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SpaceX’s self-landing boosters require position and orientation estimation.
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Kalman filtergyroscope orientation estimate

accelerometer

magnetometer

■ An inertial measurement unit (IMU) is a sensor that features a three-axis accelerometer, a

three-axis gyroscope, and possibly other sensors. While inertial sensors can also be used to

obtain a position estimation, we direct our interest to its use to obtain an orientation estimation.

■ A gyroscope measures angular velocity, that is, the rate of change of orientation. Gyroscope

measurement data can be integrated with respect to time to obtain an orientation estimate.

While estimates thus obtained are accurate on short time scales, they loose accuracy over time due

to observational noise and possibly drift.

■ To overcome this issue and improve accuracy, orientation information from gyroscopes is combined

with information from other sensors =⇒ sensor fusion.
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Sensor fusion is relevant to many other present-day engineering problems, e.g., autonomous driving.
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■ We will be meeting in room B37 S39 from 10h00 to 12h00 at the following dates:

1 2 3 4 5 6 7

10/03 17/03 24/03 31/3 21/04 28/04 05/05

lecture Q&A Q&A Q&A Q&A Q&A Q&A

■ Your presence is strongly recommended for the lecture:

◆ Tuesday March 10, 10h30–12h30.

■ If you should need some help, please attend the Q&A sessions or contact C. Laruelle, P. Alarcón, or

M. Arnst by email to ask a question by email or schedule an appointment.

■ Please work in groups of 3 people (groups of less than 2 or more than 3 people not permitted).

■ The report must be sent in PDF format by email to M. Arnst before/on Tuesday May 5 at 22h00.
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■ One report per group is required. The group is responsible for ensuring that work is fairly distributed

among group members and that a high-quality report is written.

■ The report must be neat, well organized, and professionally presented. All graphs must be

computer plots. Label all graph axes and include proper units.

■ Please include a list of all the references that you will have consulted.

■ Length of 15 to 30 pages (including figs. and list of refs., single spacing, font size of 12 pt).

■ The report must be sent in PDF format by email to M. Arnst before/on Tuesday May 5 at 22h00.

◆ Please attach to your email (a) file(s) with any code that you will have written.

◆ Please attach to your email a document that states how the work was distributed among group

members. For each exercise, state which group member(s) worked on the equations (if any),

the coding (if any), the analysis of the results (if any), and the writing. Each group member must

sign this document, and it is a scan or a photo of this signed document that must be sent.
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Bad figure. Good figure.
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■ Maarten Arnst

Professeur

Aérospatiale et Mécanique

Office: B52 0/419

Email: maarten.arnst@uliege.be

■ Cédric Laruelle

Chercheur

Aérospatiale et Mécanique

Office: B52 +2/541

Email: cedric.laruelle@uliege.be

■ Pablo Alarcón

Chercheur

Aérospatiale et Mécanique

Office: B52 0/512

Email: palarcon@uliege.be
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■ Plan.
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■ Orientation estimation.

■ Assignment.
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■ Filtering involves combining two sources of information:

◆ a model of the time-dependent physical or engineered system under study,

◆ a sequence of observations of that system.

The goal is to deduce from these two sources of information estimates of the state of the system

that are more accurate than those based on a single source of information alone.

■ There can be sources of inaccuracy in the model and the observations, for example, due to

observational noise. As a result, the estimates of the state can be uncertain.

■ Stochastic methods for filtering seek to take into account such sources of inaccuracy in the

model and the observations and to quantify the uncertainty in the estimates of the state. Stochastic

methods for filtering use the probability theory, namely, stochastic processes.

■ The Kalman filter is a stochastic method for filtering in which a linear model and Gaussian

probability distributions are used.
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■ In the Kalman filter, the system is assumed to evolve in discrete time steps

t0 < t1 < . . . < tk < . . .

