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Abstract— Graph signal processing (GSP) is a novel approach
to analyse multi-dimensional neuroimaging data, constraining
functional measures by structural characteristics in a single
framework (i.e. graph signals). In this approach, functional
time series are assigned to the vertices of the underlying
weighted graph and GSP analysis is performed in each time
point of the signal. Here we used GSP to study local brain
connectivity changes in patients with disorders of consciousness
based on resting state high density electroencephalography
(hdEEG) recordings. Total variation of the graph signals is
a measure of signal smoothness over the underlying graph. In
this study, we constructed the underlying graph based on the
geometrical distances between each electrode pairs in such a
way that local smoothness of the signal can be studied. Total
variation analysis in α-band showed that in the pathological
states of altered consciousness, local short range communication
of brain regions in this frequency band is stronger than in
healthy states which shows that information is segregated in
local regions in patients with disorders of consciousness.

I. INTRODUCTION

After a severe brain injury, 10−15% of the patients enter a
condition called disorders of consciousness (DOC) [1] which
includes states of coma, unresponsive wakefulness syndrome
(UWS) [2], and minimally conscious state (MCS) [3]. While
comatose patients are characterized by complete absence of
wakefulness and awareness, UWS patients show recovery
of wakefulness without signs of awareness and just have
reflexive movements. MCS patients show reproducible non-
reflexive movements but they are unable to communicate.
These patients can be further divided into MCS- and MCS+,
the latter showing signs of language preservation. When
patients recover the ability to communicate and/or use object
functionally, they are considered as having emerged from
the MCS (EMCS) [4]. The gold standard to diagnose these
patients is based on repeated behavioral assessments such
as the Coma Recovery Scale-Revised (CRS-R) [5] in which
different aspects of auditory, visual, motor, oromotor/verbal
functions, communication, and arousal are assessed. How-
ever, it has been shown that relying solely on behavioral as-
sessments can lead to miss covert command following ability
of patients [6]. As a result, different neuroimaging methods
such as functional MRI, positron emission topography, and
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electroencephalography (EEG) have been used to study these
disorders in more depth. Among them, EEG signals can be
easily recorded, have high temporal resolution, and can be
recorded at the bedside which is very important in this cohort
of patients. High density EEG signals have been used so
far to study power spectral changes, connectivity alteration
between different brain regions [7], complexity analysis [8],
and effect of external stimulus on the brain in DOC patients
[9]. In this paper, we used the recently proposed framework
of graph signal processing (GSP) [10] to analyze high density
EEG signals of DOC patients constrained to the structural
network derived from geometrical distances between each
electrode pairs for studying information sharing characteris-
tics and local connectivity changes of patients brain in resting
state.

GSP is a framework to study signals constrained to the
complex and irregular structure, defined by weighted graphs
(directed or undirected) [11]. Different researchers have used
various neuroimaging modalities to construct the underlying
graph and the desired signal to make a graph signal for
analysis. To construct the underlying weighted graph, struc-
tural connectivity can be based on diffusion weighted images
[12], [13], functional connectivity between EEG electrode
pairs [14], functional connectivity between brain parcellated
regions based on the fMRI recordings [15], geometrical
structure of the brain based on the distances between brain
regions [16], or even a combination of functional and struc-
tural connectivity measures [16]. The proper choice for the
underlying graph depends on the research question that one
wants to answer.

In this study, we constructed a weighted graph based on
the geometrical distances between electrode pairs of the high
density EEG electrodes in a way that edges of the near
electrodes have higher weights than the edges between far
electrodes. By analyzing EEG time series constrained to
this geometrical graph, a measure of information segregation
in local regions of the scalp can be calculated. In section
II, the mathematical background and data analysis pipeline
is discussed and in section III, analysis results and their
interpretation based on the designed weighted graph is stated.

II. MATERIALS AND METHODS

A. Subjects and Behavioral Assessment
In this study, 151 patients (36 UWS, 27 MCS-, 65 MCS+,

23 EMCS) and 30 age-matched healthy subjects without
any pathological neurophysiological history were included.
However, subjects with high amount of signal artifact or

978-1-5386-1311-5/19/$31.00 ©2019 IEEE 4549



TABLE I: Demographic Data of Subjects

Group Number Age (years) Gender CRS-R Total Score Etiology∗ Time Since Injury (days)

UWS 23 45 ± 14.04 13 Males 5-9 (Median = 6)
Anoxia (n=14)

TBI (n=4)
Vascular (n=5)

303 ± 1233.3

MCS- 19 41 ± 16.29 11 Males 7-13 (Median = 9)

Anoxia (n=3)
TBI (n=9)

Vascular (n=4)
Mixed (n=3)

465 ± 922.15

MCS+ 42 31 ± 18.24 27 Males 7-23 (Median = 13)

Anoxia (n=8)
TBI (n=25)

Vascular (n=8)
Mixed (n=1)

