Université de Liège Faculté des Sciences Département de Géologie Laboratoire de Minéralogie

Les phosphates de fer et de manganèse : comment les étudier, et à quoi peuvent-ils bien servir ?

Prof. Frédéric Hatert

Chênée, le 7 décembre 2018

Plan de l'exposé

- 1. Introduction: triphylite et alluaudite
- 2. Observations de terrain: les pegmatites
- 3. <u>Pétrographie</u>: lames minces, analyses chimiques
- 4. <u>Cristallochimie</u>: structure cristalline
- 5. <u>Synthèse</u>: essais en laboratoire
- 6. <u>Applications</u>: batteries au lithium

Intro. Terrain Pétro. Cristallo. Synthèse Applic.

Fillowite + alluaudite, pegmatite de Kabira, Ouganda

-Pegmatites granitiques-Roches métamorphiques-Météorites

Chladniite, meteorite GRA 95209

Johnsomervilleite, Loch Quoich, Ecosse

Terrain P

Pétro.

Cristallo. Synthèse

Applic.

La pegmatite de Varuträsk

Percy Quensel (1881-1966)

Brian Mason (1917-2009)

Triphylite et lithiophilite

Terrain

Intro.

Séquence d'oxydation de « Quensel-Mason »

La varulite et l'alluaudite

Pétro.

Cristallo.

Terrain

Intro.

Varulite, Na₂Mn₂Fe³⁺(PO₄)₃ Varuträsk, Suède

François II Alluaud (1778-1866) Maire de Limoges et minéralogiste Pegmatite de Chanteloube Alluaudite, NaMnFe³⁺₂(PO₄)₃

Applic.

Synthèse

Augustin-Alexis Damour (1808-1902)

Pétro.

Cristallo.

Intro.

Terrain

Mécanisme d'oxidation

Na₂MnFe²⁺Fe³⁺(PO₄)₃ \implies []NaMnFe³⁺₂(PO₄)₃ Na⁺ + Fe²⁺ \implies [] + Fe³⁺

Origine secondaireOrigine primaire

Applic.

Synthèse

Alluaudite, pegmatite de Kibingo, Rwanda

<u>Missions de terrain</u>

Pétro.

Cristallo.

Terrain

Intro.

Simon Philippo (MHNL) Maxime Baijot (Ulg) Jacques Cassedanne (Rio)

Synthèse

Applic.

Encar Roda-Robles (Bilbao) Miguel Galliski (Mendoza)

Argentine

Cristallo.

Zonation dans les pegmatites

Synthèse

MINERALOGY AND GEOCHEMISTRY OF PHOSPHATES AND SILICATES IN THE SAPUCAIA PEGMATITE, MINAS GERAIS, BRAZIL: GENETIC IMPLICATIONS

Applic.

MAXIME BAIJOT AND FRÉDÉRIC HATERT[§]

Laboratoire de Minéralogie, B18, Université de Liège, B-4000 Liège, Belgium

SIMON PHILIPPO

Section Minéralogie, Musée national d'histoire naturelle, Rue Münster 25, L–2160 Luxembourg, Grand-Duché de Luxembourg

Terrain F

Pétro. Cristallo.

lo. Synthèse

Applic.

<u>Les phosphates Fe-Mn des</u> pegmatites

Pegmatite de Buranga, Rwanda

Pegmatite de Sapucaia, Brésil

De retour au laboratoire....

Pétro.

Cristallo.

Phosphates Fe-Mn

Terrain

Intro.

Synthèse

Pétrographie

Applic.

Phosphates d'aluminium

Lames minces

L'association triphylite + sarcopside

Cristallo.

Intercroissances et inclusions dans les associations graftonite-sarcopside-triphylite

Pétro.

par ANDRÉ-MATHIEU FRANSOLET, Institut de Minéralogie, Université de Liège (¹).

Applic.

Intro.

Terrain

Synthèse

L'association alluaudite + fillowite

Cristallo.

Synthèse

Applic.

Pétro.

Intro.

Terrain

Alluaudite + fillowite, Kabira, Uganda

Terrain

Pétro.

Cristallo.

Synthèse

Applic.

