Stochastic TARgeted (STAR) glycaemic control: improved performances and safety for all

Vincent Uyttendaele^{1,2}, JL Knopp², M Pirotte³, P Morimont³, GM Shaw⁴, T Desaive¹, JG Chase², B Misset³ and B Lambermont³

¹GIGA – In silico Medicine, University of Liège, Belgium; ²Department of Mechanical Engineering, University of Canterbury, New Zealand; ³Department of Intensive Care, University Hospital of Liège, Belgium; ⁴Department of Intensive Care, Christchurch Hospital, New Zealand.

Background & Objectives

- Glycaemic control (GC) targeting normoglycaemic ranges in ICU patients has shown improved outcomes but was proven difficult to achieve safely, increasing risk of hypoglycaemia.
- STAR is a model-based GC protocol with proven safety and performance. It uses a unique riskbased dosing approach accounting for both intra- and inter- patient variability (Figure 1).
- This study compares safety and efficacy of intermediate clinical results of the STAR-Liège trial at the University Hospital of Liège, Belgium, with retrospective data from patients under the standard protocol (SP).

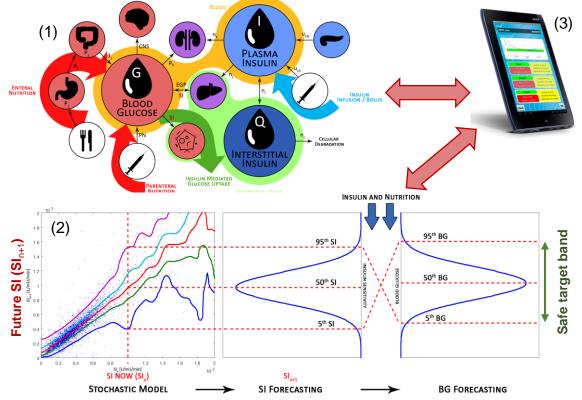


Fig. 1. Current patient-specific insulin sensitivity (SI) is identified using a mathematical model (1). Future SI is forecast using a stochastic model (2) Using distribution of future SI, STAR (3) optimises insulin-nutrition rates to overlap predicted BG outcomes with the safe target band

Methods

Ethics approval was granted by the University Hospital of Liège Ethics Committee for the STAR-Liège clinical trial. STAR-Liège offers 1-3 hourly blood glucose (BG) measurement options.

- Target band:
- Starting criteria:
- Stopping criteria:
- Insulin:

2 BG measurements > 145 mg/dL BG stable for 6h at low insulin rates ($\leq 2U/h$) or 72h after inclusion

80 – 145 mg/dL (100 – 150 mg/dL for SP)

- Max. 9U/h with maximum increment of 2U/h
- Nutrition:
- Decrease to a min. of 30% original goal feed
 - Results
- Clinical results of STAR are compared to retrospective patients (Table 1). Table 1 - Clinical data from 10 STAR patients and 20 retrospective patients. BG is resampled hourly. Results are given as median [IQR].

	STAR	SP
# Patients	10	20
Total hours	455	5006
Average measurements per day	12	7
Cohort BG (mg/dL)	118 [109 129]	139 [117, 160]
Per-patient median insulin rate (U/hr)	3.0 [2.0 4.0]	2.5 [2.0, 3.0]
Per-patient median dextrose rate (g/hr)	7.0 [4.7, 8.2]	9.8 [8.6, 11.5]
Per-patient median dextrose rate (%Goal)	90 [60 100]	/
% BG in 80-145 mg/dL	89	55
% BG in 100-150 mg/dL	84	54
% BG in 145-180 mg/dL	9	31
% BG > 180 mg/dL	2	13
% BG < 80 mg/dL	0.5	1
% BG < 40 mg/dL	0	0

Conclusions

- It is possible to provide safe, and effective control for all patients despite lower intermediate glycaemic target ranges, using model-based, risk-based dosing of insulin and nutrition.
- These results are encouraging, comparable to previous studies, and support STAR's riskbased dosing approach as a robust solution across different ICU settings and usages.