniques able to deal with non-minimum phase systems.

Instead of dealing directly with the non-minimum phase characteristic of the

system, an alternative output can be chosen so that the resulting system becomes

flat or at least has minimum phase behavior [35, 119]. In [77, 98] an alternative

output which is close to the actual output is proposed.

For linear and non-minimum phase systems, the time domain inverse dynam-

ics method [65] separates the dynamics of the system into a causal and an anti-

causal part before the inverse dynamics is solved. The causal part leads to some

post-actuation in the resulting inputs while the anti-causal part leads to some pre-

actuation in the system. In [9, 83], the inverse dynamics of a single link non-

minimum phase system is solved by defining the dynamics in the frequency domain.

While the time domain and the frequency domain inverse dynamics methods lead to

non-causal solution, a method presented in [11] finds a causal solution of the inverse

dynamics of non-minimum phase and linear systems. This method relies on defining

the solution as a polynomial function with linear coefficients. Some conditions on

these coefficients force the unstable behavior of the system to vanish.

Figure 1.6: Lambda kinematics parallel robot with 2 flexible links from the Univer-
sity of Stuttgart, Germany [82, 98].

Alternatively, so called stable inversion techniques can be used to directly com-

pute the inputs of non-minimum phase and non-linear system [29, 40]. In [53, 100,

112], the inverse dynamics problem is stated as a boundary value problem (BVP).

The definition of the boundary conditions is based on the analysis of the stable and

7



CHAPTER 1. INTRODUCTION

unstable manifolds of the system. The former is defined as a portion of the state

space where all trajectories converge to a given configuration as time goes forward.

The latter is a portion of the state space where all trajectories converge to a given

configuration as time goes backward. Then, the initial condition of the BVP forces

the system to start on an unstable manifold and the final condition assures that the

system ends on a stable manifold. The resulting solution of the inverse dynamics

problem is bounded but non-causal. Indeed, the unstable and stable characteris-

tics respectively lead to some actuation of the system before (pre-actuation) and

after (post-actuation) the actual tracking of the trajectory. This formulation is suc-

cessfully applied [82, 98] on a highly flexible planar system depicted in Fig. 1.6.

However, it can be noted that the construction of such manifolds is based on the

eigen properties of the linearized system and can be quite cumbersome to compute.

As stated in references [22, 62, 98], the stable inversion technique requires that the

equilibrium point around which the linearization is performed is hyperbolic, i.e. the

linearization has no eigenvalues on the imaginary axis. This insures that the stable

and unstable manifolds can be determined [105] and that the durations of the pre-

and post-actuation phases are finite. If the internal dynamics is not hyperbolic, it

is possible to modify the internal dynamics to have a hyperbolic behavior [39].

In order to avoid the definition of boundary values, the inverse dynamics problem

can be stated as an optimization problem [5, 6]. The problem is then formulated

as the minimization of a cost function under the constraints that the equations

of motion of the system and tracking conditions are satisfied. Such cost function

represents a measure of the amplitude of the internal dynamics. The solution of this

optimization formulation also presents non-causal characteristics with some pre- and

post-actuation of the system. It was shown in [7] that the optimization formulation

converges to the BVP formulation as the length of the pre- and post-actuation phases

increases. Optimization strategies were also chosen in [79, 59] to solve the dynamics

of flexible robot manipulators.

In the present work, an optimization based formulation is chosen to solve the

inverse dynamics problem of general flexible manipulators. Indeed, compared to a

BVP formulation, such optimization formulation benefits from a more general and

simpler definition of the problem.

1.1.3 Experimental control

Extensive reviews of the analysis of the dynamics and control of flexible robots can

be found in [12, 33, 42, 68, 91, 96]. Experiments on the control of flexible robots

8



CHAPTER 1. INTRODUCTION

are usually performed on planar 2D systems [2, 26, 28, 30, 65, 74, 87]. To the best

of our knowledge, experiments on flexible 3D robots such as in [46, 72, 111] is less

developed.

Since such spatial manipulators are more practical for real life and industrial

applications, the present thesis aims at contributing to the experimental control of

spatial flexible manipulators.

1.2 Models for flexible MBS

In order to apply the control methods described previously, it is necessary to de-

scribe the dynamics of the systems mathematically including flexibility effects. In

engineering problems, one often relies on the construction of a model describing the

kinematics and the dynamics of the system at hand. For MBS, such models involve

kinematic joints connecting the different bodies. Each body is usually described

by a set of coordinates q. The interactions of each body with its surrounding is

modeled through forces which can be externally applied loads, e.g. gravity, internal

connecting forces within bodies or additional forces generated by other elements

connected to the bodies. More particularly, some actuating forces u may be present

to drive the system to achieve a given task. Various techniques are possible to model

flexibility effects in MBS, such as: localized flexibility inside a joint, so called flexible

joint models, and distributed flexibility along a link, so called flexible link models.

A review of the main methods is presented below.

1.2.1 Flexible joint models

Flexibility inside joints is usually the result of elasticity in the transmission chain

between the actuator and the joint [52, 85], e.g. shafts torsion, gear wheel deflection,

belt elasticity. To model such flexibility, additional dofs should be defined in the

joint. The robot links are usually considered as rigid bodies. An example of such

flexible joint is shown for the case of a hinge joint in Fig. 1.7: an elastic component

links the motor relative coordinate qM to the relative deflection of the transmis-

sion between the motor and the link qL. Additionally, imperfections and non-linear

effects can be represented too [52]. These effects can include non-linear elastic be-

havior and frictional effects that can be represented by viscous, Coulomb or Stribeck

models [41, 118]. Reference [110] studies such models for a single link example. For

multi-link and spatial examples, an extended flexible joint model was proposed in

[78, 79] and takes into account elastic deformations in non-driven direction as well.

9
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Figure 1.7: Flexible revolute joint model with a motor angle qM and a link angle
qL linked through a torsional spring-damper pair.

1.2.2 Flexible link models

Aside from the joint elasticity, the links of the robots are usually constructed with

materials having a finite stiffness. Depending on the material and the geometry of

the links, the flexible behavior of the link can be more or less predominating. It is

therefore important to be able to include such behavior in the model.

The lumped element method (LEM)

Link flexibility can be modeled by concentrating it in an equivalent spring damper

element located at its connecting joint. The stiffness and damping parameters of

these local elements are calibrated based on the distributed parameters of the flexible

link [111]. A more general approach is to model a link as a succession of rigid bodies

and flexible non-actuated joints as shown in [36, 46, 87].

The assumed mode method (AMM)

According to the AMM, the motion of the system is described by two types of

coordinates: rigid body coordinates describing the overall rigid body motion and

elastic coordinates describing the deflection around this rigid motion. The global

elastic deflection of the arm is thus approximated using a finite series of shape

functions spanning the entire link, e.g., the natural modes shapes of the system.

Each elastic coordinate represent the amplitude of the considered mode shape. In

[11, 28, 35, 65, 90, 106], examples of robots with a single flexible link modeled using

the AMM are shown. Planar and multi-link cases were studied in [3, 37, 56, 74]

for open chain kinematics and in [26] for closed chain kinematics. The extension of

this method to 3D manipulators is used in [50, 57]. A comparison of this method

with the FEM method, presented hereafter, can be found in [113]. In [16, 17], such

AMM is used in combination with 4×4 transformation matrices, as first developed

for rigid systems in [38], to describe the kinematics of the manipulator.
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The finite element method (FEM)

As an alternative to the widespread AMM, the FEM can also be used to model

flexible links. In this method, which is widely used to model flexible MBS, the

link is discretized in space into elements and nodes, described by nodal coordinates.

Local interpolation functions then define the deflection between the nodes. Here,

one possibility is to describe the flexible behavior of the element as a flexible motion

around an overall rigid motion according to the floating frame of reference approach

[9, 10, 59, 66, 97, 102]. An alternative method, the so-called geometrically exact

formulation, does not rely on any separation between the rigid and the flexible

motion [8, 51, 103]. The coordinates are directly described in a global inertial

frame and no distinction is made between rigid or flexible variables. Compared to

the floating frame of reference approaches, the non-linearities in the inertia forces

are reduced at the expense of higher non-linearities in the internal forces of the

dynamics equations [24, 120]. It can be noted that the FEM usually leads to a

higher dimensional system compared to AMM. However, a FEM model has a sparse

structure and allows a more systematic approach to deal with multi-link systems

with closed chain kinematics and non-linear deflections.

Recently, in order to reduce non-linearities in the internal forces of geometrically

exact finite element models, a local frame approach has been proposed [21, 107, 108].

Relying on a description of the deformation and velocity fields in the local frame

of each body, this approach benefits from several advantages. The inertia forces,

internal forces and kinematic constraints of the system are naturally invariant under

superimposed Euclidean transformations. As a result, the non-linearities due to large

amplitude motions are reduced. From a numerical point of view, this also induces

important reductions of the computational complexity of the problem. Thanks to a

global parameterization-free formulation of the equations, singularity issues arising

from the description of the rotations are avoided. It is also shown in [109] that

flexible elements do not suffer from shear locking phenomenon. The kinematics of

the system is represented in terms of 4×4 transformation matrices which belong to

a Lie group. These models are considered as geometric models and are developed

using differential geometry concepts. This local frame FEM approach has been

applied in the forward dynamic simulations of flexible robots in [55, 54] but has not

yet been applied to control problems.

Some combinations of flexible joint and flexible link model are also reported in

the literature. The AMM is used in [89] to simulate a single flexible link and flexible

joint manipulator. In [43], a FEM approach is chosen to model spatial manipulators
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with multiple flexible links and flexible joints.

1.2.3 Models for inverse dynamics

Eventually, each modeling approach is able to grasp the characteristics of a real

robot with a variable level of detail and generality.

In the flexible joint case, if no damping is considered, the model can be clas-

sified as a flat system. On the other hand, flexible link models have usually some

internal dynamics whose stability properties can strongly affect the model inversion

procedure (see Chapter 2).

In order to represent realistic manipulators that may include distributed and

localized flexibility, a modeling method able to consider both types of flexibility

needs to be considered. In the present work, the previously defined geometric and

local frame FEM models are adopted and extended to control problems. Indeed,

the generality and numerical benefits of such approach allow one to state efficiently

the inverse dynamics problem of flexible systems.

1.3 Optimization solvers

In addition to the formulation of control problems and modeling techniques, the

question on how to solve the resulting trajectory tracking problem arises. Here, as

the inverse dynamics problem is stated as an optimization problem, a brief overview

of optimization algorithms is given. Optimization algorithms aim at minimizing a

given objective function J(x, t) which depends on the system’s design variables x(t)

(the states q(t) and the inputs u(t)). In parallel, it has to satisfy some constraints

defined by the dynamics of the system and the tracking conditions.

Two types of methods are usually considered [13, 63]: direct methods, which use

a discretize then optimize philosophy, and indirect methods, which use an optimize

then discretize philosophy. In direct methods, all states and inputs of the system

are first discretized in time, or transcribed, leading to a so-called non-linear program

(NLP): a constrained optimization problem with a non-linear objective function

and/or constraints. The algorithm then iteratively generates optimized states and

inputs until a given tolerance is satisfied. In indirect methods, analytical optimality

conditions are first computed before discretizing and solving the problem. While the

latter usually leads to a more accurate solution, direct methods are more robust and

easier to implement. Amongst direct methods, one can further distinguish direct

shooting methods [19, 22] from direct transcription methods [5, 18]. Shooting meth-
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ods relies on dynamic simulations over discrete time intervals, also called shooting

intervals. Smaller time steps can be used for the simulations within each shooting

interval. As a result, a finer time grid for the final solution is obtained. Shooting

methods, however, are more sensitive to the numerical parameters and poor initial

guesses. Direct transcription methods, on the other hand, directly deal with the

state variables at the discrete time steps. This generally leads to a problem with

a rather large dimension but a sparse structure. Compared to shooting methods,

the convergence of direct transcription methods is more robust and therefore more

suitable to solve general non-linear dynamic problems.

Traditional optimization solvers [13] have their design variables defined on a

linear vector space. However, spatial geometric models have variables defined on a

non-linear Lie group (see Section 1.2). Optimization solvers defined on non-linear

manifolds are described in [1, 73]. In the present work, the extension of such non-

linear optimization solver to inverse dynamics problem and geometric models is

presented.

1.4 Objective and contributions of the thesis

This work aims at developing a method able to model general flexible 3D manipu-

lators and solve the inverse dynamics problem. It further aims at an experimental

validation of the method with flexible spatial robots.

The contributions can be summarized as follows:

• It is first shown how the geometric FEM, initially presented in [21, 108, 107],

can be applied to the modeling of robotic systems. Thanks to the generality

of the FEM approach, models of spatial robots with various configurations

(flexible links and/or joints, open or closed chain kinematics) are constructed

in a systematic way.

• Secondly, a geometric approach is proposed to formulate the inverse dynamics

problem as a constrained optimization problem. This approach extends the

method initially presented in [4, 5, 6] for planar problems. By taking advantage

of the local frame representation, the equations of motion have reduced non-

linearities which positively impacts the formulation of the feedforward control

problem of 3D systems. Relying on differential geometry tools, the non-linear

design variables of the optimization problem are redefined on the Lie algebra

so that classical optimization tools can be used.
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• Then, the impact of the internal dynamics of the system on the inverse dynam-

ics solution is investigated for simple linear examples as well as more complex

spatial examples.

• Eventually, the present methodology is exploited to design and implement

feedforward controllers in real spatial applications. The performances of the

present method are analyzed for two experimental robotic manipulators.

1.5 Outline of the thesis

The structure of the thesis is as follows:

� Chapter 2: Fundamental concepts regarding the inverse dynamics problem

and the internal dynamics of a mechanical system are discussed. Several linear

examples are used to illustrate these concepts.

� Chapter 3: Some theoretical mathematical tools required to understand the

model formulation are first given. The formulation of the equations of motion

of a MBS in the SE(3) group is presented. Then, the construction of the

FEM model with such formulation is shown. An algorithm to solve the direct

dynamic problem in the SE(3) group is also detailed.

� Chapter 4: The inverse dynamics problem is presented for systems with rigid

and flexible components. The geometric formulation of the optimization prob-

lem is developed. Then the algorithm and necessary derivations to compute

the solution are shown. To illustrate the method, a planar under-actuated cart

system [100] is considered.

� Chapter 5: The method is applied and analyzed for two spatial flexible ma-

nipulators: a serial and a parallel manipulator. The influence of the flexible

characteristics and internal dynamics on the solution of the inverse dynamics

problem is discussed.

� Chapter 6: After the simulation studies, the inverse dynamics of real flexible

manipulators is investigated. First, a flexible link robot, ELLA, is tested

experimentally and the vibrations in the robot arm are analyzed for different

reference inputs. Then, a flexible joint robot, Sawyer, is considered. The end-

effector tracking precision is compared between a rigid and a flexible reference

input trajectory.
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� Chapter 7: The conclusions on the present methodology are drawn. Some

perspectives on the further developments of the present inverse dynamics solver

and feedforward control strategy are also presented.
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Chapter 2

Inverse dynamics of simple

mechanical systems

The aim of this chapter is to present some fundamental concepts about the control

of mechanical systems. First, the general equations of the dynamics of mechanical

system is recalled. Then, the concepts of direct and inverse dynamics problems are

stated. Lastly, the concept of internal dynamics is illustrated for a few illustrative

examples.

2.1 Dynamics of mechanical systems

The motion of each part of a mechanical system is often described by a vector of

coordinates q. Under the action of some input efforts u, the system evolves over

time and result in some outputs y(q) that can be a function of the coordinates. The

general equations governing the dynamics of such system is defined as

Mq̈ + g(q, q̇, t) = Au(t) (2.1)

y = h(q(t)) (2.2)

where the M matrix defines the inertia of the system, the vector g represents the

internal and external forces applied on the system, the matrix A applies the inputs

u on the appropriate coordinates and the function h(q) defines the outputs y of the

system. From here, one can now express the direct and inverse dynamics problems.
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2.1.1 Direct dynamics problem

In a direct dynamics problem, the inputs are prescribed, i.e. u = upresc(t), and the

behavior of the outputs y is unknown; Given a prescribed input upresc(t), what is

the behavior of the outputs y(q(t)) of the system?

The previous equations thus become

Mq̈ + g(q, q̇, t) = Aupresc(t)

y = h(q(t))
(2.3)

In order to find a solution for the output y, the dynamics of Eqs. (2.3) can be

solved starting from some given initial states of the system.

2.1.2 Inverse dynamics problem

Conversely, in an inverse dynamics problem, the inputs u are unknown and the out-

puts are prescribed, i.e. y = ypresc(t); Given a prescribed output trajectory ypresc(t),

what are the inputs u(t) that will drive the actual output y(q(t)) along this desired

trajectory?

The equations become

Mq̈ + g(q, q̇, t) = Au(t) (2.4)

ypresc(t) = h(q(t)) (2.5)

Here, the actual output is a function of the coordinates of the system which have

to satisfy the equations of motion, i.e. y = h(q(t)). Mathematically, the output

tracking problem is defined by Eq. (2.5), called the servo-constraints [14, 15, 99]

and reformulated as:

y − ypresc(t) = 0 (2.6)

In this case, Eqs. (2.4-2.5) are the equations of the internal dynamics of the

system and a solution for the inputs u(t) must be found.

2.1.3 DAE index and relative degree

Considering that the outputs y do not depend on higher order derivatives of the

coordinates q, one can note that the above equations are a set of differential algebraic

equations (DAE). The differential index of such DAE is 3 [27], i.e. in order to have

ordinary differential equations (ODE), one needs to differentiate Eq. (2.6) three
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times. This index is representative of the difficulty to solve the system numerically:

the higher the index, the more the solution is prone to numerical instabilities. In

order to evaluate the index of the DAE representing the internal dynamics, one can

construct the following matrix [
M −A

D 0

]
(2.7)

where D is the gradient of Eq. (2.6) with respect to the coordinates q. If this

matrix is non-singular, the internal dynamics is represented by an index 3 DAE.

If this matrix is singular, the index is higher than 3. Some techniques [14, 121]

can be used to reduce the index of such DAE. Reducing the index by introducing

constraints on velocity or acceleration level, leads to systems that are easier to solve

numerically.