L'association triphylite + alluaudite

PETROGRAPHIC EVIDENCE FOR PRIMARY HAGENDORFITE IN AN UNUSUAL ASSEMBLAGE OF PHOSPHATE MINERALS. **KIBINGO GRANITIC PEGMATITE, RWANDA**

ANDRÉ-MATHIEU FRANSOLET AND FRÉDÉRIC HATERT

Laboratoire de Minéralogie, Département de Géologie, Université de Liège, Bâtiment B18, Sart Tilman, B-4000 Liège, Belgique

FRANCOIS FONTAN

Laboratoire de Minéralogie, Université Paul-Sabatier de Toulouse, 39, Allées Jules-Guesde, F-31000 Toulouse, France

Hagendorfite, alluaudite et hétérosite, Kibingo, Rwanda

Complex assemblages from Sapucaia

Pétro.

Intro.

Terrain

Cristallo.

Synthèse

Applic.

Oxidation de la série triphylite-lithiophilite

Pétro.

Cristallo.

Terrain

Intro.

François Fontan (1942-2007) La ferrisicklérite des pegmatites de Sidi Bou Othmane (Jebilet, Maroc) et le groupe des minéraux à structure de triphylite

Synthèse

Applic.

par François FONTAN *, Paul HUVELIN **, Marcel ORLIAC * et François PERMINGEAT *.

1976

Le processus d'oxidation n'est pas continu!

L'hétérosite peut contenir jusqu'à 0,21 % en poids de Li₂O, et la ferrisicklérite peut contenir seulement 1,31 % en poids de Li₂O

Contenus en Li proches!

Synthèse

Applic.

La série lithiophilite-sicklérite

Echantillon de l'Altaï, Chine

Terrain

à la présence de Mn³⁺

1: Li _{0,93} (Fe ²⁺ _{0,03} Fe ⁻	³⁺ _{0,13} Mn ²⁺ _{0,80})(PO ₄)
2: Li _{0,96} (Fe ²⁺ _{0,08} Fe	³⁺ _{0,08} Mn ²⁺ _{0,81})(PO ₄)
3: Li _{0,88} (Fe ³⁺ _{0,16} Mn	²⁺ _{0,80} ^{1/1n³⁺_{0,01})(PO₄)}
4: Li _{0,82} (Fe ³⁺ _{0,16} Mn	²⁺ _{0,75} ^{1/10³⁺_{0,06})(PO₄)}
5: Li _{0,69} (Fe ³⁺ _{0,16} Mn	²⁺ _{0,62} ^{MID³⁺_{0,19})(PO₄)}

Diffraction des rayons X sur poudres

Pétro.

Cristallo.

Préparation de l'échantillon

Diffractogramme de poudres

Intro.

Terrain

Synthèse

Passeur automatique

Applic.

Diffractomètre de poudres

Terrain Pétro.

Cristallo.

Synthèse

Applic.

Diffraction sur monocristaux

Diffractomètre à 4 cercles

Taches de diffraction

Détermination de la structure

Groupe spatial Pmnb

LIÈGE

a = 6,092 Å b = 10,429 Å c = 4,738 Å

а

Octaèdres rouges: M1 (Li, Na) Octaèdres bleus: M2 (Fe, Mn)

Intro. Synthèse Applic. **Terrain** Pétro. Cristallo. LIÈGE université La karenwebberite, une nouvelle espèce... American Mineralogist, Volume 98, pages 767-772, 2013 Karenwebberite, Na(Fe²⁺,Mn²⁺)PO₄, a new member of the triphylite group from the Malpensata pegmatite, Lecco Province, Italy PIETRO VIGNOLA,¹ FRÉDÉRIC HATERT,^{2,*} ANDRÉ-MATHIEU FRANSOLET,² OLAF MEDENBACH,³ VALERIA DIELLA,¹ AND SERGIO ANDO⁴ NaFe²⁺PO₄ a = 4,882(1), b = 10,387(2), c = 6,091(1) Å**Pbnm**

Karen Louise Webber

Malpensata pegmatite, Italy

Applic.

<u>a zavalíaite aussi!</u>

LIÈGE université

a = 6,088(1) Å

b = 4,814(1) Å

 $\beta = 89,42(3)^{\circ}$

G.S. P2₁/c

c = 10,484(2) Å

ZAVALÍAITE, (Mn²⁺,Fe²⁺,Mg)₃(PO₄)₂, A NEW MEMBER OF THE SARCOPSIDE GROUP FROM THE LA EMPLEADA PEGMATITE, SAN LUIS PROVINCE, ARGENTINA

FRÉDÉRIC HATERT§

Laboratoire de Minéralogie, Département de Géologie, Université de Liège, Bâtiment B18, Sart Tilman, B-4000 Liège, Belgium

ENCARNACIÓN RODA-ROBLES

Departimento de Mineralogía y Petrología, Universidad del País Vasco/EHU, Apdo. 644, E-48080 Bilbao, Spain

Argentine

Florencia Márquez Zavalía

La structure alluaudite

Pétro.