■ The state xk−1 at time tk−1 is assumed to evolve into the state xk at time tk according to

xk = F k(xk−1) + ξk,

a linear model in which

◆ F k is the state transition model,

◆ ξk is the process noise, a random variable with mean 0 and covariance matrix Qk.

■ At time tk, an observable yk is assumed to be related to the state xk according to

yk = Hk(xk) + ηk,

a linear model in which

◆ Hk is the observation model,

◆ ηk is the observation noise, a random variable with mean 0 and covariance matrix Rk.

■ All noise random variables are assumed to be mutually independent.
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State

Probability density

x̂k|k

Ck|k

■ The state at time tk is represented by a Gaussian probability density function (PDF) with mean

vector x̂k|k (best estimate) and covariance matrix Ck|k (quantification of uncertainty):

N (x̂k|k,Ck|k).

■ In the Kalman filter, x̂k|k and Ck|k at time tk are deduced from x̂k−1|k−1 and Ck−1|k−1 at

time tk−1 and the observation yk in two steps.
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State

Probability density

x̂k−1|k−1

Ck−1|k−1

■ Step 1 (prediction step): The Gaussian PDF representing the state at time tk−1 is mapped

through the state transition model and the observation model to obtain a Gaussian PDF

representing a joint prediction of the state and the observable at time tk:

blanc

N
([

x̂k|k−1

Hk(x̂k|k−1)

]

,

[

Ck|k−1 Ck|k−1H
T
k

HkCk|k−1 HkCk|k−1H
T
k +Rk

])

with

{

x̂k|k−1 = F k(x̂k−1|k−1),

Ck|k−1 = F kCk−1|k−1F
T
k +Qk.
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State

yObservabley
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blanc
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x̂k|k−1

Hk(x̂k|k−1)
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Ck|k−1 Ck|k−1H
T
k

HkCk|k−1 HkCk|k−1H
T
k +Rk
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with
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State

yObservabley

x̂k|k−1

Hk(x̂k|k−1)

yk

■ Step 2 (correction step): The estimate x̂k|k−1 is updated to obtain the estimate x̂k|k with

covariance matrix Ck|k by conditioning on the observation yk:

N (x̂k|k,Ck|k) = N
(

x̂k|k−1+Ck|k−1H
T
k S

−1
k

(

yk−Hk(x̂k|k−1)
)

,Ck|k−1−Ck|k−1H
T
k S

−1
k

HkCk|k−1

)

,

in which Sk = HkCk|k−1H
T
k +Rk.
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■ Thus, by putting things together, the Kalman filter can be expressed as follows:

◆ Inititialization:

(x̂0|0,C0|0) = (m0,Q0).

◆ For k = 1, 2, . . .:

■ Step 1 (prediction step):

x̂k|k−1 = F k(x̂k−1|k−1),

Ck|k−1 = F kCk−1|k−1F
T
k +Qk.

■ Step 2 (correction step):

x̂k|k = x̂k|k−1 +Ck|k−1H
T
kS

−1

k

(
yk −Hk(x̂k|k−1)

)
,

Ck|k = Ck|k−1 −Ck|k−1H
T
kS

−1

k HkCk|k−1,

in which

Sk = HkCk|k−1H
T
k +Rk.
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■ The previous equations follow from fundamental results from linear algebra and probability theory,

notably, fundamental results about affine transformations and conditioning of random variables.

■ An affine transformation v = A(u) + b of a random variable U with mean vector u and covar-

iance matrix CU is a random variable V with mean vector v and covariance matrix CV with

v = E{V } = {A(U) + b} = A(E{U}) + b = A(u) + b,

CV = E{(V − v)(V − v)T} = AE{(U − u)(U − u)T}AT = ACUAT.

■ An affine transformation of a Gaussian random variable is a Gaussian transformation.