From a control point of view, an additional relevant concept is the relative de-

gree of a system [27, 62]. The relative degree indicates how one of the inputs is

related to one of the outputs and its derivatives. The relative degree depends on the

configuration of the system and the chosen output [88]. One way of interpreting the

relative degree is to consider it as a measure of how direct the input is affecting the

output. The lower the relative degree the faster the input affects the output. This

concept can be extended to the case of multiple inputs, multiple outputs (MIMO)

systems [105]. One then defines the total relative degree as the sum of the relative

degree of each input/output pair.

For all the flexible link systems considered in this work, the inverse dynamics is

expressed as an index 3 DAE. However, their relative degree is not always easy to

define as it will be discussed later.

2.2 Internal dynamics

Recall from the introduction that the flexible systems considered in this work are

under-actuated systems with localized or distributed flexibility. A classification of

such systems is depicted in Fig. 2.1. Amongst those systems, one can distinguish

systems that are differentially flat and systems that have some internal dynamics.

Differentially flat systems [44, 45] are defined as systems for which all states and

inputs can directly be expressed algebraically in terms of a so-called flat output and

its derivatives. The design of control inputs for such systems is greatly simplified

since no dynamics needs to be integrated. On the other hand, the internal dynamics

of a system is defined as the remaining dynamics when the outputs of the system are
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prescribed (and possibly varying). Such internal dynamics can result from the non-

collocated nature of inputs and outputs [34, 36, 56, 77]. Indeed, unlike ideal rigid

structures in which wave propagation velocity is infinite, i.e. a force is transmitted

instantaneously from one end of the structure to the other, the wave propagation

velocity in real flexible structure is finite. As a consequence, the more the structure

is flexible, the higher the delay between the actuation of the arm and the end-effector

motion. This leads to a phase lag in the response of the system which can destabilize

the control actions. Depending on the importance of the phase lag, the dynamics

inside the system can be minimum phase, i.e. the internal dynamics is stable, or

non-minimum phase, i.e. the internal dynamics is unstable. Such characteristic

can strongly affect the design of the controller of the system. A stability analysis

of the non-linear internal dynamics is, in practice, limited to the zero dynamics of

the linearized system [62, 95] which is defined as the remaining dynamics when the

outputs are fixed to a constant equilibrium point. The linear analysis of the internal

dynamics done in reference [22] is now summarized.

Figure 2.1: Classification of under-actuated mechanical systems.

2.2.1 Linear analysis

The non-linear system of Eqs. (2.4-2.5) can also be written in a descriptor state

space form as

M?ẋ = f(x, t) with x =

q

q̇

u

 (2.8)

where x gathers the states of the system, M? is a singular matrix and the infor-

mation about the output is contained in f . This system can be linearized around

an equilibrium point with some increments ∆q, ∆q̇, ∆q̈ and ∆u. The linearization
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leads to

M?

∆q̇

∆q̈

∆u̇

 = F?

∆q

∆q̇

∆u

 (2.9)

with

M? =

I 0 0

0 M 0

0 0 0

 ; F? =

 0 I 0

−K −C A

D 0 0

 (2.10)

and the matrices C = ∂g/∂q̇ and K = ∂g/∂q are the linearization of the internal

and external forces g applied on the system.

The stability of the zero dynamics of the linearized system can then be deter-

mined by an analysis of the generalized eigenvalues problem of Eq. (2.9) around given

equilibrium points. If such equilibrium points are hyperbolic, i.e. the linearized sys-

tem has no eigenvalues on the imaginary axis, they can be characterized as stable

or unstable if the real part of the eigenvalue is negative or positive, respectively.

As already stated in the introduction, depending on the characteristics of the

system, various techniques can be used to find such solution. A few examples are

now given.

2.3 Illustrative examples

2.3.1 Fully actuated systems

Let us first consider the case of a fully actuated rigid system for which the computed

torque method can be applied (see introduction). It is a simple cart system depicted

in Fig. 2.2. It has a mass m, one dof q and one actuating input u. The output y of

the system is its only dof, i.e. y = q.

Figure 2.2: Fully actuated cart with one dof q and one control input u.

The inverse dynamics problem of the system is governed by dynamic equation
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of the system and the servo-constraints (Eq. (2.6)), leading to

mq̈ = u (2.11)

q = ypresc(t) (2.12)

Assuming the prescribed trajectory ypresc(t) is sufficiently smooth, the scalar input

effort uFF can directly be computed as

uFF(t) = m ÿpresc(t) (2.13)

and is the solution of the inverse dynamics problem.

The differential index of this fully actuated system can be determined by con-

structing the matrix given by Eq. (2.7). In this case, M = m, D = 1 and A = 1

and the matrix is not singular and the index of the resulting DAE is 3. Also, the

input u is related to the second derivative of the output y (see Eq. (2.13)), hence

the relative degree is 2.

2.3.2 Flat under-actuated systems

Figure 2.3: Flat under-actuated cart system with two dofs q1 and q2, connected
using a linear spring with stiffness k. The system is actuated using one input u.

Let us now consider the flexible cart system shown in Fig. 2.3: two masses m1

and m2 connected using a localized linear spring element of stiffness k. The system

is described by two dofs q1 and q2 and only the first dof q1 is actuated using the

input u, hence the system is under-actuated. The output is y = q2 and has to follow

the scalar prescribed trajectory ypresc(t). The inverse dynamics problem is expressed

as

m1q̈1 + k(q1 − q2) = u (2.14)

m2q̈2 − k(q1 − q2) = 0 (2.15)

q2 = ypresc(t) (2.16)
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Substituting the servo-constraint given by Eq. (2.16) and its derivatives into the

other two equations, the scalar input uFF can be directly computed as

uFF =
m1m2

k
y[4]

presc + (m1 +m2)ÿpresc (2.17)

Therefore, the output q2 is a flat output of the system: the input effort and the

dynamics of q1 are determined algebraically by ypresc and its derivatives up to the

fourth order. As a consequence, this system has relative degree 4.

Also, matrices M, D and A are

M =

[
m1 0

0 m2

]
; D =

[
0 1

]
; A =

[
1

0

]

and the matrix given by Eq. (2.7) is singular meaning that the index is not 3 (it can

be shown that the index is actually 5 in this case).

2.3.3 Systems with minimum phase internal dynamics

Figure 2.4: Minimum phase under-actuated cart system with two dofs q1 and q2,
connected using a linear spring-damper element with stiffness k and damping d. The
system is actuated using one input u.

Many systems are not differentially flat and, in such cases, the internal dynamics

of the system needs to be solved. To illustrate this concept, consider the previous

linear cart system where the two dofs q1 and q2 are additionally coupled with a

damper element d. The equations governing the internal dynamics of the whole

system now become

m1q̈1 + d(q̇1 − q̇2) + k(q1 − q2) = u (2.18)

m2q̈2 − d(q̇1 − q̇2)− k(q1 − q2) = 0 (2.19)

q2 = ypresc(t) (2.20)
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The feedforward input uFF can be expressed as

uFF = m1q̈1 +m2ÿpresc (2.21)

where the unknown dynamics of q1 affects the input and needs to be solved. The

equation governing this dynamics reads

dq̇1 + kq1 = m2ÿpresc + dẏpresc + kypresc (2.22)

One can see that the first order dynamics q̇1 expressed by Eq. (2.22) involves

the second derivative ÿ of the output. Since the input uFF requires the second order

dynamics q̈1 (see Eq. (2.21)), one needs to derive the dynamics of Eq. (2.22) once

more. As a result, the input is related to the third derivative y[3] of the output

and the relative degree of this system is 3. Regarding the differential index of the

resulting DAE, the matrix given by Eq. (2.7) is the same as for the previous flat

system and is therefore singular. It can be shown that the index is 4 in this case.

Analyzing the generalized eigenvalues of Eq. (2.9) is equivalent to finding the

root of the left hand side of Eq. (2.22) which is −k/d. This root has a negative real

part for d, k > 0 and the zero dynamics of the system is therefore stable; one can

say that the internal dynamics is minimum phase.

Consequently, a direct integration of the internal dynamics from an initial con-

dition will result in a bounded solution for the input uFF. For example, with the

zero dynamics i.e. ypresc = ẏpresc = ÿpresc = 0, a solution of Eq. (2.22) for q1 can be

expressed in the form of

q1(t) = Ae−at (2.23)

with a = k/d. The A constant can be determined by one initial condition, e.g. an

initial velocity in the system expressed as q̇1(0) = 1, which leads to

A = −1

a
(2.24)

As a result, the solution for the feedforward input uFF of Eq. (2.21) in the zero

dynamics is

uFF(t) = −m1ae
−at (2.25)

which fades out as time goes forward. Intuitively, if one wishes to compute the

input uFF that maintains the output y at zero, a bounded solution can be found by

forward time integration although an initial perturbation e.g. a small initial velocity,

is present in the model.
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2.3.4 Systems with non-minimum phase internal dynamics

In contrast to minimum phase systems, a non-minimum phase system is a system

with unstable internal dynamics. Let us now consider an under-actuated planar

double pendulum depicted in Fig. 2.5. It is composed of two identical masses m

linked through two identical mass-less rigid links of length l. The first link is actuated

by the input u acting on the coordinate q1 of the first hinge joint. The second link

is connected to the first link through a passive hinge with stiffness k. The output

y = q2 is the absolute orientation of the second link.

Figure 2.5: Non-minimum phase under-actuated pendulum with two dofs q1 and q2,
connected using a linear spring with stiffness k. The system is actuated using one
input u.

The linearized internal dynamics of the system for (q1 − q2)� 1 is governed by

the following set of equations (see A.3)

2ml2q̈1 +ml2q̈2 − k(q2 − q1) = u (2.26)

ml2q̈1 +ml2q̈2 + k(q2 − q1) = 0 (2.27)

q2 = ypresc(t) (2.28)

Again, substituting the servo constraint (Eq. (2.28)) into the first equation leads

to the expression of the forward input torque uFF as

uFF = 3ml2q̈1 + 2ml2ÿpresc (2.29)

where the dynamics of q̈1 given by

ml2q̈1 − kq1 = −ml2ÿpresc − kypresc (2.30)

still needs to be solved. As one can see from Eq. (2.30), this second order dynamics

q̈1 involves the second derivative ÿ of the output. Since the expression of the input u

(see Eq. (2.29)) does not involve higher order derivatives, the relative degree between
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the input and the output is 2 in this case. Also, matrices D and A are the same as

the flat and the minimum phase systems but the mass matrix M is now

M = ml2

[
2 1

1 1

]

and has off diagonal coupling terms. As a result, the matrix given by Eq. (2.7) is

non singular and the index of the DAE is 3.

In this case, the generalized eigenvalues of Eq. (2.9) are the roots of the second

order left hand side of Eq. (2.30). The two roots are +
√
k/ml2 and −

√
k/ml2.

Since one has a positive real part, the zero dynamics is unstable and the internal

dynamics is non-minimum phase.

As a consequence, if a solution for uFF is computed by integrating Eq. (2.30)

from some initial conditions, an unbounded solution is found. As it is done for the

previous example, with the zero dynamics i.e. ypresc = ẏpresc = ÿpresc = 0, a solution

of Eq. (2.30) for q1 can be expressed in the form of

q1(t) = Ae−at +Beat (2.31)

with a =
√
k/ml2 in this case. The constants A and B can be determined by two

initial conditions, e.g. an initial angle q1(0) = 0 and an initial angular velocity

q̇1(0) = 1, which leads to

A = − 1

2a

B =
1

2a

(2.32)

Therefore, a solution for the feedforward input uFF of Eq. (2.29) in the zero

dynamics is

uFF(t) = 3ml2
a

2

(
eat − e−at

)
(2.33)

which means that as time goes forward, the first term in Eq. (2.33) grows exponen-

tially (while the second fades out). In other words, if one wishes to compute the

input uFF that maintains the output y at zero, a small perturbation of the model

e.g. a small initial velocity, leads to a solution that grows unbounded rather quickly.

In order to find a bounded solution uFF of the inverse dynamics problem, appro-

priate methods, such as the ones described in the introduction, have to be used.
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2.4 Summary

In this chapter, the inverse dynamics problem is illustrated with some linear systems.

The concept of differential index of the equations of motion and relative degree of

a system are presented. For these simple systems, it is shown how the internal

dynamics can affect the solution of the inverse dynamic problem.

These results can be generalized to more complex systems. In fact, the roots of

the internal dynamics equations, or generalized eigenvalues of Eq. (2.9), represent

the poles of the inverse dynamics transfer function around given equilibrium points.

Each eigenvalue is related to an eigenvector: a stable eigenvalue is related to a vector

ζs, spanning in a so-called stable manifold of the linearized system while the unstable

eigenvalue is related to a vector ζus, spanning in a so-called unstable manifold of the

linearized system.

From the simple examples of this chapter, one can observe that the relative

degree for each input/output pair is one less that the index. This is true for many

mechanical system but is not a general rule [27]. Furthermore, for linear systems,

the relative degree is related to the number of poles of the inverse system. In

fact, in that case, the relative degree is the difference between the number of poles

and the number of zeros of the inverse dynamic transfer function. However, this

may not be true for general MIMO non-linear systems. Also, the validity of large

eigenvalues is questionable for the more complex spatial systems considered in this

work. Indeed, the kinematic constraints used in the FEM model leads to infinite

eigenvalues that may not correspond to real characteristics of the system [51]. As

a result, an arbitrary tolerance to select the eigenvalues is set numerically and the

number of poles of the system may be altered. For these reasons, the relative degree

of the spatial systems presented in this work will not be discussed.

27



CHAPTER 2. INVERSE DYNAMICS OF SIMPLE MECHANICAL SYSTEMS

28



Chapter 3

Geometric modeling of flexible

manipulators

(a) Schematic view. (b) Frames attached to each link.

Figure 3.1: Model of a serial rigid manipulator with two links.

In this chapter, the description of dynamic models of MBS using the local frame

FEM approach is given. This approach is a general formulation that allows one to

treat rigid links, flexible links or flexible joints as well as serial or parallel manip-

ulators in one common framework. The first step in defining a FEM model is to

describe the motion of its components. For a 3D rigid body, this motion is described

by 4×4 transformation matrices H defined as

H =

[
R p

0 1

]

Each matrix represents a frame attached to a body, as depicted in Fig. 3.1(b) for

each rigid link, and involves a position vector p ∈ R3 and a 3×3 rotation matrix R.

More particularly, such transformation matrices are elements of the so-called special

Euclidean group SE(3) which is a non-linear matrix Lie group. The properties of

Lie groups can be studied using the theory of differential geometry. Then, practical
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tools allow one to derive the equations of motion of spatial MBS efficiently. The

mathematical concepts presented in the following are developed with deeper expla-

nations in reference [101]. More details about the formulation of the FEM approach

in this framework can be found in [21, 107]. This chapter focuses on the material

useful for the description of the inverse dynamics solver.

After introducing some fundamental tools about Lie groups, the description of

the kinematics of a rigid body using transformation matrices is shown. Then the

description of kinematic joints and flexible beams is given. Finally, the resulting

FEM formulation for flexible MBS and a general procedure to solve the dynamics

of such system are shown.

3.1 Lie group fundamentals

This section introduces some general and abstract concepts about Lie groups. Their

application to the particular cases of the group of rotations SO(3) and the group of

rigid body motions SE(3) is described in Section 3.2.

3.1.1 Definitions

Figure 3.2: Representation of a Lie group as a non-linear space.

A group G is defined as a set of elements H with a composition rule, denoted as

◦, that respect the following axioms:

� closure: the composition of two elements H1 and H2 ∈ G leads to an element

of G i.e. H1 ◦H2 = H3 ∈ G.

� associativity: (H1 ◦H2) ◦H3 = H1 ◦ (H2 ◦H3).

� identity: there exist an element I ∈ G such that H ◦ I = I ◦H = H.
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� invertibility: for each element H ∈ G, there is an element H−1 ∈ G such that

H ◦H−1 = H−1 ◦H = I.

In addition to these axioms, a matrix Lie group has the structure of a differen-

tiable manifold and each element of the group can be represented as a matrix. The

composition and inversion of such group are smooth maps and are represented by

the matrix product and the matrix inversion. One can represent such a group as a

non-linear space as shown in Fig. 3.2.

3.1.2 Lie algebra

Let us consider a dynamic system whose configuration is represented by H ∈ G. Its

trajectory H(t), where t is the time, is thus a curve in G. The time derivative Ḣ

belongs to the tangent space at the element H, i.e. Ḣ ∈ THG. The Lie algebra g

is the tangent space of the group G at the identity element I, as shown in Fig. 3.2.

This Lie algebra is a linear space and is therefore said to be isomorphic to Rk, i.e.

an element of this Lie algebra can be represented as a k component vector, with k

being the dimension of the Lie algebra. Let us define a vector v ∈ Rk. This vector

can be mapped to the Lie algebra g using the •̃ operator. Given an element H ∈ G
of the Lie group, the time derivative Ḣ of this element is then conveniently defined

using the Lie algebra element ṽ ∈ g as

Ḣ = Hṽ (3.1)

Similarly, the variation δH of an element of G can be written as

δH = Hδ̃h (3.2)

where δh represents an infinitesimal motion ∈ Rk that can be mapped to the Lie

algebra as δ̃h.

Furthermore, as shown in [107], when an element of a Lie group is represented

by a matrix H, its cross derivative is commutative which leads to

δ(Ḣ) = (δH)̇ (3.3)

Developing this property further (as detailed in A.1), one finds that

δ(ṽ)− (δ̃h)̇ =
[
ṽ, δ̃h

]
(3.4)
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in which the [•, •] operator is called the Lie bracket and is defined as

[•, •] : g × g → g,
[
ṽ, δ̃h

]
7→ ṽδ̃h− δ̃hṽ (3.5)

Alternatively, Eq. (3.4) can be written in terms of vectors ∈ Rk as

δ(v)− (δh)̇ = v̂δh (3.6)

where the •̂ operator maps a vector of Rk into a k × k matrix.

Note It can be noted that another expression of the time derivative Ḣ can also be

found in mechanical text books. Indeed, instead of Eq. (3.1), one could also express

the time derivative as Ḣ = ṽRH where the element of the Lie algebra ṽR multiplies

the element of the Lie group H from the right. However, it will be shown later

that the left multiplication expressed in Eq. (3.1) leads to the so-called local frame

representation. Therefore, in the remainder of this thesis, the latter expression is

used.