Terrain

Intro.

A(2)': Disphénoèdre déformé
A(1): Cube déformé
M(1): Octaèdre très déformé
M(2): Octaèdre déformé

Applic.

Cristallo.

 $[A(2)A(2)'A(2)''_2][A(1)A(1)'A(1)''2]M(1)M(2)_2(PO_4)_3$

Synthèse

Synthèse Applic.

Cristallochimie des alluaudites

Moore & Ito (1979)

 $\begin{array}{l} A(2)' \Rightarrow \operatorname{Na^{+}}, [], \textup{K^{+}} \\ A(1) \Rightarrow \operatorname{Na^{+}}, \operatorname{Mn^{2+}}, \operatorname{Ca^{2+}}, \bullet \\ M(1) \Rightarrow \operatorname{Mn^{2+}}, \operatorname{Fe^{2+}}, \operatorname{Ca^{2+}}, \operatorname{Mg^{2+}} \\ M(2) \Rightarrow \operatorname{Fe^{3+}}, \operatorname{Fe^{2+}}, \operatorname{Mn^{2+}}, \operatorname{Mg^{2+}}, \operatorname{Li^{+}} \end{array}$

Hatert et al.

Crystal chemistry of the divalent cation in alluaudite-type phosphates: A structural and infrared spectral study of the Na_{1.5}(Mn_{1-x} M_x^{2+})_{1.5}Fe_{1.5}(PO₄)₃ solid solutions (x = 0 to 1, $M^{2+} = Cd^{2+}$, Zn²⁺)

Frédéric Hatert *

Laboratoire de Minéralogie, Université de Liège, Bâtiment B18, B-4000 Liège, Belgium

American Mineralogist, Volume 90, pages 653-662, 2005

Crystal chemistry of the hydrothermally synthesized $Na_2(Mn_{1-x}Fe_x^{2+})_2Fe^{3+}(PO_4)_3$ alluaudite-type solid solution

FRÉDÉRIC HATERT,^{1,2,*} LEILA REBBOUH,³ RAPHAËL P. HERMANN,³ ANDRÉ-MATHIEU FRANSOLET,¹ GARY J. LONG,⁴ AND FERNANDE GRANDJEAN³

Cation	Ionic radius (Á)		Site			
	[VI]	[VIII]	A(2)'	A(1)	<i>M</i> (1)	<i>M</i> (2)
Ag⁺	1.15	1.28	Х	Х		
Na⁺	1.02	1.18	Х	Х	Х	
Cu⁺	0.77	-	р	р		
Li*	0.76	0.92	р	р		
Ca ²⁺	1.00	1.12	р	р	р	
	0.95	1.10		р	Х	р
Mn ²⁺	0.830	0.96	р	р	Х	Х
Fe ²⁺	0.780	0.92			Х	Х
Co ²⁺	0.745	0.90			Х	Х
Zn ²⁺	0.740	0.90			Х	Р
Cu ²⁺	0.73	-		р		
Mg ²⁺	0.720	0.89			Х	Х
In ³⁺	0.800	0.92			р	Х
Fe³⁺	0.645	0.78		р		Х
Ga³⁺	0.620	-				р
Cr ³⁺	0.615	-				р
Al ³⁺	0.535	-				р

X : Complete occupancy of the site

p : Partial occupancy of the site

Terrain F

Pétro.

Cristallo.

Synthèse

Applic.

Synthèses hydrothermales

Laboratoire hydrothermal

Bombe hydrothermale

Synthèse

Applic.

Stabilité de la ferrisicklérite

- Première synthèse hydrothermale de ferrisicklérite
- Très basse température
- Très haute fO₂

La ferrisicklérite est un minéral d'altération de basse température ?

Pétro.

Cristallo.

Synthèse

Intro.

Terrain

Applic.

Contact net entre la triphylite et la ferrisicklérite!

<u>Stabilité de l'association</u> triphylite + sarcopside

Terrain

Pétro.

Cristallo.

Intro.

Applic.

Synthèse

- Diminution du contenu en Li de la triphylite, de 0,72 *a.p.u.f.* à 400°C, à 0,48 *a.p.u.f.* à 600°C
- Augmentation du contenu en Li du sarcopside, de 0,01 *a.p.u.f.* à 400°C, à 0,05 *a.p.u.f.* à 600°C
- 1 seule phase au-dessus de 700°C

<u>Estimation des températures de</u> <u>cristallisation</u>

Pétro.