661.5 ± 1218.8

EMCS 12 32 ± 15.24 9 Male 15-23 (Median = 21.5)
Anoxia (n=2)

TBI (n=7)
Vascular (n=3)

418 ± 1850.7

Healthy 28 42.5 ± 14.53 14 Male - - -
∗TBI: Traumatic Brain Injury, Mixed: TBI + Anoxia

less than 5 minutes of clean signal after preprocessing were
removed from further analysis. At the end, 124 subjects (23
UWS, 19 MCS-, 42 MCS+, 12 EMCS, 28 Healthy) were
remained for analysis. The demographic data of all analyzed
subjects are reported in table I. Repeated CRS-R assessments
by trained clinicians were used for clinical diagnosis of the
patients (minimum five assessments), and the final diagnosis
was based on the best diagnosis obtained across the assess-
ments. All the data were recorded at the University Hospital
of Liege, Belgium, and informed consents were signed by
subjects or their legal representatives and the study was
approved by the local ethics committee.

B. EEG Signal Recording and Preprocessing

High density EEG data were recorded using 256 electrode
EGI setup with 250 Hz sampling rate (or 500 Hz which
further downsampled to 250 Hz) in resting state condition
with eyes open for at least 20 minutes. Data were first
bandpass filtered (1 to 30 Hz) and bad channels were rejected
by visual inspection. Further, signals were segmented into
2 seconds epochs. Epochs with amplitude higher than 100
µV were rejected automatically and after this initial cleaning
the remaining bad epochs were rejected by visual inspec-
tion. Eye blinks, muscle, and ECG artifacts were removed
from the data using independent component analysis. Neural
and non-neural components which contribute in 99% of
the signal variance were checked by visual inspection and
non-neural components were set to zero and clean signal
were reconstructed by remaining neural components. Finally,
bad channels were interpolated using spherical interpolation
and data were re-referenced to the common average of all
electrodes. The first 150 epochs of each subjects (i.e. 5
minutes) were used for further analysis.

C. Graph Signal Processing

Here, we limit our discussion to undirected graphs. Sup-
pose that we have an undirected graph G = {V,E,W}
where V is the finite vertices set with |V | = N , E is the
edges set, and W is the weighting matrix, representing the
weights of the edges. Every edge between nodes i and j

has a weight wij and wij = 0 shows absence of connection
between the two nodes. If we assign each sample of the
signal s = [s0, s1, ..., sN� 1]T to a specific node of the graph
G we would have a graph signal to analyze. Based on this
definition, the derivative of the signal with respect to the
edge e = (i, j) can be defined as:

∂s
∂ei,j

! √
wij |sj − si|. (1)

As a result, the gradient of signal s on the vertex i is defined
as an N dimensional vector:

∆is ! [
∂s

∂ei,j
] for j = 0, 1, ..., N − 1. (2)

L2-norm of the gradient of the signal over node i is a
measure of local variation and local smoothness of the signal
s over that node:

∥∆is∥2 = [
N� 1∑

j=0

wij(sj − si)
2]

1
2 . (3)

Based on this definition, total variation (TV) of the signal
over the entire graph can be introduced as the sum of local
variations:

TV (s) =
N� 1∑

i=0

[
N� 1∑

j=0

wij(sj − si)
2]

1
2 . (4)

Total variation is a measure of smoothness of the signal over
the underlying graph. Lower values of TV shows that nodes
which are connected to each other with high weights have
near values, while higher values of TV show that signal is
not following the underlying graph structure and connected
nodes have dissimilar values. This concept is useful to study
connectivity and information flow of the brain regions based
on different signal modalities (e.g. EEG, fMRI, and PET).

D. Data Analysis Pipeline

The whole pipeline of data analysis is shown in Fig.1.
The underlying graph of the graph signals were constructed
based on the geometrical distances between each electrode
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Fig. 1: Analysis pipeline of the study. (a) Scheme of the 256-electrode EGI (Geodesics) electrode configuration. (b)
Underlying weighted graph, constructed based on the geometrical distances between each pair of the electrodes of EGI
cap using eq.5. (c) Raw EEG signals recorded in the resting state and bandpass filtered in [1 − 30] Hz frequency band.
(d) Epoched EEG signal after preprocessing and α band extraction. t0 is an example signal time point to construct a graph
signal. (e) A sample graph signal which is constructed based on the weighted graph and the signal extracted from each
time point of the EEG recording. Just the 60% strongest edges are shown for visualization purposes. (f) Total variation is
calculated for each time point graph signal of each epoch and their mean is considered as the total variation of the epoch.
Then median value of the epoch total variations is considered as the subject total variation.

pairs (based on the standard EGI 256-electrode location file)
using a Gaussian kernel weighting function:

wij = exp(−d(i, j)2

2ρ2
), (5)

where d(i, j) is the geometrical distance between electrodes
i and j, and ρ is a regularization parameter which deter-
mines the strength of connection for near and far electrode
pairs. With this definition, near vertices (electrodes) are
strongly connected while physically far vertices have weak
connections. However, based on this formula, all the vertices
are connected to each other and the underlying structural
graph is a complete graph. Because the weight of the graph
edges is higher for near electrodes, this graph is suitable for
analysis of signal variation in local areas and short range
communications. Because the weight of far electrode pairs
are nearly zero in our designed weighted graph, we cannot
infer any result about the long range communication of the
brain regions in this framework.