3.1.3 Exponential map and tangent operator

The exponential mapping expG(•) is an operator which maps an element Q̃ of the

Lie algebra g to an element of the Lie group G,

expG(•) : g → G, Q̃ 7→ expG(Q̃) (3.7)

The inverse of this mapping is called the logarithmic mapping logG(•),

logG(•) : G→ g, H 7→ logG(H) (3.8)

These two mappings establish a relationship between the elements of non-linear

matrix Lie group, such as SE(3) or SO(3), and their respective Lie algebra. They

can be interpreted as a local parameterization of the elements of G: H can now be

represented by an element of the Lie algebra or by a k-dimensional vector.

From the above definition, one can define a Q̃ ∈ g for any H1,H2 ∈ G such that

H2 = H1 expG(Q̃) (3.9)

If H1 is constant in time, the derivative of H2 given by Eq. (3.1) can also be written
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Figure 3.3: Mapping of an element of the Lie algebra g to an element of the Lie
group G using the exponential map expG(•).

as

Ḣ2 = H2 T̃(Q)Q̇ (3.10)

with

v2 = T(Q)Q̇ (3.11)

The so-called tangent operator T(•) involved in the above expression represents the

linearization of the exponential map and defines a mapping between a vector v and

the derivative Q̇ of another vector. The detailed expressions of the exponential map,

logarithmic map and tangent operator are given in A.2.

3.2 Kinematics of a rigid body

Figure 3.4: Kinematics of a rigid body.

Let us assume a general rigid body whose reference point is located at the origin

o of a fixed inertial frame in its reference configuration. The configuration of this

body can change and a current configuration is defined (see Fig 3.4). The orientation

of this current configuration can be described by a rotation matrix R ∈ SO(3). The
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special Orthogonal group SO(3) is the group of rotation matrices defined as

SO(3) = { R ∈ R3×3 | RTR = I, det(R) = +1 } (3.12)

with the matrix multiplication as composition rule. The Lie algebra associated to the

SO(3) group is denoted as so(3) and has dimension k = 3. In addition, the position

of the current configuration is described by a position vector p ∈ R3. Eventually,

the complete transformation from the reference configuration to the current config-

uration can be conveniently represented as a 4×4 transformation matrix H(p,R)

belonging to the special Euclidean group SE(3) as follows

H(p,R) =

[
R p

0 1

]
∈ SE(3) (3.13)

The composition rule of the SE(3) group is also the matrix multiplication. It can

be noted that the Lie algebra of SE(3), denoted as se(3), has dimension k = 6.

Therefore the representation using 4×4 transformation matrices is a 6-parameter

transformation. The first three naturally result from the position vector p. The last

three, result from associating the 9 components of the rotation matrix R with the

6 orthonormality conditions RTR = I. This 4×4 matrix can also be seen as the

description of a frame rigidly attached to the body. It can easily be shown that the

inverse of such transformation matrix H−1 is

H−1 =

[
RT −RTp

0 1

]
(3.14)

From Eq. (3.1), the velocities of the body are expressed by the time derivative

of a transformation matrix H as

Ḣ = Hṽ =

[
R p

0 1

][
ṽR vp

0 0

]
(3.15)

with ṽ(vR,vp) ∈ se(3). This equation is also called the compatibility equation.

Decomposing Eq. (3.15) into the translational velocity ṗ and the rotational velocity

Ṙ leads to

ṗ = Rvp

Ṙ = RṽR
(3.16)
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From Eq. (3.16), one can see that vp = RT ṗ ∈ R3 is the translational velocity

vector of the current configuration with respect to the fixed inertial frame, expressed

in the current frame H(p,R). Equivalently, the angular velocity vector vR ∈ R3

expresses the rotational velocity in the current frame. As a consequence, the vector

v(vR,vp) ∈ R6 is considered as the local frame representation of the velocities.

The 3 component vector vR is represented in the Lie algebra so(3) by a skew-

symmetric matrix as

ṽR =

 0 −vR3 vR2

vR3 0 −vR1

−vR2 vR1 0

 ∈ so(3) (3.17)

In contrast, the 6 component vector v is represented in the Lie algebra se(3) by

a 4×4 matrix, as in Eq. (3.15). These notations are similar to references [51, 70,

84, 108].

3.3 Dynamics of a rigid body

The Hamilton’s principle states that the trajectory of a conservative system between

two time instants ti and tf is such that its action integral is stationary provided that

its initial and final configurations are fixed, mathematically

δ

(∫ tf

ti

(K − Vext) dt

)
= 0 (3.18)

where K and Vext are the kinetic and potential energy of the system respectively.

For a rigid body, the kinetic energy is given as

K =
1

2
vTMv (3.19)

where M is a constant 6×6 matrix of the form

M =

[
mI3×3 0

0 J

]
(3.20)

with m the mass of the body and J ∈ R3×3 its rotation inertia defined at the center

of mass of the body. The fact that M is constant is a direct consequence of the local

frame representation of the velocities shown previously. It is further assumed that

the potential field is a function of H.
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The variation of the kinetic energy δK is expressed using Eq. (3.6) and the

infinitesimal motion δh of Eq. (3.2), leading to

δ

(∫ tf

ti

K dt

)
=

∫ tf

ti

(
˙(δh)

T
+ δhT v̂T

)
Mv dt (3.21)

where the •̂ operator for the case of a vector v(vR,vp) ∈ R6 is expressed as

v̂ =

[
ṽR ṽp

0 ṽR

]
(3.22)

Integrating by parts the left hand side of Eq. (3.21) leads to

δ

(∫ tf

ti

K dt

)
=
[
δhTMv

]tf
ti
−
∫ tf

ti

δhT
(
Mv̇ − v̂TMv̇

)
dt (3.23)

Since the configuration H at the initial and final time is fixed, the infinitesimal

motion δh in the first term on the left hand side of Eq. (3.23) vanishes and

δK = −δhTgine(v, v̇) = −δhT
(
Mv̇ − v̂TMv

)
(3.24)

The variation of the potential energy is expressed based on the external forces

gext(H) in the system as

δVext = δhTgext(H) (3.25)

Inserting Eqs. (3.24) and (3.25) in Hamilton’s principle Eq. (3.18) and since the

stationary property must be true for any arbitrary motion δh, the equation of motion

of the rigid body follows

gine(v, v̇) = gext(H) (3.26)

i.e. the inertia forces and external forces are at equilibrium.

3.4 Kinematic constraints

Up to now, the spatial motion of rigid bodies was considered. It was shown that

such 3D motion can be conveniently represented by 4×4 transformation matrices

∈ SE(3). In general MBS, bodies are connected to one another using various types

of joints. These joints constrain each bodies to certain relative motions. Depending

on the type of joint that is considered, the number of dofs of the joint is m ≤ 6.

Mathematically, such relative motions can be described by a sub-space of the SE(3)
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group. This leads to the concept of subgroups of SE(3) [101, 107]. In the present

formulation, the relative motion of a joint J is represented by an element HJ that

belongs to SE(3). However, the underlying Lie algebra associated to this element

has dimension k = m and is a sub-space of se(3). Therefore, one can define some

elements ṽj and δ̃hj of this Lie algebra such that vj ∈ Rm and δhj ∈ Rm. One can

further define a 6×m matrix AJ describing a linear map between elements ṽj of the

Lie algebra of the subgroup and elements ṽJ of the Lie algebra se(3) as vJ = AJvj.

We have:

ḢJ = HJ ṽJ = HJ
˜(AJvj) ; δHJ = HJ δ̃hJ = HJ

˜(AJδhj) (3.27)

In practice, the columns of the AJ matrix represent the axes of joint J in the local

frame.

Considering a system with N bodies and n joints, the complete configurations

H is

H = diag(H1, · · · ,HN ,HJ,1, · · · ,HJ,n) (3.28)

and the associated velocities v are

v =
[
vT1 , · · · ,vTN ,vTj,1, · · · ,vTj,n

]T
(3.29)

It is important to note that the configurations H involve absolute variables of the

nodes, such as HN , and relative variables of the kinematic joints, such as HJ,n. As

a result, the present approach is a so-called mixed formulation of the configurations.

Figure 3.5: Relative configuration HJ between bodies A and B.

In the MBS model, such joints are described by a set of kinematic constraints Φ.

Let us consider two bodies, A and B described respectively by their configuration

HA and HB. As shown in Fig. 3.5, the relative configuration between A and B is

introduced by the element HJ associated to the joint J as

HB = HAHJ (3.30)

The kinematic constraint associated to joint J is therefore expressed using the matrix
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equation

H−1
B HAHJ = I4×4 (3.31)

Eq. (3.31) can be reformulated as a vectorial equation ΦJ in the Lie algebra se(3)

using the logarithmic map logSE(3) of the SE(3) group (see Eq. (3.8)) as

ΦJ(HA,HB,HJ) = logSE(3)(H
−1
B HAHJ) = 06×1 (3.32)

In the present formulation, each joint therefore introduces m ≤ 6 additional

coordinates and 6 constraints to the system. It can also be useful to define the

variation δ(ΦJ) of the constraint with respect to the configurations involved in joint

J , hence

δ(ΦJ) = B(H)
[
δhTA δh

T
B δhTj

]T
(3.33)

where B is the 6×(12 +m) matrix of the constraint gradients of joint J .

This kinematic constraint equation can be included in the equation of motion of

a rigid body Eq. (3.26) using the Lagrange multiplier method which leads to

gine(v, v̇) + BT (H)λ = gext(H) (3.34)

Φ(H) = 0 (3.35)

in which λ are the Lagrange multipliers associated with the constraints Φ.

3.4.1 Example: the revolute joint

Figure 3.6: Revolute joint linking body A and body B.

To illustrate the above kinematic constraint formulation, let us consider the case

of a revolute joint, also called hinge joint, as shown in Fig. 3.6. The revolute joint

constrains two bodies A and B to have the same position i.e., pA = pB, but allows

one rotation dof around its axis of rotation i.e., RA 6= RB. Therefore the dimension

of the underlying Lie algebra is m = 1, i.e. vj = α̇J and δhj = αJ are scalars.

Assuming the axis of the joint is the local y axis, αJ is the relative angle between
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Figure 3.7: Revolute joint with internal stiffness k and viscous dissipation d.

body A and body B around the local y axis. The relative configuration HJ(pJ ,RJ)

corresponding to this revolute joint is defined by

RJ =

cosαJ 0 − sinαJ

0 1 0

sinαJ 0 cosαJ

 ; pJ = 0 (3.36)

and the AJ matrix in this case is

AT
J =

[
0 0 0 0 1 0

]
(3.37)

It is interesting to note that the introduction of such additional coordinate leads

to a straight forward expression of internal forces gint,J inside such joint. For exam-

ple, assuming the revolute joint has some internal stiffness k and viscous dissipation

d (see Fig. 3.7), the internal forces gint,J would be scalar and have the form

gint,J = (αJ − α0
J)k + α̇Jd (3.38)

Similarly, an external torque gext,J = u produced by an actuator and applied on the

αJ dof can be directly included in the model.

3.5 Flexible beam

Figure 3.8: Initial and deformed configuration of a beam.
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As this work focuses on flexibility effects in manipulators and more particularly

in slender structural components, the flexible beam formulation presented in [109] is

summarized in this section. Let us consider a beam of length L whose neutral axis

is parameterized by a curvilinear coordinate s ∈ [0;L]. The cross section is assumed

to remain plane and undeformed at any time. As a consequence, the cross section

at point s can be considered as a rigid body described in its initial configuration by

H0(s) and in its current configuration by H(s) (as shown in Fig. 3.8).

3.5.1 Continuous formulation

By analogy with the rigid body description, the kinetic energy of the beam can be

defined using the 6×1 velocity vector of the cross section v as

K =
1

2

∫
L

vTMbv ds (3.39)

where Mb is the cross section inertia matrix which is a constant matrix. The varia-

tion of the kinetic energy is expressed as

δK =

∫
L

δhTgine(v, v̇) ds (3.40)

where the beam inertia forces gine are defined in a similar way as in Eq. (3.24).

The potential energy of the beam V = Vint + Vext has an internal contribution

Vint from internal strains ε and an external contribution Vext from the external forces

gext.

The internal strains can be defined by first introducing the deformation gradient

f ∈ R6 related to the derivative H′(s) of the cross section configuration as

H′(s) = H(s)f̃(s) (3.41)

The strain ε ∈ R6 of the beam is then defined using the gradient f0(s) at the initial

configuration as

ε(s) = f(s)− f0(s) (3.42)

and is expressed in the local frame of the beam. The first component ε1 of ε repre-

sents the axial strain along the beam. The next two components ε2 and ε3 represent

the shear strain in the cross section axes. The last three component represent the

curvatures inside the beam: ε4 is associated to the torsion of the beam while ε5 and

ε6 represent the bending curvatures around the cross section axes.
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Figure 3.9: Flexible beam finite element between nodes A and B.

This strain measure leads to the expression of the internal energy as

Vint =
1

2

∫
L

εTKε ds (3.43)

where K is the 6×6 stiffness of the beam defined by geometric and material char-

acteristics. Assuming that the beam is initially straight with a Young modulus E,

a cross section area A, a bulk modulus G and cross section moments of inertia I1,

I2 and I3, the stiffness matrix is K = diag(EA,GA,GA,GI1, EI2, EI3). The varia-

tion of this internal energy leads, after some manipulations detailed in [109], to the

expression of the internal resulting forces gint

δVint =

∫
L

δεTKε ds =

∫
L

δhTgint ds (3.44)

The virtual work Vext done by the external forces is defined as

δVext = −
∫
L

δhTgext ds (3.45)

Using Hamilton’s principle and combining Eqs. (3.40), (3.44) and (3.45), one obtains

the dynamic equation of the beam

gine + gint = gext (3.46)

3.5.2 Finite element discretization

In practice, approximation methods such as the FEM are used to find a numerical so-

lution of Eq. (3.46). Such approximation method is based on a spatial discretization

of the system into elements and nodes. The forces in the beam are then expressed

in terms of forces acting on the nodes. Let us assume a beam finite element defined

between two nodes A and B as shown in Fig. 3.9. The interpolated cross section

configuration H(s) is defined using the exponential map (see Eq. (3.7)) as

H(s) = HA expSE(3)(
s

L
d̃) (3.47)
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with H(s)|s=0 = HA and H(s)|s=L = HB. The relative configuration vector d ∈ R6

is defined as

d = logSE(3)(H
−1
A HB) (3.48)

The logarithmic mapping logSE(3)(•) is used to express the relative motion H−1
A HB,

between nodes A and B, as a vector d. In the discrete settings, the deformation

gradient f of Eq. (3.41) is obtained as

f =
d

L
(3.49)

and the strain ε in the beam is then evaluated by comparing the relative con-

figuration vector in the current configuration d and in the reference undeformed

configuration d0

ε =
d− d0

L
(3.50)

In this formulation, one can observe that the strain ε is constant over a beam

element. In order to express the variation δε of the strain as a variation δhAB =[
δhTA δh

T
B

]T ∈ R12 of the cross section configuration at nodes A and B, one can use

the following relation

δε =
1

L
P(H)δhAB (3.51)

where P(H) is a 6×12 matrix expressed as

P(H) =
[
−T−1(−d) T−1(d)

]
(3.52)

From Eq. (3.44), the expression of the internal forces gint acting on the nodes is

therefore

gint = P(H)TK ε(H) (3.53)

assuming the stiffness matrix K is constant over the beam element. An interesting

property of the preceding expression can be pointed out: the internal forces gint only

depend on the relative configuration H−1
A HB and not on the global motion of the

beam. As a consequence, the internal forces benefits from reduced non-linearities.

For the kinetic energy of the beam, one can express the cross section velocity

v(s) using the velocities vAB =
[
vTA vTB

]T ∈ R12 at nodes A and B using

v(s) = Q?(s,H)vAB (3.54)
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where Q?(s,H) is a 6×12 matrix expressed as

Q?(H) =
[
(I6×6 − s

L
T( s

L
d)T−1(d)) s

L
T( s

L
d)T−1(d)

]
(3.55)

and the inertia forces gine in the beam are then

gine = M(H)v̇AB + C(H,vAB)vAB (3.56)

with M and C are 12×12 matrices defined as

M(H) =

∫
L

Q?,TMbQ
? ds (3.57)

C(H,vAB) =

∫
L

Q?,T
(
MbQ̇

? + Q̂?vAB
T
MbQ

?
)
ds (3.58)

in which the dependency on H and s of Q?(s,H) is not explicitly written for the

sake of conciseness. As one can notice, M and C only depend on the relative

configuration H−1
A HB of the beam.

3.5.3 Internal dynamics and discretization artifacts

In this section, the stability of the internal dynamics described in Chapter 2 is briefly

discussed for the present beam formulation. In [76], the continuous case of a Euler

beam with transverse bending is considered. Its input and output are located at its

opposite ends respectively and it is shown that the resulting continuous system is

non-minimum phase. As it will be seen in Chapter 5, the present modeling approach

of beams also leads to a non-minimum phase behavior of systems with mainly bend-

ing strains. The FEM discretization does not affect the stability characteristic of

the system in this case.

However, it is interesting to note one particular case: a beam actuated axially

at one end and with its output at the other end i.e. a bar system with axial defor-

mations. In fact, it is shown in [76] that the continuous case of such bar system is

minimum-phase. It is shown below that, for the discrete FEM case, this bar results

in a non-minimum phase system.