■ Let U be a Gaussian random variable with mean vector u and covariance matrix C so that U , u,

and C can be decomposed in block form as follows

U =

[
U1

U2

]
, u =

[
u1

u2

]
, C =

[
C11 CT

21

C21 C22

]
;

thus, U is distributed according to N (u,C), which can be written in block form as follows:
[
U1

U2

]
∼ N

([
u1

u2

]
,

[
C11 CT

21

C21 C22

])
.

Then, the conditional probability distribution of U1 given U2 = u2 is given by

(U1|U2 = u2) ∼ N
(
u1 +CT

21C
−1
22 (u2 − u2),C11 −CT

21C
−1
22 C21

)
.
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■ Inverse of a blocked square matrix with symmetric diagonal blocks:

[
A BT

B C

]−1

=

[
(A−BTC−1B)−1 (−(C −BA−1BT)−1BA−1)T

−(C −BA−1BT)−1BA−1 (C −BA−1BT)−1

]
.

■ Factorization of a blocked square matrix:
[
A BT

B C

]
=

[
I BTC−1

0 I

] [
A−BTC−1B 0

0 C

] [
I 0

C−1B I

]
,

in which I is the (appropriately sized) identity matrix.

■ Determinant of a blocked square matrix:

det

[
A BT

B C

]
= det(C) det(A−BTC−1B).

■ Matrix identity:

A−1BT(C −BA−1BT)−1 = (A−BTC−1B)−1BTC−1;

indeed,

(A−BTC−1B)A−1BT = BTC−1(C −BA−1BT)

BT −BTC−1BA−1BT !
= BT −BTC−1BA−1BT.
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■ The aforementioned fundamental result about conditioning of random variables follows from the
aforementioned fundamental results from linear algebra:

ρU1|U2
(u1|u2) =

ρ(U1,U2)(u1,u2)

ρU2
(u2)

=

1√√√√(2π)n1+n2 det

[
C11 CT

21
C21 C22

] exp

(

− 1
2

([

u1

u2

]

−
[

u1

u2

])T[
C11 CT

21
C21 C22

]−1([
u1

u2

]

−
[

u1

u2

])

)

1√
(2π)n2 det(C22)

exp
(

− 1
2
(u2 − u2)TC

−1
22 (u2 − u2)

)

=
1

√

(2π)n1det(C11 −CT
21C

−1
22 C21)

exp

(

− 1

2

(

u1 − u1 −CT
21C

−1
22 (u2 − u2)

)T

(C11 −CT
21C

−1
22 C21)

−1
(

u1 − u1 −CT
21C

−1
22 (u2 − u2)

)

)

;

Indeed, with the aforementioned matrix identity:

(u1−u1)
T(C11−CT

21C
−1
22 C21)

−1(u1−u1)

−2(u1−u1)
T
(

(C22−C21C
−1
11 CT

21)
−1C21C

−1
11

)T
(u2−u2)

+ (u2−u2)
T(C22−C21C

−1
11 CT

21)
−1(u2−u2)

− (u2−u2)
TC−1

22 (u2−u2)

=
(

u1 − u1 −CT
21C

−1
22 (u2 − u2)

)T
(C11 −CT

21C
−1
22 C21)

−1
(

u1 − u1 −CT
21C

−1
22 (u2 − u2)

)

.
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Quaternions

Not all the material to follow is required to work on the assignment for this project. However, if you are interested in knowing

where the equations to be used come from, you will find that insight in the following. Also, bringing the material together in a

coherent manner was needed because different references from the literature use different conventions, such as directions in

which orientations are considered positive. Be mindful of such different conventions if you consult references yourself.
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■ Let us consider the m-dimensional Euclidean vector space R
m.

■ For two vectors a and b in R
m, the (Euclidean) inner product is the scalar denoted by a · b.

■ We denote by {i1, . . . , im} an orthonormal basis for Rm, that is, a basis such that ik · iℓ = δkℓ,

1 ≤ k, ℓ ≤ m, where δkℓ is the Kronecker delta equal to 1 if k = ℓ and 0 otherwise.