Cristallo.

Intro.

Terrain

Applic.

LIÈGE

Synthèse

Cañada 35 % sarcopside et 65 % triphylite T ~ 500°C

Tsoabismund 15 % sarcopside et 85 % triphylite T ~ 350°C

The stability of primary alluaudites in granitic pegmatites: an experimental investigation of the Na2(Mn2-2xFe1+2x)(PO4)3 system

Frédéric Hatert · André-Mathieu Fransolet · Walter V. Maresch

• Basse T \Rightarrow alluaudite • Haute T \Rightarrow "Phase X"

• <u>Mn</u> \Rightarrow fillowite [NaMn₄(PO₄)₃]

Pas de maricite [NaFePO₄] dans les pegmatites

> Varulite $Na_2Mn_2Fe^{3+}(PO_4)_3$ 350-400°C

Hagendorfite $Na_2MnFe^{2+}Fe^{3+}(PO_4)_3$ 450-500°C

Ferrohagendorfite $Na_{2}Fe^{2+}{}_{2}Fe^{3+}(PO_{4})_{3}$ 550-600°C

<u>Stabilité de l'association</u> triphylite + alluaudite

Terrain

Intro.

Pétro.

Cristallo.

Applic.

Synthèse

Pas de maricite dans les pegmatites

L'association alluaudite + triphylite est stable endessous de 500-600°C

Bu = Buranga, Rwanda Ha = Hagendorf-Süd, Allemagne Ki = Kibingo, Rwanda Cristallo.

Synthèse Applic.

Applications: Batteries au lithium

Pétro.

Intro.

Terrain

	Layered struct.		Spinel	Triphylite	
	LiCoO ₂	LiNiCoO ₂	LiMn ₂ O ₄	LiFePO ₄	
Capacity (mAh/g)	140-150	170-180	110-120	160-170	
Potentiel (V)	3,9	3,8	4,0	3,4	
Resistance to cycling	Poor	Poor	+/-	Good	
Exchange speed	Good	Good	Good	Good	
Electrode density	Good	+/-	+/-	Poor	
Security	+/-	?	Good	Good	
Cost of chemicals	High	+/-	Low	Low	
Cost of synthesis	Low	High	+/-	Low	
Abundance	Low	+/-	High	High	
Toxicity	?	?	Low	Verylow	

Terrain Pétro.

Cristallo.

LiFe²⁺(PO₄) comme matériau

Synthèse Applic.

LIÈGE université

<u>de cathode</u>

Propriétés électrochimiques démontrées par Padhi et al. (1997)

Intercalation – extraction de Li

Pétro.

Cristallo.

Synthèse

Applic.

Hétérosite, Fe³⁺(PO₄)

Intro.

Terrain

Triphylite, LiFe²⁺(PO₄)

Mécanisme d'oxydation naturelle observé par Quensel (1937) et Mason (1941)

Principe des batteries au lithium

Cristallo.

Synthèse

Applic.

Pétro.

Intro.

Terrain

nature

Vol 458 12 March 2009 doi:10.1038/nature07853

LETTERS

Terrain

Battery materials for ultrafast charging and discharging

Byoungwoo Kang¹ & Gerbrand Ceder¹

The storage of electrical energy at high charge and discharge rate is an important technology in today's society, and can enable hybrid and plug-in hybrid electric vehicles and provide back-up for wind and solar energy. It is typically believed that in electrochemical systems very high power rates can only be achieved with supercapacitors, which trade high power for low energy density as they only store energy by surface adsorption reactions of charged species on an electrode material^{1–3}. Here we show that batteries^{4,5} which obtain high energy density by storing charge in the bulk of a material can also achieve ultrahigh discharge rates, comparable to those of supercapacitors. We realize this in LiFePO₄ (ref. 6), a material with high lithium bulk mobility^{7,8}, by creating a fast ion-conducting surface phase through controlled off-stoichiometry. A rate capability equivalent to full battery discharge in 10–20 s can be achieved.

Intro. Terrain Pétro. Cristallo. Synthèse Applic. Production de batteries à base de LiFePO₄

Voitures
Vélos électriques
Ordinateurs portables
Stockage d'énergie

Etude électrochimique d'alluaudites

Cristallo.

Pétro.

Terrain

Intro.

Na_{2.25}Fe³⁺_{2.25}(PO₄)₃

Applic.

Synthèse

Résultats très prometteurs!

Conclusion

La Minéralogie des phosphates n'a pas encore dit son dernier mot.....

Namibie, 2015