Consider the simple planar two nodes beam system depicted in Fig. 3.10. The

output y = q2 is the axial position of the second node and the input u acts axially

on the first node. As a result, the system is under-actuated and actually behaves

like a bar with only axial strains. From the discrete model presented previously, the
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Figure 3.10: Non-minimum phase under-actuated system with two discrete dofs q1

and q2, connected using a flexible bar element. The system is actuated using one
input u.

two nodes H1 and H2 are described as

H1 =


1 0 0 q1

0 1 0 0

0 0 1 0

0 0 0 1

 ; H2 =


1 0 0 q2

0 1 0 0

0 0 1 0

0 0 0 1

 (3.59)

and the relative configuration between the nodes is

H−1
1 H2 =


1 0 0 q2 − q1

0 1 0 0

0 0 1 0

0 0 0 1

 (3.60)

Considering that the system has cross section A, density ρ, length L and Young

modulus E, the inverse dynamics problem be expressed mathematically using only

q1 and q2 as

m

3
q̈1 +

m

6
q̈2 +

EA

L
(q1 − q2) = u (3.61)

m

6
q̈1 +

m

3
q̈2 −

EA

L
(q1 − q2) = 0 (3.62)

q2 = ypresc(t) (3.63)

with m = ρAL is the mass of the bar. As described in Chapter 2, these equations

govern the internal dynamics of the system and one can therefore be interested in

its stability. Similarly to the developments done in Chapter 2, it can be shown that

the system has two eigenvalues +
√

6EA/mL and −
√

6EA/mL. As a result of the

positive real eigenvalue, this discretized bar system is non-minimum phase. Unlike

the continuous bar case [76], the discretization of the bar introduces an artifact that

alters the stability characteristic of the system.

44



CHAPTER 3. GEOMETRIC MODELING OF FLEXIBLE MANIPULATORS

This artifact appears in the particular case of a bar with axial actuation. The

simulation and experimental cases that are considered in the following chapters

mainly deal with flexible systems in bending. In this work, it is therefore assumed

that the artifact described in this section does not alter the stability behavior of

the systems considered here. The validity of using such discrete FEM approach to

model flexible manipulators is not discussed in this work.

3.6 Dynamics of a MBS

Eventually, one arrives at the description of a MBS which usually involves several

rigid bodies, flexible bodies and kinematic constraints. The dynamics of such system

can be expressed by combining Eq. (3.15), Eq. (3.34-3.35) and Eq. (3.46) which leads

to

ḢI = HI ṽI (3.64)

M(H)v̇ + g(H,v) + B(H)Tλ = Au(t) (3.65)

Φ(H) = 0 (3.66)

where the dependency on the acceleration v̇ is shown explicitly. In this expression, g

includes the complementary inertia forces, external forces and internal forces arising

from flexible components. As control problem are considered in this work, the

term Au(t) represent the actuation efforts in the system as described in Chapter 2.

As shown in the preceding sections, the velocity vector and the deformations are

expressed in the local frame of the body and as a result the internal forces gint

exhibit reduced non-linearities. The use of relative motions to describe the kinematic

constraints Φ also reduces the non-linearities in the latter.

One can note that the above equations are a set of differential algebraic equations

(DAE) on a Lie group. The index of such DAE is 3 [27], i.e. in order to have ordinary

differential equations (ODE), one needs to differentiate the algebraic constraints

Eq. (3.66) three times. In the present formulation, such DAE on a Lie group can be

solved without reducing its index using a generalized-α scheme [23] summarized in

Section 3.7.

3.6.1 Example

To illustrate the construction of the model, an example of a 3 dof spatial serial

manipulator is considered and shown in Fig. 3.11(a). This example is studied later
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(a) Schematic view. (b) Exploded view with nodes.

Figure 3.11: Example of a flexible serial arm with a point mass end-effector.

on in Chapter 5. It is a flexible manipulator composed of two links: the first one,

connected to the base, is rigid while the second, connected to the end-effector, is

flexible. Three actuated revolute joints allow the structure to move in 3D space. To

construct the FEM model, the manipulator is discretized in space using nodes I,

which are shown in the exploded view in Fig. 3.11(b). The position and orientation

of each node I of the finite element mesh is represented as a transformation matrix

HI with a rotation RI ∈ SO(3) and a position pI ∈ R3 (see Eq. (3.13)) with I =

1, · · · , N and N = 10 is the number of nodes of the mesh in this case. Additionally,

the present system has n = 3 revolute joints with transformations HJ,n. Similarly

to Eq. (3.28) for multiple rigid bodies, the nodal configuration H of the complete

system can then be represented as a block diagonal matrix that gathers each nodal

variable and joint transformation

H = diag(H1, · · · ,H10,HJ,1, · · · ,HJ,3) (3.67)

and the velocities v from Eq. (3.29) would be

v =
[
vT1 , · · · ,vT10, α̇J,1, α̇J,2, α̇J,3

]T
(3.68)

3.7 Dynamic simulations and time discretization

Once the MBS is discretized in space, its dynamic behavior can be analyzed during

a given time frame. Eqs. (3.64-3.66) can be integrated in time from given initial

conditions to find a solution for H, v, v̇, λ. This integration process can be done

numerically by a time discretization of the dynamic equations over a finite number

s of time steps. The extension of the classical generalized-α scheme to solve DAE
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on a Lie group [23] with a second-order convergence is summarized here.

The equations of motion in DAE form are written at time step k + 1 as

Hk+1
I = Hk

I exp(Q̃k
I ) (3.69)

Mk+1v̇k+1 + g(Hk+1,vk+1) + Bk+1,Tλk+1 = Auk+1 (3.70)

Φ(Hk+1) = 0 (3.71)

where Q̃ is an incremental configuration that belongs to the Lie algebra of SE(3).

The time integration formulas are used to compute the evolution of the variables for

each time step k,

Qk = hvk + (
1

2
− β)h2ak + βh2ak+1 (3.72)

vk+1 = vk + (1− γ)hak + γhak+1 (3.73)

(1− αm)ak+1 = (1− αf )v̇k+1 + αf v̇
k − αmak (3.74)

where h is the time step size, a is considered as an acceleration-like variable of the

algorithm, αm, αf , β and γ are integration parameters. The latter parameters can

be defined to reach a chosen value of the spectral radius ρ,

αm =
2ρ− 1

ρ+ 1
; αf =

ρ

ρ+ 1
; β =

1

(ρ+ 1)2
; γ =

3− ρ
2(ρ+ 1)

The spectral radius ρ defines whether no numerical damping of the high frequency

content (ρ = 1), maximum numerical damping (ρ = 0) or some numerical damping

is considered ρ ∈ ]0; 1[.

Since the equations of motion are non-linear, an iterative Newton procedure

based on a linearization of the equations is used. For this purpose, one defines the

residual rk of the system as the left hand side of Eq. (3.70). Also, a correction ∆H

of the configurations is defined as

∆Hk+1 = Hk+1∆̃hk (3.75)

and similarly to Eq. (3.11), the tangent operator T is used to write the correction

∆hk as a correction ∆Qk of the incremental configurations, leading to

∆hk = T(Qk)∆Qk (3.76)
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The linearization of Eqs. (3.70-3.71) leads to

drk ·∆hk = KkT∆Qk (3.77)

drk ·∆vk = Ckdvk (3.78)

drk ·∆v̇k = Mkdv̇k (3.79)

drk ·∆λk = Bk,Tdλk (3.80)

dΦk ·∆hk = BkT∆Qk (3.81)

Matrices Kk, Ck and Mk are the tangent stiffness, tangent damping and tangent

mass matrices. From Eqs. (3.72-3.74), the corrections ∆vk and ∆v̇k of the velocities

and acceleration can be written as

∆vk = γ′∆Qk (3.82)

∆v̇k = β′∆Qk (3.83)

with β′ = (1− αm)/(βh2(1− αf )) and γ′ = γ/βh.

At each Newton iteration, the corrections ∆Qk and ∆λk of the incremental

configuration and the Lagrange multipliers are computed by solving

SkT

[
∆Qk

∆λk

]
= −

[
rk,?

Φk,?

]
(3.84)

with rk,? and Φk,? being the residue and constraint evaluated at the current iteration

and the iteration matrix SkT being defined as

SkT =

[
β′Mk + γ′Ck + KkT(Qk) Bk,T

BkT(Qk) 0

]
(3.85)

Hence, at each iteration, some corrections on the configuration ∆Qk, velocities ∆vk,

accelerations ∆v̇k and Lagrange multipliers ∆λk are computed from Eq. (3.84) and

Eqs. (3.82-3.83) which eventually leads to the convergence of the solution for time

step k. This process is summarized in Fig. 3.12. From reference [108], it can be

noted that thanks to the local representation of the velocities and deformations

in the present formulation, some parts of the iteration matrix ST can be assumed

constant during the iteration process. This can strongly reduce the computational

costs of the direct dynamic simulation.

The complete development presented in this chapter is implemented in the
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GECOS (GEometric toolbox for COnstrained mechanical Systems) development

code. Based on the Matlab® environment, this open source code is licensed under

the Apache License, Version 2.0.

Figure 3.12: Iterative algorithm to solve the dynamic problem.
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Chapter 4

Inverse dynamics of flexible

manipulators

As stated in Section 1.1.2, given a prescribed trajectory ypresc, the feedforward

contribution of a robot controller generates reference actuator positions qM,FF and

actuator efforts uFF that ideally lead to a perfect trajectory tracking of the output y.

Such reference inputs can be obtained by solving the inverse dynamics of the system.

In this chapter, the inverse dynamics problem is stated for general flexible MBS

modeled using a geometric FEM approach, as described in the previous chapter. The

stable inversion method based on an optimization problem [4, 5, 6] and adapted to

the SE(3) formulation is then detailed. The present chapter is a central contribution

of this work. To illustrate the methodology, the simple planar under-actuated cart

example from [100] (Fig. 4.1) is considered.

Figure 4.1: Planar under-actuated cart system with 4 rigid bodies and a passive
joint.
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This system is constructed with a rigid cart that can move along a linear axis in

the x direction and a serial under-actuated manipulator mounted on it. The system

is actuated with some input effort u = [u1, u2, u3] acting on the cart and the two

first joints of the manipulator respectively. The passive (non actuated) hinge is a

flexible one with some stiffness k and damping d. The η coordinate describes the

angle of this passive joint: the relative angle between the last two bodies of the

arm. The cart is modeled as a point mass and the under-actuated manipulator is

constructed with three rigid bodies.

4.1 Servo constraint in SE(3)

The servo constraints [14, 15, 99] of the inverse dynamics problem describe how the

prescribed trajectory restricts a part of the system, i.e. the output. In this section,

it is shown how such servo constraint can be expressed using the SE(3) formulation.

The discussion is first limited to the case where the output is part of a single node

A of the system i.e. the overall number of servo constraint is r ≤ 6.

Let us assume that there are rA servo constraints on node A. The output yA and

the prescribed trajectory ypresc,A at node A are therefore vectors ∈ RrA : they belong

to a sub-space of the configurations of the system, i.e. a subgroup of SE(3). As it

is done in Section 3.4 for the kinematic constraints, one can define a 6×rA matrix

AA such that ÃAyA ∈ se(3) and ÃAypresc,A ∈ se(3). Hence, the former is actually

related to the configuration HA(pA,RA) of node A through the exponential map

expSE(3)(•) as

HA = expSE(3)(ÃAyA) ∈ SE(3) (4.1)

Similarly, the prescribed trajectory is mapped to an element Hpresc ∈ SE(3) as

Hpresc(t) = expSE(3)(ÃAypresc,A(t)) (4.2)

and the servo constraint can then be expressed in matrix form as

H−1
prescHA =

[
RT

prescRA RT
presc(pA − ppresc)

0 1

]
= I (4.3)

where ppresc(t) ∈ R3 and Rpresc(t) ∈ SO(3) are interpreted as the position and

orientation component of the prescribed trajectory.

Similarly to Eq. (3.16), the variation of the orientation part of Eq. (4.3) with
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respect to a variation δhA of the configuration of node A is given by

δ(RT
prescRA) = RT

prescδ(RA) = RT
prescRA δ̃hA,R (4.4)

where δhA,R ∈ R3 is the rotation component of δhA. The variation of the translation

part of Eq. (4.3) leads to

δ(RT
presc(pA − ppresc)) = RT

prescδ(pA) = RT
prescRA δhA,p (4.5)

where δhA,p ∈ R3 is the translation component of δhA.

Similarly to Eq. (3.32), the servo constraint on node A in matrix form given by

Eq. (4.3) can be written as m vectorial equations ΨA(HA, t) using the logarithmic

map logSE(3) leading to

ΨA(HA, t) = AT
A logSE(3)(H

−1
prescHA) = 0rA×1 (4.6)

From the variation results above, one can express the variation of the servo

constraints given by Eq. (4.6) as

δ(ΨA) = AT
AD?

A T−1(δhA) δhA (4.7)

where the gradient D?
A is a 6×6 matrix expressed as

D?
A =

[
RT

prescRA 0

0 RT
prescRA

]
(4.8)

The discussion is now generalized to the case where the output is defined as part

of several nodes of the system. Physically, the number of servo constraint defined

on a single node A is still limited to rA ≤ 6. However, assuming that the output

is described over a number i of nodes of the system, the overall number of servo

constraints r = (rA + · · · + ri) can now be greater than 6. The output y ∈ Rr and

the prescribed trajectory ypresc ∈ Rr are then defined as

y =
[
yTA, · · · ,yTi

]T
; ypresc =

[
ypresc,A, · · · ,yTpresc,i

]T
(4.9)
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As a result, the servo constraints are described as a set of r vectorial equations

Ψ(H, t) =


ΨA(HA, t)

...

Ψi(Hi, t)

 = 0r×1 (4.10)

and the complete gradient D of the servo constraints is a r×6i bloc diagonal matrix

and is expressed as

D =


AT
AD?

AT−1(δhA) 0
. . .

0 AT
i D?

iT
−1(δhi)

 (4.11)

It can be noted that the above development is always valid when considering

prescribed trajectory on the x, y and z position of a node. When considering

trajectories on spatial orientations, the above development is valid only if all three

components of the orientation are prescribed.

In the illustrative example of Fig. 4.1, the outputs of the system are y =

[xcart, xeff , yeff ], the x position of the cart and the (x, y) coordinates of the manipu-

lator’s end-effector. From the discussion above, the output is therefore defined on

two nodes of the system. One can then define two mappings Acart and Aeff as

AT
cart =

[
1 0 0 0 0 0

]
; AT

eff =

[
1 0 0 0 0 0

0 1 0 0 0 0

]
(4.12)

and r = rcart + reff = 3. These outputs have to track the prescribed trajectory

ypresc(t) represented in Fig. 4.1 in dotted lines.

4.2 Inverse dynamics problem

Generally speaking, the output y ∈ Rr of a manipulator should follow a prescribed

trajectory ypresc(t) thanks to r control inputs u ∈ Rr acting on its joints. In inverse

dynamics problems, a solution for the unknown inputs u must be found given the

prescribed trajectory ypresc(t). With the present formulation, the inverse dynamics

problem can be formulated mathematically based on the equations of the internal
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dynamics represented by Eqs. (3.64-3.66), recalled hereafter for clarity,

ḢI = HI ṽI (4.13)

M(H)v̇ + g(H,v) + B(H)Tλ = Au (4.14)

Φ(H) = 0 (4.15)

supplemented by the additional servo constraints given by Eq. (4.10)

Ψ(H, t) = 0r×1 (4.16)

As stated in the previous chapter, Eqs. (4.13-4.15) are a set of index 3 DAE on a Lie

group. However, with the additional servo constraints of Eq. (4.16), the complete

equations of the internal dynamics do not always result in a set of DAE of index 3

as it was shown previously in Chapter 2. In the present method, the equation in

DAE form is directly solved without index reduction using the generalized-α scheme

[23] summarized in the previous chapter.

4.2.1 DAE index and linear analysis

The discussions presented in Chapter 2 about the differential index and linear sta-

bility analysis are adapted for the present formulation.

Let us assume that there is no redundant kinematic constraints in the model i.e.

B is full rank. The matrix defined in Eq. (2.7) can now be redefined asM BT −A

B 0 0

D 0 0

 (4.17)

If this matrix is non-singular, the internal dynamics is represented by an index 3

DAE. If this matrix is singular, the index is higher than 3.

To perform the linear stability analysis, Eqs. (4.14-4.16) are now linearized

around an equilibrium point with some increments ∆h, ∆v, ∆v̇, ∆λ and ∆u.

As in Eq. (2.9), this linearized system can be written in the descriptor state space
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form with

M? =


I 0 0 0

0 M 0 0

0 0 0 0

0 0 0 0

 ; F? =


0 I 0 0

−K −C −BT A

B 0 0 0

D 0 0 0

 (4.18)

where D is the linearization of the servo constraints for a finite variation ∆h of the

configurations.

In the nonlinear planar example of Fig. 4.1, when the output of the system is

fixed, the internal dynamics can be described by the states (η, η̇) of the flexible

passive hinge. Analyzing the generalized eigenvalues problem of the linearized sys-

tem, one finds two eigenvalues (Fig. 4.2): a stable one with a negative real part,

located at around −25 rad/s (or 4 Hz), and an unstable one with a positive real

part, located at around 28 rad/s (or 4.5 Hz). Hence one pole of the inverse dynam-

ics transfer function is unstable and the system is said to be non-minimum phase.

Consequently, integrating the inverse dynamics from an initial state would lead to

unbounded inputs and states. Alternatively, stable inversion methods can be used.

One can also note that the index of the DAE is 3 and the relative degree for each

input/output pairs is 2 in this case (as shown in [98]).
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Figure 4.2: Poles of the linearized planar under-actuated cart system.

4.3 Optimization based formulation

Amongst stable inversion methods, the optimization based formulation states the

inverse dynamics problem as a constrained optimization problem where a measure
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of the amplitude of the internal dynamics over the trajectory is minimized [4, 5, 6].

Considering that such a measure can be represented based on an instantaneous func-

tion V (H(t)) depending on the nodal configurations, the constrained optimization

problem is formulated as the minimization of the objective function J , defined as

J =
1

T

∫ tf

ti

V (H(t))dt (4.19)

with the time lap T = tf− ti, subjected to the internal dynamics equations, denoted

by c, defined by Eqs. (4.14-4.16) for t ∈ [ti, tf ].

As mentioned in the introduction, one may observe that no initial and final values

of H and v are needed in this formulation. They are determined by the optimization

algorithm itself. In what follows the details of this formulation combined with the

FEM on SE(3) are exposed.

4.4 Direct transcription method

Continuous optimization problems can usually be solved using either direct or in-

direct methods. Here a direct method is used to solve the optimization problem

numerically. More particularly, the optimization is carried out using a direct tran-

scription method [18] i.e., the time interval is first discretized in s time steps so

that the optimal control problem is reformulated as a discrete non-linear program

(NLP).