■ Given an orthonormal basis {i1, . . . , im} for Rm, we have that any vector a in R
m can be

represented by a column matrix 

a1
...

am




of its components ak such that a =
∑m

k=1
akik with ak = a · ik, 1 ≤ k ≤ m.

■ For two vectors a and b, the inner product a · b is the scalar a · b =
∑m

k=1
akbk.

■ If m = 3, for two vectors a and b in R
3, the vector product a× b is the vector a× b in R

3 such

that a× b = (a2b3 − a3b2)i1 + (a3b1 − a1b3)i2 + (a1b2 − a2b1)i3.

■ If m = 3, for three vectors a, b, and c in R
3, we have the vector triple product identity:

a× (b× c) = (a · c)b− (a · b)c.
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■ A linear mapping A from R
m into R

m is a function that maps any vector a in R
m onto a

vector b = A(a) in R
m in a manner that satisfies additivity (A(a1 + a2) = A(a1) +A(a2),

∀a1,a2 ∈ R
m) and homogeneity (A(αa) = αA(a), ∀α ∈ R, ∀a ∈ R

m) properties.

■ Given an orthonormal basis {i1, . . . , im} for Rm, we have that any linear mapping A from R
m

into R
m can be represented by a matrix



a11 . . . a1m

...
...

am1 . . . amm




of its components akℓ such that akℓ = ik ·A(iℓ), 1 ≤ k, ℓ ≤ m.

■ We have for two vectors a and b and a linear mapping A with b = A(a) that



b1
...

bm


 =



a11 . . . a1m

...
...

am1 . . . amm






a1
...

am


 .
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■ The identity linear mapping from R
m into R

m is the linear mapping I from R
m into R

m such that

I(a) = a, ∀a ∈ R
m,

which corresponds to the matrix-vector representation



1

. . .

1






a1
...

am


 =



a1
...

am


 .

■ The transpose of a linear mapping A from R
m into R

m is the linear mapping AT
from R

m

into R
m such that

AT(a) · b = a ·A(b), ∀a, b ∈ R
m.

■ A linear mapping A from R
m into R

m is symmetric if AT = A, and it is skew-symmetric

if AT = −A.

■ The trace of a linear mapping tr(A) is defined by tr(A) =
∑m

k=1
akk.
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■ For two vectors a and b in R
m, the tensor product is the linear mapping denoted by a⊗ b that

maps any vector c in R
m onto a vector d = (a⊗ b)(c) in R

m such that

d = (a⊗ b)(c) = a(b · c),

which corresponds to the matrix-vector representation

d1
...

dm


 =



a1b1 . . . a1bm

...
...

amb1 . . . ambm






c1
...

cm


 .

■ We have that I =
∑

k=1
ik ⊗ ik. And we have the identities

(a⊗ b)(c⊗ d) = (b · c)(a⊗ d), (a⊗ b)T = b⊗ a, tr(a⊗ b) = a · b.

■ If m = 3, the vector product of two vectors a and b in R
3 is the vector c = a× b in R

3 defined

previously. The mapping that, for a given a, maps b onto c is linear, so that it can be represented

by a linear mapping from R
3 into R

3 denoted by Â such that

Â(b) = a× b, ∀b ∈ R
3.

We say that a is the axial vector of Â, which corresponds to the matrix-vector representation


0 −a3 a2
a3 0 −a1
−a2 a1 0





b1
b2
b3


 =



a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1


 .
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i2

i3

i1

e2(t)

e3(t)

e1(t)

■ We assume that there are two reference frames.

■ The inertial frame is fixed and equipped with basis vectors i1, i2, and i3.

■ The body frame is moving and equipped with basis vectors e1(t), e2(t), and e3(t).