Based on the previous studies, EEG α-band (8-12 Hz)
plays an important role in analysis of DOC patients [7].
For this reason, and the relatively low contribution of
(non)physiological artifacts in this band, we focused on
this frequency band in the current analysis. After signal
cleaning, the α band was extracted from each epoch and
the total variation of the graph signal of each time point was

calculated (as 4). Considering sampling frequency of 250 Hz,
each epoch has 500 time points and so 500 graph signals.
The TV was calculated at each time point and the mean TV
of all 500 graph signals at each epoch was considered as the
TV of the epoch. Finally, median of the TV of all epochs
were reported as the TV of the subject.

E. Statistical Analysis

Any significant difference among groups in terms of age
and time since injury was tested using one-way anova. To
see the difference between TV of different groups pairs,
independent t-test were performed. In addition, a Spearman
correlation test was done to investigate possible relationship
between TV and CRS-R total score.

III. RESULTS AND DISCUSSION

There were no significant difference among patients
groups and healthy subjects in terms of age (F = 1.61,
p = 0.18). In addition, no significant difference was seen
among patients groups in terms of time since injury (F =
0.93, p = 0.43). The bar plot of total variation of the
subjects in each group is shown in Fig.2. As it can be seen
qualitatively, there is an increase in the median value of the
TV with increased level of consciousness. No significant
differences were observed between UWS and MCS- and
between MCS- and EMCS. However, significant differences
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Fig. 2: Bar plot of TV values in α-band for each group of
subjects.(*: p<0.05, **: p<0.01, ***: p<0.001, uncorrected)

were observed between any other group pairs. To study the
relationship between TV of the EEG signal constrained to the
underlying weighted graph and level of consciousness, we
further performed a Spearman correlation analysis between
TV and CRS-R total score. As it can be seen in Fig.3, there is
a significant positive correlation between these two measures
(R2 =0.801, p<0.001).

Based on the Eq. (4), two parameters are important in
calculation of the TV: weight of the edge connecting two
graph nodes to each other (wij) and the squared magnitude
of the difference of values assigned to the related graph nodes
((sj − si)2). If wij ≃ 0, the difference term would not have
important impact on the TV value and so wij(sj −si)2 ≃ 0.
As a result, higher values of the TV shows that wij should
be a strong connection and the difference term of (sj − si)
should have a high value. In this study, the designed weighted
graph is such that near electrodes have strong connection
while far electrodes have very weak connections. As a
result, TV value of each subject is a measure of signal
similarity in neighboring electrodes. Higher values of the
TV shows that signal in local areas are fast varying and
signal values of the neighboring electrodes are dissimilar.
Therefore, this framework is suitable for analyzing local
communications of the brain. Based on our analysis of high
density resting state EEG signals in α-band, it was shown
that as the level of consciousness decreases, the TV value
also decreases, which shows information segregation of the
α-band network in pathological states of consciousness is
higher than normal conditions. These findings are in line
with the results of other studies such as [7] which showed
the α-network has strong local functional connections and
weak long range communication in DOC patients based on
the debiased weighted Phase-Lag Index (dwPLI) connectivity
metric. In addition, previous studies on cortical stimulation

Fig. 3: Correlation between total variation (TV) and CRS-R
total score shows significant linear relationship between TV
and level of consciousness (R2 =0.801, p<0.001).

using transcranial magnetic stimulation combined with EEG
(TMS-EEG) has shown local EEG responses to the stimula-
tion in UWS patients which supports our findings [17], [18].
This shows the clinical advantage of our method that only
uses resting state recordings for this kind of analysis and
there is no need for cortical stimulation. However, because
of the overlap between TV values of different groups, it is
not still appropriate for single subject analysis which is not
the case for TMS-EEG studies.

Future GSP analyses could consider connectivity in the
temporal and spatial domain for the supporting weighted
graph in different frequency bands and with higher number
of patients, to provide a truly multi-modal analysis in DOC
patients. This will include combination of functional or
effective connectivity matrices with the geometrical distance
matrix to have both directed and undirected graphs for
GSP analysis. Also, future studies should consider designing
a suitable graph for long range information flow analysis
(information integration) and combine it with the current
study to make a complete framework for GSP analysis of
the signals.

IV. CONCLUSION

In this study, a framework based on graph signal process-
ing was designed to study local EEG connectivity changes
of patients with disorders of consciousness. Total variation
analysis of the graph signals of the high density EEG record-
ings in the α-band showed lower signal variation constrained
to the underlying structural graph in pathological states of
consciousness which shows information segregation in lower
levels of the consciousness.
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