4.4.1 Time discretization

Once the continuous problem is discretized into s time steps of size h, the objective

function to be minimized, previously given by Eq. (4.19), can be written as

J =
1

T

s∑
k=1

V (Hk)h (4.20)

and the discrete constraints at each time step k are

Mkv̇k + g(Hk,vk) + Bk,Tλk −Auk = 0 (4.21)

Φ(Hk) = 0 (4.22)

Ψ(Hk) = 0 (4.23)
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Additional time integration constraints are required to connect the discrete nodal

configurations, velocities and accelerations. The Lie group generalized-α time inte-

gration scheme [23] presented previously in Eqs. (3.72-3.74) is used. For each time

step k,

Qk − hvk − (
1

2
− β)h2ak − βh2ak+1 = 0 (4.24)

vk+1 − vk − (1− γ)hak − γhak+1 = 0 (4.25)

(1− αm)ak+1 + αmak − (1− αf )v̇k+1 − αf v̇k = 0 (4.26)

As in Eq. (3.69), the vector Qk,T =
[
Qk,T

1 , ·,Qk,T
N ,Qk,T

J,1 , · · · ,Q
k,T
J,n

]
represents the

incremental motion of each node (and joint) I between two consecutive time steps

k and k + 1 and is related to the configuration of each node (and joint) using

Hk+1
I = Hk

I expSE(3)(Q̃
k
I ) (4.27)

After discretization, the unknown variables of the optimization problem are

(H1,v1, v̇1, a1,λ1,u1, · · · ,Hs,vs, v̇s, as,λs,us)

with Hk = diag(Hk
1, · · · ,Hk

N ,H
k
J,1, · · · ,Hk

J,n) and each Hk
I belongs to SE(3), a non-

linear matrix group. In order to solve this problem using classical techniques, mean-

ing techniques that deal with variables defined on a linear space, a reformulation on

the Lie algebra se(3) based on incremental configuration variables is proposed.

Figure 4.3: Direct transcription method: optimization starting from the initial guess
(Ĥ1, · · · , Ĥs) that leads to the optimal trajectory (H1, · · · ,Hs).
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4.4.2 Incremental formulation of the NLP

In order to formulate the problem in the Lie algebra, an additional assumption is

introduced. For that purpose, an equivalent rigid system is first defined by replacing

every compliant body by a rigid body with the same total mass, rotational inertia

and geometry as in the undeformed configuration. It is assumed that the rigid system

is fully actuated and that, when the output trajectory is specified, the continuous

rigid trajectory, denoted as Ĥ(t), is completely determined. The internal dynamics

of the flexible system is thus interpreted as a purely elastic deviation with respect

to the rigid trajectory. The latter can therefore serve as the initial guess of the

optimization process.

As illustrated in Fig. 4.3, it is proposed to represent the trajectory in terms

of increments with respect to the rigid trajectory. One introduces the vector of

incremental variables qT =
[
qT1 , · · · ,qTN ,qTJ,1, · · · ,qTJ,n

]
which determines the change

between the rigid trajectory Ĥ and the value H at the current iteration of the

optimization process. At time step k, the relation between the configuration Hk

and the incremental variables qk,T is

Hk
I = Ĥk

I expSE(3)(q̃
k
I ) (4.28)

where Ĥk
I represents the discrete configurations at time step k for the initial guess.

As one can see, each incremental vector qI represents a variable q̃I that belongs to

the Lie algebra se(3).

It is important to notice the difference between Eq. (4.27) and Eq. (4.28). The

former relates the nodal configuration of the system at the same iteration but at two

consecutive time steps, i.e. Hk and Hk+1. The latter relates the nodal configuration

of the system before and after optimization at a given time step, i.e. Ĥk and

Hk. The relation between the relevant variables is illustrated in Fig. 4.4. Each

arrow represents an exponential mapping expSE(3)(•) with either time incremental

or iteration incremental arguments, i.e. Qk and qk respectively. The actual design

variables x are thus

x = (q1,v1, v̇1, a1,λ1,u1, · · · ,qs,vs, v̇s, as,λs,us)

The optimization problem has now vectorial design variables and can be solved using

a classical NLP algorithm. As the initial guess is the rigid trajectory, the velocities,

accelerations, Lagrange multipliers and control inputs values are initialized with

the rigid trajectory values. Initially, there is no elastic deformation in the system,
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therefore the initial guess for the incremental variables q is zero.

Figure 4.4: Relation between variables qk, Qk and Hk.

4.4.3 Objective function

Since the motion in the flexible structure is considered as a purely elastic motion

about the rigid configurations, the function V (Hk) in the discrete settings (see

Eq. (4.20)) can be defined either as the strain energy of the system or based on the

strain measures of the finite element model. For example, if the system has a flexible

joint with a relative coordinate αJ and a stiffness k? (as defined in Section 3.4.1),

V (Hk) can simply be defined as

V (Hk) =
1

2
(αkJ − α0

J)2 k? (4.29)

and the gradient of this objective function would be

∂J

∂αJ
=

1

T
(αkJ − α0

J) k? h (4.30)

If a flexible link system is considered and flexibility in the system is modeled thanks

to beam elements, V (Hk) can simply be defined as

V (Hk) =
1

2

nel∑
j=1

Lj ε
k,T
j (Hk)Kjε

k
j (H

k) (4.31)

where nel is the number of beam elements, Lj is the length of the beam element j,

Kj is the beam element stiffness matrix and the strains εkj are defined as in (3.50).
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The gradient of the objective function in this case is

∂J

∂qk
=

1

T

[
nel∑
j=1

Lj ε
k,T
j Kj

∂εkj
∂qk

]
h (4.32)

and the coupling terms in ∂εj/∂q are limited to the pair of nodes A and B connected

by beam elements, which enforces a sparse pattern of the gradient. The derivative

of the strains with respect to the optimization variable q is given by

∂εkj
∂qk

=
[
−T−1(−dk)T(qkA) T−1(dk)T(qkB)

]
(4.33)

where the operators T−1(•) and T(•) are as defined in Eq. (3.11) and result from the

differentiation of the logarithmic map logSE(3)(•) in Eq. (3.48) and the exponential

map expSE(3)(•) in Eq. (4.28).

4.4.4 Constraints gradient

Regarding the optimization constraints c, they will be denoted as cm and cα for

the equation of motion (4.21-4.23) and the time integration equations (4.24-4.26)

respectively. At each time step k, these constraints only involve a subset xk =

(qk,vk, v̇k, ak,λk,uk) of the design variables x. For the equations of motion cm, the

gradient is

∂ckm
∂xk

=

KkT?(qk) Ck Mk 0 Bk,T −A

BkT?(qk) 0 0 0 0 0

DkT?(qk) 0 0 0 0 0

 (4.34)

where Kk and Ck are the tangent stiffness and damping matrix respectively and Dk

is the gradient of the servo constraints. For the time integration equations cα, the

gradient is

∂ckα
∂xk

=

T?(Qk) −hI 0 −(1
2
− β)h2I 0 0

0 −I 0 −(1− γ)hI 0 0

0 0 −αfI αmI 0 0

 (4.35)

and

∂ckα
∂xk+1

=

T?(Qk+1) 0 0 −βh2I 0 0

0 I 0 −γhI 0 0

0 0 −(1− αf )I (1− αm)I 0 0

 (4.36)
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where I is the identity matrix and the matrix T? is a block diagonal matrix contain-

ing the tangent operator T from Eq. (3.11) applied to each incremental configura-

tions qkI (or Qk
I ). Finally, the resulting constraint gradient matrix ∂c/∂x is made up

of these matrices at each time step, stacked on each other to build a block diagonal

sparse matrix

∂c

∂x
=



∂c1m
∂x1 0 . . . 0
∂c1α
∂x1

∂c1α
∂x2

0 ∂c2m
∂x2 ...∂c2α
∂x2

∂c2α
∂x3

...

. . .
∂cs−1
m

∂xs−1 0
∂cs−1
α

∂xs−1
∂cs−1
α

∂xs

0 . . . 0 ∂csm
∂xs


(4.37)

It is important to note that, although the tangent stiffness Kk matrices and

tangent damping Ck matrices are non-linear and should be re-evaluated for the con-

straint gradient at each iteration, the optimization process may still converge if they

are kept constant over the iterations. Indeed, thanks to the local representation com-

ing from the use of the SE(3) formalism, these matrices do not vary much through

the optimization process. Hence, for simple systems, this assumption can lead to

improved computational time. However, in the more complex systems studied here,

using constant Kk and Ck in the constraint gradient leads to more iterations of the

optimization and an increased computational time. In the following examples, the

whole constraint gradient is thus computed at every iteration.

4.4.5 Optimization algorithm

The combination of the FEM formalism and the direct transcription method leads to

a large optimization problem with a high number of design variables and constraints.

However, the problem is sparse as coupling terms in the discrete constraints are

limited to consecutive time steps (see Eq. (4.24-4.26)) and nodes directly connected

in the finite element mesh. Some non-linear optimization solvers, such as KNITRO,

IPOPT and FMINCON, were tested with appropriate options and algorithms to deal

with large scale and sparse problems. Eventually, the interior point algorithm in

the FMINCON solver of Matlab® seemed to perform more efficiently for the present

test cases and was used to solve the inverse dynamics problem. The complete inverse
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dynamics formulation is integrated in the GECOS development code. The tolerance

for the satisfaction of the constraints of the optimization problem were fixed to

tol = 10−6 in order to guarantee that both the servo-constraints and the holonomic

constraints are satisfied with a sufficient level of accuracy by the numerical solution.

For computational efficiency, the gradients of the objective function and the

constraint equations, computed previously, are provided to the solver. The Hes-

sian matrix is computed numerically by the solver using the lbfgs quasi-Newton

approximation.

The optimization algorithm is summarized in Fig. 4.5. Starting from the initial

guess, the optimizer determines an incremental step for the design variables in or-

der to improve the objective function and the constraints. The objective function

and constraints are then evaluated again to check the convergence of the process.

Eventually a bounded solution is found for the flexible system. The present method

is not intended to run in real-time, therefore, in the coming discussions, all the in-

verse dynamics solutions have been computed prior their use as feedforward input

on simulated and experimental manipulators.

4.5 2D under-actuated cart example

The above formulation of the inverse dynamics is now applied to the illustrative

example shown in Fig. 4.1. The parameters of the system are given in Table 4.1.

The inertias I1,2,3 of each body are considered equal in all directions. The smooth

linear trajectory the cart has to follow goes from x = −1 m to x = 1 m. At the

same time, the end-effector must follow a circular arc trajectory with a radius of 1 m

from (xeff , yeff) = (−1,−1.5) to (xeff , yeff) = (1,−1.5) in 1.5 s. As shown in Fig. 4.2,

since the system is non-minimum phase some pre-actuation and post-actuation of

the system can be expected. Therefore, the simulation time is set to last 2 s.

Cart mc = 3 kg

Link 1 m1 = 6.875 kg I1 = 0.5743 kg.m2 l1 = 1 m

Link 2,3
m2,3 = 3.4375 kg I2,3 = 0.0723 kg.m2 l2,3 = 0.5 m

k = 50 N.m/rad d = 0.25 N.m.s/rad

Table 4.1: Parameters of the planar under-actuated cart system.

In the objective function of the optimization, the functional V is defined in the

discrete settings as presented in Eq. (4.29) with αJ = η and the gradient of the

objective function is defined as in Eq. (4.30).
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Figure 4.5: Schematic graph of the optimization algorithm used to solve the inverse
dynamic problem.

The numerical parameters are fixed as in [4]: the time step size of the simulation

is set to 100 Hz and the time frame is discretized into s = 200 time steps. Regarding

the numerical parameters, the spectral radius ρ∞ of the generalized-α method is set

to 0.3 (β = 0.59, γ = 1.04, αm = −0.31 and αf = 0.23). The initial guess is the

motion of the equivalent rigid system, i.e. a system where the passive hinge joint is

locked in its initial position.

4.5.1 Results and discussion

With the tolerance tol = 10−6, the optimization process is completed after 5 itera-

tions and lasts about 2 minutes (using a x64 bits i7-4600u CPU with 16 Gb RAM

memory). The convergence of the coordinate η is shown in Fig. 4.6. The vertical

black lines show when the initial and final times of the output trajectory. One can
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Figure 4.6: Convergence process of the passive hinge coordinate η of the under-
actuated cart system.
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Figure 4.7: Reference input commands u of an under-actuated cart system.

see that at the initial guess (Iteration 0), the flexible joint is indeed locked and no

internal motion of the arm is present. After the third iteration, the optimization

process is already rather close to the final solution (Iteration 5). One also observes

that the flexible joint η starts to move before (after) the cart and the end-effector

start (finish) tracking the trajectory. Some pre- and post- actuation in the system is

therefore present. This can be observed in the reference input commands u shown

in Fig. 4.7. The delay between actuation and output motion is a consequence of the

non-minimum phase behavior of the system.

In order to verify the flexible reference inputs, they were applied to the system

and a direct dynamic analysis was performed. The resulting trajectory of the end-

effector is shown in Fig. 4.8: compared to a control with the rigid reference urigid, the
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flexible reference inputs u allow one to reduce the error on the tracked trajectory.

The relative error at each time step k is calculated using

ek =
‖ypresc − y‖
‖ypresc‖

(4.38)

where ‖•‖ is the classical Euclidean norm or L2 norm. The relative rms error is then

calculated as

erms =

√√√√1

s

s∑
1

(ek)2 (4.39)

When the flexible reference inputs are used, erms = 2 × 10−3 whereas it grows to

erms = 3.2×10−2 when the rigid reference inputs are considered. One can note that

in the former case, the remaining error is only caused by finite numerical tolerances

that are used by the algorithm. For example, if the tolerance is reduced to tol = 10−9,

this error becomes erms = 5× 10−5.

-1 0 1

X [m]

-1

Y
 [m

]

-0.5

-1.5

With u

With u
rigid

Prescribed

Figure 4.8: End-effector trajectory of the under-actuated cart system using inputs
u and urigid.

In Fig. 4.9 the phase plot of the internal dynamics (η, η̇) is shown. In this

figure, the stable manifold ζs and the unstable manifold ζus are also represented.

Following the theoretical results of the stable inversion method [40, 100, 22], the

computed inputs u indeed drive the internal dynamics along the unstable manifold

initially. This dynamics then follows the stable manifold until reaching the end of

the trajectory.

Note As pointed out in the introduction (Section 1.3), direct transcription meth-

ods are more robust and can still converge although a poor initial guess is given.

Indeed, for simple flexible systems such as this planar under-actuated cart, the op-
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Figure 4.9: Phase plot of the internal dynamics η.

timization process is able to converge to a sensible solution even if all the design

variables of the initial guess are zeros. As can be expected though, more iterations

are needed in such cases. A similar observation was done for a one actuated dof

flexible beam system. For more complex test cases, however, the optimization pro-

cess is not able to converge in a reasonable amount of iterations. Therefore, in the

following spatial examples, it is important to provide sensible initial guesses to the

solver.

4.6 Summary

In this chapter, the proposed method to generate a feedforward control input for

general flexible manipulators is presented. First, the servo constraints prescribing

the trajectory of the output are reformulated in the SE(3) matrix Lie group and

the inverse dynamics problem is formulated as a set of DAE on a Lie group. Next,

the stable inversion method is formulated as a constrained optimization problem

formulated on a matrix Lie group. The objective function is defined to give a measure

of the amplitude of the internal dynamics of the flexible system. The constraints

are given by the equations of the inverse dynamics. The complete optimization

problem is then discretized using a direct transcription method leading to a non-

linear program with non-linear design variables defined on SE(3). In order to use

classical optimization tools defined on a linear space, it is proposed to reformulate

the design variables as incremental variables which belong to the Lie algebra se(3).

The method, implemented in the GECOS software is illustrated with a planar under-

actuated system from the literature.
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Chapter 5

Simulation results

The geometric model and inverse dynamics formulations presented in the previous

chapters are now applied for some simulated spatial flexible manipulators. The

present chapter demonstrates how the proposed method is able to solve the inverse

dynamics problem of systems that have various kinematic topologies and various

internal dynamics characteristics. First, manipulators with a serial kinematic topol-

ogy are considered. When varying the parameters of the systems, the solution of the

inverse dynamics problem can be more or less affected by the non-minimum phase

characteristic of the internal dynamics. Then, the application of the present method

to parallel manipulators is discussed. In these cases, the location of the poles of the

inverse dynamics transfer function highly depends on the modeling assumptions of

the links and the parameters of the system.

In the coming simulation examples, all end-effector trajectories are parameterized

using a trajectory profile p(t) defined as a seventh order polynomial (as shown in

Fig. 5.1). In this way, the smoothness of the position, velocity, and acceleration is

assured from the beginning ti to the end tf of the trajectory. The starting value

p(ti) and ending value p(tf ) is case dependent.

Time
0

Time Time

0

Figure 5.1: Trajectory p(t) as a seventh order polynomial.
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5.1 3D serial arm system

The serial 3 dof manipulator first illustrated in Section 3.6.1 and recalled in Fig. 5.2

is now considered [67]. Serial mechanisms are the most widely used topology in

robotic manipulators: a simple chain of bodies connects the end-effector to the base

of the manipulator.

Figure 5.2: Serial 3D arm system with one rigid body and 4 beam elements.

5.1.1 Description of the problem

The system is composed of two links: the first one connects the system to the base

and the second connects the end-effector to the rest of the system. The end-effector

is modeled as a point mass mend at the tip of the system. Both links a have length

l and a tubular square cross section. The first link has a side length a1 and an edge

thickness e1. The second link has a side length a2 and an edge thickness e2. While

the former has a greater cross section, i.e. a1 > a2, and is considered as a rigid

body element, the second link is considered flexible and is modeled using 4 beam

elements. The description of the FEM beam formulation on SE(3) is summarized

in Section 3.5.2. The first link is connected to the base thanks to the first two hinge

joints, controlled using input torques u1 and u2. The second link is connected to

the upper arm through the third hinge joint, controlled using input torque u3. The

outputs of the system are the x, y and z components of the end-effector position

yeff and r = 3. The first hinge joint has its axis along axis z. The second and the

third hinge joints initially have their axis along axis y. In the initial position, each

link makes a π/4 angle with respect to the x axis. The complete model is composed

of 10 nodes, 2 rigid body elements, 4 beam elements and 3 kinematic joint elements

as previously shown in Fig. 3.11(b).

The trajectory ypresc the end-effector has to follow is a planar circular arc of

radius l/2 in the yz plane. The end-effector trajectory is defined using the seventh
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order polynomial p(t) as

x = 2l cos(π/4) = constant

y = l(1 + sin (p(t)))/2

z = l cos (p(t))/2

(5.1)

with p(ti) = −π/2 and p(tf ) = π/2. The trajectory is covered in 1.1 s. The material

parameters and dimensions of the 3D flexible arm can be found in Table 5.1. No

material damping is considered in this case.

First link
l = 1 m a1 = 0.05 m e1 = 0.01 m

ρ = 2700 kg/m3

Second link
l = 1 m a2 = 0.0075 m e2 = 0.0015 m

E = 70 GPa ν = 0.3 ρ = 2700 kg/m3

End-effector mend = 0.1 kg

Table 5.1: Parameters of the serial arm system.

The numerical parameters of the model are set to capture the dynamics of the

system with a bandwidth of 100 Hz: in the initial position, the first seven modes of

the flexible structure are within this frequency. As shown in Fig. 5.3, several poles

of the linearized inverse dynamics problem are also within this bandwidth; the first

unstable pole is located at 13 Hz. Since there are some unstable poles, the system is

non-minimum phase. Computing the matrix of Eq. (4.17), one finds that the index

of the system is 3. The system is discretized into s = 300 steps, leading to a time

step size h of 0.005 s (200 Hz), which is twice the bandwidth and more than ten

times the first unstable frequency. For the generalized-α method, a spectral radius

of ρ∞ = 0 is considered (β = 1, γ = 1.5, αm = −1 and αf = 0) to eliminate higher

frequency content. Since flexibility is described using beam elements, the objective

function and its gradient are defined in the discrete settings as in Eq. (4.31) and

Eq. (4.32).

5.1.2 Results and discussion

As previously, a complete rigid system is considered as initial guess of the optimiza-

tion. The beams of the second link are replaced with a rigid body with the same

geometrical and material properties. The resulting control input is denoted as the

rigid reference input urigid. With the tolerance tol = 10−6, one can see from Fig. 5.4
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Figure 5.3: Poles of the linearized spatial serial arm.
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Figure 5.4: Convergence of the iteration process for the third joint of the serial arm.

that the rigid initial guess, corresponding to Iteration 0, converges to the optimized

solution after 5 iterations. Using a x64 bits i7-4600u CPU with 16 Gb RAM memory,

this process lasts 186 seconds. The command input u from the optimized solution

is called the flexible reference input. The reference inputs u and urigid are compared

in Fig. 5.5. Although the flexible system is non-minimum phase and some visible

differences are observed, pre- and post-actuation in the input commands are of the

order of 10−4Nm and are hardly visible.

In order to verify the flexible reference input u, both inputs u and urigid are

applied to the flexible system and a direct dynamic analysis is performed. These

inputs lead to end-effector trajectories shown in Fig. 5.6. Since the trajectory should

be circular, the radius of these resulting trajectories are shown in Fig. 5.7. One

can observe that the rigid reference input urigid leads to some oscillation of the
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Figure 5.5: Input commands of the flexible 3D serial arm.

end-effector around the nominal circular trajectory. These oscillations are strongly

reduced when flexibility is considered. The relative rms error erms from Eq. (4.39) is

equal to 10−2 when urigid is used as input and drops down to erms = 2× 10−5 when

u is used with tol = 10−6. In the latter case, the remaining error is only caused by

finite numerical tolerances that are used by the algorithm as it was for the planar

under-actuated cart system. For example, if the tolerance is reduced to tol = 10−8,

this error becomes erms = 3.3× 10−7.

0 0.4 0.6 1

Y [m]

0

0.5

Z
 [m

]

With u

With u
rigid

Prescribed

Figure 5.6: End-effector trajectory of the flexible 3D arm using u and urigid.

One can also be interested in the behavior of the internal dynamics of the system.

A measure of this internal dynamics can be associated with the deformation ε of

the arm. It is also important to note that it is assumed that the internal dynamics

is mainly influenced by the lowest pole of the system. Also, the unstable and stable

manifolds are spanned by the unstable eigenvectors ζus and the stable eigenvectors ζs

respectively. However, these eigenvectors are defined in the state space (H,v) of the
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Figure 5.7: Radius of the resulting trajectory compared to the desired trajectory
radius of l/2 = 0.5m.

system. One can express ζus and ζs in the (ε, ε̇) space using Eq. (3.51). In Fig. 5.8,

the dynamics of the deformation measure is considered and represented in the (ε, ε̇)

space for the first beam element of the flexible link. In this figure, the projection

of the first stable and unstable eigenvectors on the (ε, ε̇) plane are also represented.

As expected, it is observed that the dynamics starts in the neighborhood of the first

unstable eigenvector and ends in the neighborhood of the first stable eigenvector.

The slight pre-actuation is a motion on the unstable manifold on which the system

starts. Comparatively, the slight post-actuation is a motion on the stable manifold

on which the system ends. From this example, although the system is minimum-

phase, the system is rather stiff and the amplitude of the internal dynamics remains

limited.
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Figure 5.8: Phase plot of the sixth component of the deformation ε (bending around
local z axis) in the first beam element of the flexible link.
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5.1.3 Alternative architectures

In the first serial example, the system is non-minimum phase and a stable inversion

method is needed to solve the inverse dynamics problem. However, the optimized

inputs were rather close to the initial guess and very little pre- and post-actuation

of the system was needed. Two alternative architectures of the serial manipulator

are now considered. Their impact on the internal dynamics of the structure and the

computed inverse dynamics solution is investigated.

Flexible first link and rigid second link

Previously, the end-effector was directly connected to the flexible component of the

system: the second link. In contrast, in this section, the first link is considered

flexible and the second rigid. There is no difference in the way the present solver

handles the problem. However, it can be noted that in that case, the resulting

inverse dynamics problem has its lowest unstable pole located above the bandwidth

set by the time step size (see Fig 5.9). Therefore, from a numerical point of view,

the system can directly be integrated forward in time if some numerical dissipation

is introduced.
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Figure 5.9: Poles of the serial arm with a flexible first link and a second rigid link.

Rigid first link and very flexible second link

The second link is now designed as a beam with a full rectangular cross section

with one dimension a2 much smaller than the other b2. As a result the bending

deformation can be larger around the vertical z axis. This more flexible configuration

is shown in Fig. 5.10. The first link and the end-effector mass are kept as in Table 5.1.
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The parameters of the more flexible second link are shown in Table 5.2. In this case,

some material damping modeled as a Rayleigh damping with coefficients α and β is

considered in the beams.

Second link

l = 1 m a2 = 0.0015 m b2 = 0.1 m

E = 70 GPa ν = 0.3 ρ = 2700 kg/m3

α = 1× 10−4 β = 1× 10−2

Table 5.2: Parameters of a serial arm system with a more flexible second link.

Figure 5.10: Serial 3D arm system with a more flexible second link.

With this alternative serial manipulator, the system still has unstable real poles

but one can notice in Fig. 5.11 that they are closer to the imaginary axis. This time,

the first pole in the initial configuration is located at 3 Hz.
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Figure 5.11: Poles of the serial arm with a more flexible second link.

The prescribed trajectory is the same as defined by Eqs. (5.1) but it now has to

be tracked in a shorter time of 0.9 s. With the same tolerance tol, the optimization

process in this case needs 14 iterations and 280 s to converge. The flexible reference

inputs u in this case, shown in Fig. 5.12, vary more from the initial rigid guess. Pre-

and post-actuation of the system are now clearly visible. In this case, the unstable
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behavior of the internal dynamics clearly affects the system’s response. One can

see from the phase plot in Fig. 5.13, that the bending deformation around the z

axis starts on the first unstable eigenvector. Eventually it is driven to end on the

first stable eigenvector. The amplitude of the deformation is also larger (ten times)

than in the first serial example. With the rigid reference input urigid, this simulated

very flexible manipulator is not able to track the prescribed trajectory as one can

observe in Fig. 5.14. It is important to point out that although some actuation is

present in the joints, the end-effector does not actually move during the pre- and

post-actuation period.
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Figure 5.12: Input commands of the serial arm with a more flexible second link.
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Figure 5.13: Phase plot of the sixth component of the deformation ε (bending around
local z axis) in the first beam element of the very flexible link.
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Figure 5.14: End-effector trajectory of the very flexible serial arm using u and urigid.

5.2 3D parallel arm system

Parallel manipulators are structures where a closed chain kinematic exist. The end-

effector is connected to the base through several links, leading to a naturally more

stiff structure [75].

5.2.1 Description of the problem

Figure 5.15: Parallel 3D arm system with 3 rigid bodies and 6 beam elements.

The present method is now applied to a manipulator with a closed chain kine-

matics: a 3 dof Delta robot [32]. It is made of an upper plate and a lower plate, both

are equilateral triangles but the upper one has a side length lup whereas the lower

one is smaller and has a side length llow. The point mass end-effector is located at

the center of the lower plate as shown in Fig. 5.15. Three actuated hinge joints are

located at each corner of the upper plate and have their axis parallel to the opposite
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side of the triangle. They are controlled using the input torques u1, u2 and u3. To

control the end-effector, these hinge joints are connected to the lower plate using

three arms. Each one is made of two links, an upper link and a lower link, and has

two passive universal joints to connect them. The upper links are rigid tubes with

a square cross section of dimensions a1 × a1 × l1 and thickness e1. The lower links

are flexible tubes with dimensions a2 × a2 × l2 and thickness e2 and are modeled

using 2 beam finite elements. In the initial configuration, the center of gravity of

each plate is coincident with the z axis and the three upper arms are horizontal.

The initial vertical distance between the upper plate and the end-effector is zinit.

The total mass of the the lower plate and the end-effector is mend. The trajectory

to be followed is a planar circular arc of radius llow in the horizontal xy plane to be

covered in 0.6 s. As for the serial example, the motion profile is constructed using

a seventh order polynomial p(t):

x = llow cos p(t)

y = llow(1 + sin p(t))

z = −zinit = constant

(5.2)

with p(ti) = −π/2 and p(tf ) = π/2.

The geometrical and material parameters of the parallel manipulator are given

in Table 5.3. Again no material damping is considered in this parallel manipulator

case. The bandwidth considered in this simulation is still 100 Hz and at least five

eigenmodes of the flexible structure lay within this bandwidth. When considering

the poles (in the range of interest) of the inverse dynamics problem at the initial

time, one can observe that all are located close to the imaginary axis (see Fig. 5.16)

and that the equilibrium point is not hyperbolic. As a result, nothing can be said

regarding the stability of the internal dynamics [105]. Since the stable inversion

techniques require that the system starts and ends on a hyperbolic equilibrium

point, this example may challenge the limits of such techniques. In this case, the

index of the DAE is 3. The time step size is set to be 0.005 s. For the generalized-α

method, a spectral radius of ρ∞ = 0 is considered (β = 1, γ = 1.5, αm = −1 and

αf = 0). Since flexibility is modeled with flexible beam elements, the objective

function from Eq. (4.31) and its gradient Eq. (4.32) are the same as for the serial

manipulator example.
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Upper and lower plates lup = 0.25 m llow = 0.1 m

Upper links
l1 = 0.25 m a1 = 0.05 m e1 = 0.01 m

ρ = 2700 kg/m3

Lower links
l2 = 0.3884 m a2 = 0.0075 m e1 = 0.0015 m

E = 70 GPa ν = 0.3 ρ = 2700 kg/m3

End-effector zinit = 0.7 m mend = 0.1 kg

Table 5.3: Parameters of the parallel arm system.
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Figure 5.16: Poles of the linearized spatial parallel arm.

5.2.2 Results and discussion

Starting from the initial rigid solution, the optimization is completed after 12 iter-

ations and lasts 89 minutes (5369 s). The resulting torques in the joints are shown

in Fig. 5.17. One can observe a harmonic-like pre- and post-actuation in this case

which is in accordance with the location of the poles close to the imaginary axis

(see Fig. 5.16). As stated in the introduction, if the equilibrium points do not have

hyperbolic behaviors, the duration of pre- and post actuation phases may not be

finite. Indeed, with the present optimization formulation, a solution is found but the

pre- and post-actuation phases seem to be rather long. Again, when the reference

inputs u and urigid are used for in a direct dynamics simulation, the improvements

done on the tracking performance is visible (Fig. 5.18(a)). When the rigid reference

input urigid is used, the radius of the end-effector trajectory tends to drift away

from the nominal radius (Fig. 5.18(b)). Again, this drift can be compensated for

when flexibility is considered. The relative rms error erms drops from 5 × 10−2 to

4× 10−4 when u is used: although the flexible members are actuated harmonically,
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the end-effector tracks the prescribed trajectory.
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Figure 5.17: Joints torques of the flexible parallel 3D arm.
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(a) End-effector trajectory of the flexible
parallel 3D arm using u and urigid.
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(b) Radius of the resulting trajectory compared to the
desired trajectory radius of llow = 0.1m.

Figure 5.18: End-effector trajectory.

One important remark can be done for this parallel manipulator case. Since

the poles of the system are close to the imaginary axis, considering some material

damping in the system, as all real system has, the problem is much easier to solve.

Indeed, if such damping is modeled as a Rayleigh damping in the beam using two

parameters α = 1× 10−4 and β = 1× 10−2, the poles of the system in the range of

interest shift towards the stable left half plane as shown in Fig. 5.19. As a result,

a time integration of the system from an initial condition converges to a bounded

solution and no stable inversion technique is required.
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Figure 5.19: Poles of the linearized spatial parallel arm with Rayleigh damping.

5.2.3 Alternative architecture

In the first configuration of the parallel manipulator, when no material damping is

considered, it is shown that the equilibrium points at the initial (and final) time are

rather harmonic. This resulted in harmonic pre- and post-actuations periods that

tend to be rather large. An alternative parallel architecture is now considered to

illustrate the case of a parallel manipulator with hyperbolic equilibrium points.

Flexible upper links and rigid lower links

Figure 5.20: Parallel 3D arm system with flexible upper links and rigid lower links.

The upper links of the parallel robot, initially considered as rigid bodies, are now

considered as flexible. The stiff tubular members are replaced by slender bodies with

a rectangular cross section with a height b1 much smaller than its width a1. The

lower links are considered as rigid bodies with full square cross sections of side a2.
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The height of the system and end-effector mass are kept the same. A schematic

representation of this second parallel system is shown in Fig. 5.20. The material

properties of the arms are the same as previously and the new geometric parameters

are shown in Table 5.4.

Upper and lower plates lup = 0.2 m llow = 0.2 m

Upper links
l1 = 0.6 m a1 = 0.1 m b1 = 0.0015 m

E = 70 GPa ν = 0.3 ρ = 2700 kg/m3

Lower links l2 = 0.4610 m a2 = 0.01 m ρ = 2700 kg/m3

Table 5.4: Parameters of the parallel arm system with flexible upper links.

The prescribed trajectory is the same as defined in Eq. (5.2) with the new llow

parameter. With this new architecture where the flexible components are directly

connected to the actuated joints, some poles of the system are now located on the

real axis and the system has now some hyperbolic behavior, as shown in Fig. 5.21.

The first pole is located at 9 Hz and is on the real axis. With the same tolerance
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Figure 5.21: Poles of the linearized spatial parallel arm with flexible upper links.

and time step size as previously, the optimization process requires 9 iterations and

lasts 77 minutes (4657 s). Note that the computation time is reduced to 11 minutes

if a time step of 0.01 s is used. The flexible and rigid reference inputs are shown

in Fig. 5.22. This time one can observe that the resulting input no longer oscillates

harmonically as previously. Pre- and post-actuation of the system is also visible in

this case. Again, the system starts on the first unstable eigenvector and ends on the

first stable eigenvector as it is shown in Fig. 5.23.
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Figure 5.22: Joints torques of the parallel arm with flexible upper links.
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Figure 5.23: Phase plot of the fifth component of the deformation ε (bending around
local y axis) in the first beam element of the first upper link.

5.3 Summary

In this chapter, the inverse dynamics solver based on the optimization formulation

is applied to spatial systems modeled using a FEM formulated on SE(3). It is

shown that the optimization method is able to deal with the more complex orienta-

tion representation of spatial problems. With the spatial serial examples, bounded

feedforward inputs can indeed be computed although the flexible systems present

non-minimum phase characteristics. Non-causality in the computed solutions is also

found in the present example, although pre- and post-actuation may be quite small

if the system is rather stiff. In the alternative architecture where the second link

is more flexible, the poles of the system are closer to the imaginary axis and non-

causality of the solution is clearly visible. Parallel manipulators can be treated in
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the same manner using the present formulation. In the parallel examples, without

damping in the flexible members, the poles of the system are close to the imagi-

nary axis and the hyperbolic equilibrium point hypothesis is arguable. Although a

bounded solution is found, the resulting harmonic pre-actuation might not be real-

istic for real experiment since it tends to last for an infinitely long period of time.

Considering the material damping of the system leads to a shift of the system to

a minimum phase behavior. An alternative architecture where the flexible compo-

nents are directly connected to the actuated joint is also investigated for the parallel

case. This resulted in a non-minimum phase parallel system with hyperbolic equi-

librium points at the initial and final time and finite pre- and post-actuation phases

are obtained. These simulation examples all resulted in DAE of index 3.
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Chapter 6

Experimental applications

Usual robotic manipulators found on the market are designed in such a way that

flexible dynamics behavior can be neglected. More recently, however, there has been

an increasing interest for including flexible elements in robotic applications. The

previous chapters demonstrated the potential of the inverse dynamics algorithm in

numerical simulation. The present chapter studies the application of this method

to experimental robotic systems and analyzes the resulting improvements in the

dynamic performances.

6.1 ELLA robot

This first application considers a flexible link robot: the ELLA robot [111]. It is

a 3 actuated dof robot built at the Institute of Robotics of the Johannes Kepler

University Linz, Austria. It is made of two steel flexible links and 3 harmonic drives

that allows 3D space motions (Fig. 6.1(a)). In this study, the desired Cartesian

trajectory of the end-effector is shown in Fig. 6.1(b). The trajectory is roughly a

straight line of about 2 m starting from the lower left side of the robot (positive

y and negative z) and going to the upper right side of the robot (negative y and

positive z). This trajectory has to be completed in 1.15 s. Commands are sent to

each joint every 0.4 ms (frequency of 2.5 KHz) using an industrial computer.

The first link is connected to the robot’s base through the first and second joints

which rotate around the vertical z axis and a horizontal axis respectively. The third

joint, rotating around a horizontal axis parallel to the second joint axis, connects

the first link to the second link of the robot. A 2,1 kg mass is fixed at its end-

effector. The motor torques are transmitted through harmonic drive gears to the

links. Generally speaking, these gears can have internal flexibility and friction.
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Three different models are considered for the inverse dynamics analysis: a FEM

model, a LEM model and a rigid model which are described hereafter.

(a) Picture of the ELLA robot.
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(b) Desired cartesian trajectory of the end-effector.

Figure 6.1: ELLA robot with 3 dofs and 2 flexible links.

(a) Lumped mass model. (b) Flexible beam model.

Figure 6.2: Two different models of the ELLA robot.

6.1.1 Joint friction

As stated in Section 1.2, friction inside a robotic joint can be represented using

different models such as viscous, Coulomb, static and Stribeck models. For harmonic

drives, it is reasonable to consider a combination of the first two models.

• Viscous friction force τv: this component assumes a friction force that is pro-

portional to the joint relative velocity α̇J . Mathematically, it is defined by a

parameter d, equivalent to a viscous damper element and

τv = α̇Jd (6.1)
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• Coulomb friction force τC: the friction force only depends on the sign of the

relative velocity α̇J of the joint. It is assumed that once the joint is in relative

motion, the force is constant. It is expressed as

τC = fCsign(α̇J) (6.2)

where fC > 0 is the maximum Coulomb friction force value.

In the present case, only the viscous friction in the joint is considered for two reasons.

Firstly, the Coulomb friction is not a smooth function and thus result in a jump in

the joint torques when their velocity crosses zero. It seems challenging to capture

these jumps using the proposed inverse dynamics method and to implement such a

nonsmooth control law on a real hardware system. Secondly, in simulation, the effect

of Coulomb friction on the joint reference positions was investigated and appear to

be negligible (order of 1×10−6 rad).

6.1.2 FEM model

In the FEM model, flexibility is only represented in the links and is modeled using

non-linear beam elements as described in Section 3.5.2. The parameters describing

the cross-section geometry and the material elastic properties are defined from the

real manipulator data. The resulting model is depicted in Fig. 6.2(b) and the pa-

rameters are shown in Table 6.1. Each link is discretized into 2 elements, hence 3

nodes, and viscous friction is considered in the joints. As a consequence of the link

flexibility, the resulting model has some internal dynamics. When analyzing the

linear stability of the internal dynamics in the initial (and final) configuration, one

finds that the system in non-minimum phase with the real part of its first unstable

pole located at 24 Hz (see Fig. 6.3). The resulting DAE has index 3.

In order to compute the feedforward inputs, the inverse dynamics problem is

solved using the optimization based approach, with the objective expressed using

Eq. (4.31). The initial guess of the optimization is the inverse dynamics solution

of an equivalent rigid link manipulator. The material damping is modeled as a

Rayleigh damping in the beam through the α and β parameters. These coefficients

have been tuned to fit the experimental behavior.

For the given desired trajectory, the inverse dynamics solution is computed in

280 seconds (10 ms time discretization using a x64 bits i7-4600u CPU with 16 Gb

RAM memory). In order to control the joints at 2.5 KHz, the solution is interpolated

on a refined time grid of 0.4 ms.
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First link
l = 0.9595 m A = 3.01× 10−4 m

Ixx = 5.9× 10−8m4 Iyy = 1.75× 10−8m4 Izz = 2.1× 10−8m4

Second link
l = 0.9340 m A = 2.09× 10−4 m

Ixx = 2.85× 10−8m4 Iyy = 7.5× 10−9m4 Izz = 1.01× 10−8m4

Material
E = 210 GPa ν = 0.3 ρ = 7800 kg/m3

α = 1× 10−4 β = 1.5× 10−2

Visc. friction d1 = 19.5 Nms/rad d2 = 22 Nms/rad d3 = 12.21 Nms/rad

Table 6.1: Parameters of the ELLA FEM model.
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Figure 6.3: Poles of the linearized ELLA arm in its initial configuration with
Rayleigh damping.

One can also be interested in the behavior of the internal dynamics in this case.

Similarly to the serial arm examples of Section 5.1, the fifth component of the

deformation ε of the first beam element (bending around local y axis) is considered

in the (ε5, ε̇5) plane. As previously, the dynamics is driven from the neighborhood

of the first unstable eigenvector to the neighborhood of the first stable eigenvector.

6.1.3 LEM model

An alternative model used to generate the feedforward command is a LEM model

(see Fig. 6.2(a)). This model is explained in detail in reference [111] and is only

summarized here. In this model, links are considered as rigid bodies and the flexible

behavior of the system is taken into account through the 3 virtual spring elements

located at the joints of the robot. The parameters of these elements are identified

from the experimental measurements. For each joint, there is a motor related angle

qM and a link related angle qL, the distinction between these two angles being
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Figure 6.4: Phase plot of the fifth component of the deformation ε (bending around
local y axis) in the first beam element of the ELLA robot.

a consequence of the flexible joint hypothesis. The parameters of the model are

shown in Table 6.2.

First link
l = 0.9595 m m = 2.25 kg

J11 = 5.18× 10−4 kgm2 J22 = J33 = 0.1625 kgm2

Second link
l = 0.9340 m m = 1.42 kg

J11 = 2.18× 10−4 kgm2 J22 = J33 = 0.08374 kgm2

Stiffness k1 = 12 kNm/rad k2 = 13 kNm/rad k3 = 7.5 kNm/rad

Visc. friction d1 = 19.5 Nms/rad d2 = 22 Nms/rad d3 = 12.21 Nms/rad

Table 6.2: Parameters of the ELLA LEM model.

Since the links are considered as rigid, the desired trajectory at the end-effector

can easily be written in terms of the link angle qL,n of each joint n. If these link angles

qL,n are now considered as the new outputs, the system is flat and the feedforward

command for the 3 motor angles qM,n can be computed algebraically at each time

step based on the flatness property of the system. This model, implemented in

Simulink, is used to compute an inverse dynamics solution of the system in real

time for a sampling rate of 2.5 kHz [111].

6.1.4 Rigid model

The rigid model considers rigid links and joints without any elasticity in the trans-

mission chain: the joint angles are equal to the link angles and links are again
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modeled as rigid bodies. Note that viscous friction inside the joints is still consid-

ered here. The solution of the inverse dynamics of this model can be computed in

real time using the flatness based approach.

6.1.5 Comparison of the reference trajectories
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(a) Joint reference trajectories qin.
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(b) Differences between LEM and FEM reference tra-
jectories compared to rigid reference trajectory.

Figure 6.5: Comparison between reference trajectories qin resulting from the flexible
(LEM and FEM) and rigid models.

From the inverse dynamics solution, one can obtain the reference trajectories

qM,FF from the models described above: (1) the FEM model solved using the op-

timization based approach, leading to the FEM reference trajectory, (2) the LEM

model solved using the flatness based approach, leading to the LEM reference tra-

jectory, and (3) the rigid model solved using the flatness based approach, leading to
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Figure 6.6: Computed reference torques uFF from the FEM and rigid models.

the rigid reference trajectory. In Fig. 6.5(a), the three references trajectories qM,FF

are compared. The vertical black lines indicate when the end-effector trajectory

starts and ends. One can observe that these reference trajectories have some slight

differences (see Fig. 6.5(b)) of a few hundredth of a radiant compared to the rigid

reference. Flexibility in the system also leads to an initial correction in the joint

position to compensate for the initial static deflection due to gravity. The inverse

dynamics solution also provides the reference torques uFF. Here, only the reference

torques computed from the FEM and rigid model are shown in Fig. 6.6. Again, only

slight adaptations from the rigid solution are required. Similarly to the first serial

arm example, pre- and post-actuation of the system is hardly visible. Again, it is

observed that the manipulator in this case is rather stiff so that the amplitude of

the internal dynamics is small.

6.1.6 Experimental results

Experimentally, two strategies are tested. The first one only feeds the reference tra-

jectories qM,FF to the system. The second strategy feeds both reference trajectories

qM,FF and reference torques uFF to the system. In both cases, a cascaded linear

PD feedback loop is designed for each joint independently based on motor encoder

signals. In order to evaluate the efficiency of the feedforward inputs, the vibrations

of the robot are measured using two IMUs fixed on the robot arm: one at the end

of the first link and one at the end-effector.
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(a) Measured acceleration resulting from the refer-
ence trajectory qin only.
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(b) Measured acceleration resulting from both the
reference trajectory qin and reference torques uFF.

Figure 6.7: Measured acceleration at the end-effector of the ELLA robot in the local
x direction of the IMU.

Feedforward of the reference trajectories qM,FF alone

The measured accelerations at the end-effector are shown in Fig. 6.7(a) and Fig. 6.8(a)

in the x (along the beam axis) and y (transverse to the beam) directions of the links

respectively. The first rigid curve is the resulting acceleration when the robot is

controlled with the rigid reference trajectory. As can be expected, the amplitude

of the acceleration during the motion is largely reduced when a flexible behavior is

considered. Once the robot reaches its final position, some residual vibrations re-

main in the tip. Again, these residual vibrations are considerably reduced when the

FEM or LEM reference trajectories are used (around 50% of the amplitude in the

y direction). In Fig. 6.8(a), the accelerations reach an upper bound simply because
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(a) Measured acceleration resulting from the refer-
ence trajectory qin only.

10 10.2 11 11.35 12

Time [s]

-10

0

5

20

A
cc

 2
 y

 [m
/s

2
]

Rigid

FEM
FF

LEM
FF

(b) Measured acceleration resulting from both the
reference trajectory qin and reference torques uFF.

Figure 6.8: Measured acceleration at the end-effector of the ELLA robot in the local
y direction of the IMU.

the accelerometer saturates around 20 m/s2. From the observation of these figures,

the FEM and LEM models lead to very similar behavior and tracking accuracy of

the manipulator.

The resulting torques applied on each joint of the system can also be measured.

These are shown for the last two joints in Fig. 6.9(a) and Fig. 6.9(b). In both

cases, the oscillating behavior resulting from the feedback control is visible during

the motion. However, when the flexible reference trajectories are used, the torques

required to drive the system are reduced. For the third joint, the torque almost

remains constant after the end of the trajectory; almost no correction is required

from the feedback.
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(a) Measured torques in the second joint.
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(b) Measured torques in the third joint.

Figure 6.9: Measured torques on the second and third joints of the ELLA robot
resulting from a control with the reference trajectories qin only.

Note For all models, geometric parameters, such as cross sections and length of

the links, were measured on the real manipulator. The cross section and material

parameters, needed for the FEM model, were based on real data and were not cal-

ibrated to fit the experimental response. In contrast, the stiffness and damping

parameters of the flexible joints of the LEM model had to be identified additionally.

This identification process may explain the slight improvement on the end-effector

trajectory resulting from the LEM reference trajectory compared to the FEM refer-

ence trajectory.
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Figure 6.10: Influence of the trajectory tracking time on the post-actuation of the
first joint of the ELLA robot.

Feedforward of the reference trajectories qM,FF and torques uFF

With this second strategy, additional reference torques uFF from the FEM or rigid

model are provided to the controller. The resulting accelerations at the end-effector

in the x and y directions are shown in Fig. 6.7(b) and Fig. 6.8(b) respectively.

One can see that no additional improvements on the vibration are done in this

case. It is assumed that the PD feedback gains may need to be adapted when this

additional feedforward contribution is considered. Also, Coulomb friction effects and

other model discrepancies inside the joints may not be negligible anymore if further

improvement is wanted. In this work, the model of the robot is not developed

further.

6.1.7 Simulation of more aggressive trajectories

As noted in Section 1.1.2, references [40, 100, 5] state that the inversion of non-

minimum phase system leads to non-causal solutions: the system may need to be

actuated before (or after) the prescribed trajectory actually starts (or ends). In the

current application, although the computed inputs lead to a reduction of the flexible

vibration in the system, no pre- or post-actuation of the system is visible when

looking at the reference torques. Similarly to the simulated examples of Section 5.1,

in this case, the system is rather stiff and do not require such non-causal actuations

with the given trajectories. Using the FEM model, more aggressive trajectories are

carried out in simulation. The aim is to see if pre- or post-actuation of the system

would be needed in such cases. The starting and ending point of the end-effector
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trajectory are the same as previously. However, the trajectory should now be tracked

in 0.9, 0.8, 0.7 or 0.6 s as shown in Fig. 6.10. In this figure, the continuous lines

represent the flexible reference torques of the first joint whereas the doted lines are

the rigid reference torques. The vertical lines represent the start (at 0.5 s) and

the end of the tracked trajectory for each tracking time. One can note that as

the trajectory becomes more aggressive i.e. the tracking time decreases, the post

actuation on the joint becomes more noticeable. On the other hand, these more

aggressive trajectories do not lead to noticeable pre-actuation of the system. Similar

observation can be done for the two other joints. To conclude, since pre-actuation is

related to the unstable characteristics of the system, it is assumed that the present

system has its unstable poles far enough not to be excited. These trajectories were

not experimentally tested on the real ELLA robot because they would require more

important actuating torques, that can not be achieved by the motors of the robot.

6.2 Sawyer robot

(a) Sawyer robot
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(b) Desired cartesian trajectory of the end-effector.

Figure 6.11: Sawyer robot with flexible joints and 7 dof.

The Sawyer robot is a 7 dof serial collaborative robot (see Fig. 6.11(a)) built with

serial elastic actuators [93] that include flexure springs. As a result, flexibility of the

joints strongly influence the dynamic response of the arm. Its links are made out

of aluminum and are fairly rigid. The Intera interface is used to control the robot.

This interface, based on the open source Robot Operating System (ROS), allows to

use low level commands of the joints position, velocity and torques at a maximum
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rate of 800 Hz. In the present test case, the prescribed end-effector trajectory that

is considered is shown in Fig. 6.11(b).

6.2.1 Sawyer model

(a) Simplified 3 actuated dof Sawyer
robot.

(b) Schematic model with flexible
joints.

Figure 6.12: Simplified 3 actuated dof Sawyer robot with flexible joints.

For this case study, the Sawyer robot is modeled as a 3 actuated dof serial robot

with rigid links and flexible joints (as represented in Fig. 6.12(a)): joints 3, 5, 6 and

7 remain fixed and only joints 1, 2 and 4 are actuated. For the sake of clarity, the

latter is renumbered as joint 3. This leads to the actuating torques u1, u2 and u3 as

shown in Fig. 6.12(b)). It is important to note that as a consequence of the flexible

joint model, the resulting DAE describing the motion of the system no longer has

index 3, i.e. the matrix defined in Eq. (4.17) becomes singular in this case.

6.2.2 Model identification

First joint k1 = 750 Nm/rad d1 = 10 Nms/rad

Second joint k2 = 1000 Nm/rad d2 = 5 Nms/rad

Third joint k3 = 450 Nm/rad d3 = 1 Nms/rad

Table 6.3: Joint parameters used for the Sawyer arm.

The flexure springs in the serial elastic actuators, which give an intrinsic flexi-

bility to the joints, are modeled using torsional springs with a linear behavior con-

necting two consecutive rigid bodies. Since the stiffnesses ki of spring i are not

provided by the robot manufacturer, they are identified using the torque sensing

capabilities of the robot. The robot arm is commanded to remain in its Gentry pose
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Figure 6.13: Identification of the joints stiffnesses of the Sawyer robot.

(see Fig. 6.11(a)) during the whole identification process. Each joint is twisted man-

ually to generate torsion in the flexure springs. The torque increase on each joint is

then plotted with respect to the displacement of each joint as shown in Figs. 6.13.
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A linear fitting of the data points in the least square sense is then performed to

obtain the linear stiffness coefficient. Looking into the torque-displacement curve

of the third joint, one can notice that some non-linear effects, such as hysteresis

or friction, are also present in the springs. However, those are not considered in

the present identification process. The flexible joint properties are summarized in

Table 6.3. Unlike the spring stiffnesses, viscous friction parameters di of each joint i

and inertia properties of the rigid bodies are defined thanks to the models and CAD

files provided by the robot manufacturer.

6.2.3 Results and discussion

As noted in the introduction (Section 1.1.2), the inverse dynamics of flexible joint

systems do not require the use of stable inversion techniques. However, here the

aim is to show that the proposed approach is general and able to deal with various

types of flexible systems, a flexible joint system in this case. The inverse dynamics

problem is thus also solved using the optimization based approach where the objec-

tive function is expressed using the relative coordinate of each joint as in Eq. (4.29).

The initial guess to start the optimization is the solution of the inverse dynamics

of an equivalent rigid arm i.e., an arm where the flexible joints are locked. The

computation of the inverse dynamics solution takes 4 iterations and lasts around

505 s (10 ms time discretization using a x64 bits i7-4600u CPU with 16 Gb RAM

memory laptop). The solution is interpolated on a finer time grid of 2 ms in order

to control the arm at a reliable rate of 500 Hz.

The joint reference trajectories qM,FF computed with the flexible model are shown

in Fig. 6.14(a) with circular markers. In what follows, it will be referred to as the

flexible reference trajectory. It is compared to the reference trajectory computed

with the rigid model (star markers), referred to as the rigid reference trajectory.

One visible difference is the offset at the beginning of the trajectory which is the

static gravity compensation in the second and third flexible joints. Around 0.5 s,

one can observe that the first joint starts its motion a bit earlier when flexibility is

considered. A similar observation is seen at the end of the trajectory.

These reference trajectories are sent to the robot controller. The actual joint po-

sitions are measured by the internal encoders of the robot and shown in Fig. 6.14(b).

While almost no vibration is observed with the flexible reference trajectory (con-

tinuous line), the use of the rigid reference trajectory leads to residual vibrations

in the second and third joints at the end of the trajectory (at around 2 s). These

vibrations are the result of the feedback action trying to correct the actual joint
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(a) Joint reference trajectories.
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(b) Joint positions measured on the real system.

Figure 6.14: Computed and measured joint inputs.

positions. Looking at the measured joint velocities of each joints (see Fig. 6.15(a)),

such vibrations are even more visible around the end of the tracking. It is also inter-

esting to notice in Fig. 6.15(b) that the efforts required to drive the arm are largely

reduced, in particular for the second joint. As a result, less energy is involved with

the flexible reference trajectories.

For this application, the resulting end-effector trajectory is measured using a

Codamotion optical tracking system (Charnwood Dynamics; Rothley, 62 UK) cap-

turing infrared (IR) signals emitted from active markers. Four CX1 Coda sensor

units (Fig. 6.16(a)) are placed at strategic locations around the robot as shown in

Fig. 6.16(c) (3 sensor unit are visible). This allows a continuous tracking of each

marker at an acquisition frequency of 200 Hz. The Codamotion system can track

the position of each marker down to a 0.1 mm accuracy. The active markers are
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(a) Measured joint velocities.
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(b) Measured joint torques.

Figure 6.15: Measured joint data from the Sawyer robot.

positioned on the robot’s base and end-tool (4 on the basis and 4 on the end-tool)

as shown in Fig. 6.16(b). The end-effector position can then be computed knowing

the geometry of the end-tool.

The measured end-effector position is then plotted in Fig. 6.17. When the rigid

reference trajectory is used, the effective trajectory of the arm is shifted along the

z axis because of gravity which is not compensated in this case. A rather large

deviation from the desired trajectory is observable around y ∈ [0.15; 0.25]. This

corresponds to the end of the trajectory (around 2 s) where the oscillations were

more important. The RMS relative error done on the tracked trajectory is 3, 8×10−2.

One can observe that with the flexible reference trajectory, the effective trajectory

has smaller deviations. The RMS relative error on the tracked trajectory is 2, 4×10−2

in this case. The error could be further reduced by identifying more precisely the
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(a) CX1 Coda sensor unit.

IR active
markers

End
Effector

(b) Active IR markers on Sawyer’s end-effector.

(c) Picture of the setup in the Laboratory of Human Mo-
tion Analysis (LAMH) of the University of Liège.

Figure 6.16: 3D position tracking setup for the Sawyer’s end-effector.

effective inertias and flexible joint parameters of the arm.
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Figure 6.17: Trajectory comparison of the end-effector of the Sawyer robot in the
y − z plane.
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6.3 Summary

In this chapter, the experimental inverse dynamics problem of a flexible link robot

and a flexible joint robot is studied. Regardless of the flexible characteristics, a stable

inversion procedure based on the minimization of the internal dynamics (or elastic

deflection) allows to find a sensible solution to the inverse dynamics problem of the

present robots. When applied experimentally to the manipulators, the resulting

reference trajectories reduce the end-effector oscillations.

Thanks to a LEM model of the ELLA robot, it was possible to make a prelim-

inary comparison between the FEM and LEM reference trajectories. It appeared

that both led to similar reductions in the oscillations of the arm. The LEM model

leads to an algebraic problem which allows the inverse dynamics to be solved in

real time. Therefore, it is quite useful for control purposes. However, the modeling

procedure involves the identification of equivalent spring and damper parameters

to model link flexibility. The generalization of this procedure to more complex 3D

problems may become challenging. On the other hand, the FEM model leads to a

higher dimensional problem which can only be solved off-line. However the model

was constructed only based on material and geometrical properties of the manip-

ulator without any calibration procedure. In the experiments, it is observed that

the internal dynamics is not significantly excited, which explains the good results

obtained using the LEM model. It would be interesting to investigate experimen-

tally more aggressive trajectories where the internal dynamics would play a more

important role and compare the results from both FEM and LEM models.

With the Sawyer robot, it was shown that flexible joint robots could be dealt

with the optimization based solver in the same manner as the flexible link case.

Once the flexible joint parameters were identified, the flexible reference trajectory

allowed to reduce oscillation in the end-effector of the robot. It was verified using

a position tracking system that the error on the tracked trajectory could indeed be

reduced when flexible considerations were taken.
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Chapter 7

Conclusions and perspectives

7.1 Summary

Lightweight and flexible robotic manipulators have a complex dynamic behavior as

the vibrations may disturb the end-effector accuracy. Researches dealing with the

modeling and control of such robotic arms are reported in the literature, especially

for planar and open chain systems. The present thesis proposes a general approach

for the modeling and inverse dynamics analysis of spatial manipulators. It is shown

how the resulting numerical tool can be used to design feedforward controls for

flexible 3D manipulators.

The modeling method is based on a general FEM approach for flexible MBS.

The method relies on a formulation of the kinematics and dynamics of the system in

the SE(3) matrix Lie group where the motion of the system is represented by 4×4

transformation matrices. Thanks to a local frame representation of the velocities

and strains, this formalism leads to reductions in the non-linearity of the equation of

motion of the MBS that undergoes large displacements. Also, it has no restriction

on the serial or parallel kinematic topology of the system.

The inverse dynamics problem is also formulated on the SE(3) group by imposing

servo-constraints. As one is interested to solve the inverse dynamics of systems which

can present a non-minimum phase internal dynamics, the present method relies on a

stable inversion technique. The inverse dynamics problem is stated as a constrained

optimization problem where an objective function is minimized. The equations

of motion and the prescribed trajectory are seen as constraints of the optimization

problem. The resulting inverse dynamics problem is defined as a set of DAE on a Lie

group. In order to use classical optimization tools which are defined for linear design

variables, the non-linear design variables of the present problem are reformulated
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on the linear Lie algebra of the SE(3) group. A direct transcription method is used

to solve the resulting large but sparse NLP. The complete solver is integrated in the

GECOS development code in Matlab® and is validated numerically on some spatial

examples.

The first numerical examples illustrate the ability of the present method to deal

with serial and parallel kinematic flexible systems in a common fashion. The gen-

erality of the approach allows one to solve the inverse dynamics of flexible MBS

regardless of the existence or stability of their internal dynamics. The latter is

strongly affected by geometric and material characteristics of the considered MBS.

When the internal dynamics is unstable, the input drives the dynamics of the sys-

tem from the unstable manifold to the stable manifold. Depending on the prescribed

trajectory and the stiffness of the system, the presence of pre- and post-actuation

can be more or less significant.

The method is then confronted experimentally on two real spatial manipulators.

The first manipulator is the ELLA robot, a three actuated dofs serial manipula-

tor with two elastic links. Two flexible models of the system are built based on

the FEM and LEM respectively. Although, the former captures the non-minimum

phase behavior of the real system, both inverse dynamics solutions lead to a similar

improvement on the end-effector vibrations: up to 50% of reduction in the amplitude

of the vibration in the y direction. The actuating effort in the manipulators was also

reduced thanks to the optimized feedforward action. The second manipulator is a

flexible joint industrial robot, the Sawyer robot. A flexible joint model is built and

torsion stiffness parameters are identified for its joints. Although the system does

not have an internal dynamics, the optimization problem formulation does not need

to be adapted and a solution to the inverse problem is found. Experimentally, the

end-effector position is monitored using an optical tracking system and it is shown

that the relative error on the tracking trajectory decreases by almost 40%.

As a concluding remark, the present methodology can be used for the inverse

dynamics analysis of flexible 3D manipulators. It allows the generation of improved

feedforward inputs that reduce the vibrations inside the system. It is a generic

approach able to find a bounded solution for a large class of systems, including

non-minimum phase systems.

The main contributions of the thesis can be summarized as:

• To show the application of a geometric FEM modeling method to robotic

systems.

• To demonstrate how such geometric approach can be extended to the formu-
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lation of the inverse dynamics problem as a constrained optimization problem.

• To illustrate the impact of the internal dynamics on the inverse dynamics

solution of simple linear and more complex spatial systems.

• To demonstrate the experimental control of flexible spatial manipulators using

the present method.

7.2 Perspectives

Several perspectives and open questions can be discussed at the end of the present

work.

• In the current work, a direct transcription method is used to solve the op-

timization problem. This results in a simple and robust formulation of the

optimization problem. However, this also leads to an increasing dimension of

the problem as the time grid is refined. It was shown in [22] that a shooting

method could allow to refine the time grid of the simulation without increas-

ing too much the optimization dimension. Following the ideas presented in

[4, 13, 19], the adaptation of such shooting methods to solve the inverse dy-

namics of 3D spatial systems could be investigated.

• Up to now, the solver was implemented in Matlab®. This environment simpli-

fies the implementation and validation process of the method for spatial MBS.

As a result, the computation time required to solve the inverse dynamics pre-

vented its integration in a real time controller. The implementation of such

method in a compiled language could improve the numerical performances for

that purpose.

• In flexible MBS analysis, when the dimension of a model is large, model reduc-

tion techniques are often used to reduce computational efforts. The integration

superelement [107] or global modal parameterization (GMP) [25] techniques

in the present geometric model could be investigated to further accelerate the

numerical solver.

• Additionally, in order to approach real time constraints, model predictive

(MPC) scheme could be investigated and the inverse dynamics could be solved

with this optimization method on a reduced moving time horizon.
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• The generality of the FEM approach allows to integrate other elements that

could be useful for the analysis of flexible MBS and their interaction with the

environment. For example, contact elements [20] could be integrated in the

model to investigate elastic deflection resulting from the interaction with a

defined environment. More detailed friction models could also be included.

Feedback control inside the model has not yet been considered inside the op-

timization process. It would also be interesting to investigate the effect of

feedback control in the optimization process.

• The performances of the controller are affected by the accuracy of the robot

model. In order to have a model that better represents the real dynamics of the

manipulator, its parameters can be calibrated and identified experimentally

[61]. In future work, calibration and experimental identification methods for

the modeling parameters could be investigated. The resulting performances

of the solution could be compared for different modeling approaches.

• The interest for soft robotics is growing in the robotics community. The ex-

perimental application of the present method to more flexible or soft robots

could be investigated. The stability of the internal dynamics may have an

impact on the control of such robots, which could be further studied.

• In order to design efficient mechanical systems, structural optimization have

been proposed for example in [114, 115]. These techniques aim at refining

some design parameters in order to improve the performance and/or reduce

the weight of the machine. It turns out that the optimal design is quite sensi-

tive to the loading conditions and reference trajectory. Conversely, the inverse

dynamics problem is also sensitive to the mechanical parameters so that the

structural and control design problem are inherently coupled. In this context,

it would be interesting to formulate a coupled optimization problem, integrat-

ing both the structural and control parameters, and to develop appropriate

solution methods.

• On a more fundamental point of view, one could also investigate more deeply

the impact of spatial discretization techniques for systems with internal dy-

namics. Indeed, in the analysis of the axial vibration of a bar, the minimum

phase or non-minimum phase nature of the system is altered when standard

FEM discretization is used. For applications dominated by axial deflections,

specific discretization schemes [64] for wave propagation could be more appro-

priate.
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Additional mathematical

developments

A.1 Cross derivative and Lie bracket

The cross derivative of an element H of a Lie group is commutative and leads to

δ(Hṽ) = (Hδ̃h)̇ (A.1)

Hδ̃hṽ + Hδ(ṽ) = Hṽδ̃h + H(δ̃h)̇ (A.2)

H
(
δ̃hṽ + δ(ṽ)

)
= H

(
ṽδ̃h + (δ̃h)̇

)
(A.3)

δ(ṽ)− (δ̃h)̇ = ṽδ̃h− δ̃hṽ (A.4)

δ(ṽ)− (δ̃h)̇ =
[
ṽ, δ̃h

]
(A.5)

in which the [•, •] operator is called the Lie bracket and is defined as

[•, •] : g × g → g,
[
ṽ, δ̃h

]
7→ ṽδ̃h− δ̃hṽ (A.6)

A.2 Exponential and logarithmic map

The exponential map expG(•) maps an element Q̃ of the Lie algebra g to an element

of the Lie group G, it is defined as

expG(•) : g → G, Q̃ 7→ expG(Q̃) (A.7)
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Mathematically, it is given by

expG(Q̃) =
∞∑
i=0

Q̃i

i!
(A.8)

The inverse of the exponential map is called the logarithmic map logG(•). It maps

an element H of the Lie group to an element of the Lie algebra and is defined as

logG(•) : G→ g, H 7→ logG(H) (A.9)

and is given by

logG(H) =
∞∑
i=1

(I−H)i

i
(A.10)

The tangent operator is expressed as

T(Q) =
∞∑
i=0

(−1)i
Q̂i

(i+ 1)!
(A.11)

where the •̂ operator is the same as in Eq. (3.6).

A.2.1 Case of the SO(3) group

Let us consider an element R of the special orthogonal group SO(3) and a vector

vR ∈ R3. The latter vector can be mapped to the lie algebra of SO(3) using the •̃
operator as ṽR. The exponential map expSO(3)(•) in the case of the SO(3) group is

given by the Rodrigue’s formula, as

expSO(3)(ṽR) = I3×3 + α(vR)ṽR +
β(vR)

2
ṽ2
R (A.12)

with

α(vR) =
sin(‖vR‖)
‖vR‖

; β(vR) = 2
1− cos(‖vR‖)
‖vR‖2

(A.13)

Notice that α(0) = β(0) = 1. The logarithmic map logSO(3)(•) is given by

logSO(3)(R) =
θ

2 sin(θ)
(R−RT ) (A.14)

with θ = arccos
(

1
2
(trace(R)− 1

)
and −π < θ < π. One can note that in the case

of the SO(3) group, the •̃ operator and the logSO(3)(•) are equivalent.
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One can also define the tangent operators TSO(3)(•) as

TSO(3)(vR) = I3×3 −
β(vR)

2
ṽR +

1− α(vR)

‖vR‖2
ṽ2
R (A.15)

and its inverse as

T−1
SO(3)(vR) = I3×3 +

1

2
ṽR +

1− γ(vR)

‖vR‖2
ṽ2
R (A.16)

with

γ(vR) =
‖vR‖

2
cot(
‖vR‖

2
) (A.17)

It can be noted that for small values of vR, i.e. ‖vR‖ � 1, the tangent operator

TSO(3) ≈ I3×3.

A.2.2 Case of the SE(3) group

One now consider the case of an element H(R,p) of the special Euclidean group

SE(3). A vector v(vR,vp) ∈ R6 can be mapped to the Lie algebra of SE(3) using

the •̃ operator as ṽ. The exponential map expSE(3)(•) in this case is given by

expSE(3)(ṽ) =

expSO(3)(ṽR) TT
SO(3)(vR)vp

01×3 1

 (A.18)

and the logarithmic map logSE(3)(•) is given by

logSE(3)(H) =

 ṽR T−TSO(3)(vR)p

01×3 0

 (A.19)

The tangent operators TSE(3)(•) in the SE(3) group is given by

TSE(3)(v) =

TSO(3)(vR) TpR+(vp,vR)

03×3 TSO(3)(vR)

 (A.20)
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where TpR+(vp,vR) is given by

TpR+(vp,vR) =
−β(vR)

2
ṽp +

1− α(vR)

‖vR‖2
dvp,vRe

+
vTRvp
‖vR‖2

(
(β(vR)− α(vR))ṽR + (

β(vR)

2
− 3(1− α(vR))

‖vR‖2
)ṽ2

R

)
(A.21)

where dvp,vRe = ṽpṽR + ṽRṽp. The inverse of this tangent operator is given by

T−1
SE(3)(v) =

T−1
SO(3)(vR) TpR−(vp,vR)

03×3 T−1
SO(3)(vR)

 (A.22)

where TpR−(vp,vR) is given by

TpR−(vp,vR) =
1

2
ṽp+

1− γ(vR)

‖vR‖2
dvp,vRe+

1/β(vR) + γ(vR)− 2

‖vR‖4
(vTRvp)ṽ

2
R (A.23)

A.3 Double pendulum in minimal coordinates

The development of the equations for the under-actuated double pendulum described

in Fig. 2.5 are given below.

The kinetic energy K of the system is expressed as

K = ml2q̇2
1 +

1

2
ml2q̇2

2 +ml2q̇1q̇2 cos (q1 − q2) (A.24)

and the potential energy V of the spring is

V =
1

2
k(q2 − q1)2 (A.25)

The non-linear equations of motion can be derived from the Lagrangian L =

K − V as
d

dt

(
dL
dq̇i

)
− dL
dqi

= 0 (A.26)
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with each derivation developed as

dL
dq1

= −ml2q̇1q̇2 sin (q1 − q2) + (q2 − q1) (A.27)

dL
dq2

= ml2q̇1q̇2 sin (q1 − q2)− (q2 − q1) (A.28)

dL
dq̇1

= 2ml2q̇1 +ml2q̇2 cos (q1 − q2) (A.29)

dL
dq̇2

= 2ml2q̇2 +ml2q̇1 cos (q1 − q2) (A.30)

d

dt

(
dL
dq̇1

)
= 2ml2q̈1 +ml2 [q̈2 cos (q1 − q2) + q̇2 [sin (q1 − q2)q̇2 − sin (q1 − q2)q̇1]]

(A.31)

d

dt

(
dL
dq̇2

)
= ml2q̈2 +ml2 [q̈1 cos (q1 − q2) + q̇1 [sin (q1 − q2)q̇2 − sin (q1 − q2)q̇1]]

(A.32)

If one only considers an equilibrium around (q1 − q2)� 1, one can approximate

cos (q1 − q2) and sin (q1 − q2) to 1 and 0 respectively and the linearized form of the

equations of motion of this under-actuated pendulum are

2ml2q̈1 +ml2q̈2 − k(q2 − q1) = u (A.33)

ml2q̈1 +ml2q̈2 + k(q2 − q1) = 0 (A.34)

q2 = ypresc(t) (A.35)

As already presented in Chapter 2, the feedforward input torque uFF can be

expressed as

uFF = 3ml2q̈1 + 2ml2ÿpresc (A.36)

where the dynamics of q̈1 still needs to be solved.
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multibody systems using a DAE optimal control approach. In Proceedings of
the ECCOMAS Thematic Conference (Multibody Dynamics), 2011. Brussels,
Belgium.

[6] G. J. Bastos, R. Seifried, and O. Brüls. Inverse dynamics of serial and paral-
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