■ We denote by R(t) the linear mapping, namely, the rotation, that maps the basis vectors i1, i2,

and i3 onto the basis vectors e1(t), e2(t), and e3(t):

ek(t) = R(t)(ik), 1 ≤ k ≤ 3.
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e

ϕ

a a‖ R(a)

a⊥ e× a

■ Let us construct the rotation R that rotates a vector a in R
3 about an axis specified by a unit vector

e in R
3 (not to be confused with moving basis vectors) with an angle of ϕ onto a vector R(a) in R

3.

■ Decomposing a into a component a‖ along the axis and a component a⊥ perpendicular to it,

a‖ = (a · e)e = (e⊗ e)(a), a⊥ = a− a‖,
we can write

R(a) = a‖+cos(ϕ)a⊥+sin(ϕ)(e×a) = cos(ϕ)a+
(
1−cos(ϕ)

)
(e⊗e)(a)+sin(ϕ)e×a.

■ Thus, a rotation about an axis e with an angle of ϕ admits the axis-angle representation

R = cos(ϕ)I +
(
1− cos(ϕ)

)
(e⊗ e) + sin(ϕ)Ê, ‖e‖ = 1 (Euler).
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■ With

Ê(a) = e× a,
(
Ê
)2
(a) = e× (e× a) = (e · a)e− (e · e)a = (e · a)e− a,

(
Ê
)3
(a) = e×

(
(e · a)e− a

)
= −e× a = −Ê(a),

. . .

the axis-angle representation can be written equivalently as

R = cos(ϕ)I +
(
1− cos(ϕ)

)((
Ê
)2

+ I
)
+ sin(ϕ)Ê

= I +
(
1− cos(ϕ)

)(
Ê
)2

+ sin(ϕ)Ê (Rodrigues),

as well as equivalently as

R = exp
(
ϕÊ
)
≡

+∞∑

k=0

1

k!

(
ϕÊ
)k

(note: this is not a component-wise exponential);

indeed, with sin(ϕ) = ϕ− 1

3!
ϕ3 + 1

5!
ϕ5 − . . . and cos(ϕ) = 1− 1

2!
ϕ2 + 1

4!
ϕ4 − . . ., we have

R = I + ϕÊ +
1

2!
ϕ2(

Ê
)2

+
1

3!
ϕ3(

Ê
)3

+
1

4!

(
Ê
)4

+ . . .

= I + ϕÊ +
1

2!
ϕ2(

Ê
)2

−
1

3!
ϕ3

Ê −
1

4!

(
Ê
)2

+ . . .

= I +

(
1

2!
ϕ2 −

1

4!
ϕ4 + . . .

)(
Ê
)2

+

(
ϕ−

1

3!
ϕ3 + . . .

)
Ê

= I +
(
1− cos(ϕ)

)(
Ê
)2

+ sin(ϕ)Ê.
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■ A rotation is orthogonal:

RRT = RTR = I;

Indeed, completing the axis e with vectors p and q in R
3 such that e, p, and q form on

orthonormal basis and e = p× q, we have

Ê(a) = e×a = (p×q)×a = −a×(p×q) = −(a·q)p+(a·p)q = −(p⊗q)(a)+(q⊗p)(a),

and hence

Ê = q ⊗ p− p⊗ q,

so that

R = cos(ϕ)I +
(
1− cos(ϕ)

)
(e⊗ e) + sin(ϕ)(q ⊗ p− p⊗ q),

and thus

RRT = RTR = cos2(ϕ)I + sin2(ϕ)(e⊗ e) + sin2(ϕ)(p⊗ p+ q ⊗ q) = I.

■ The axis is an eigenvector corresponding to a unit eigenvalue of a rotation:

R(e) = e,

and the trace of a rotation satisfies

tr(R) = 1 + 2 cos(ϕ).
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■ We now let the rotation be a function of time: R = R(t). The time derivative Ṙ of the rotation R is

then the product of a skew-symmetric linear mapping with this rotation:

Ṙ = Ω̂R, (Poisson);

indeed, by differentiating the expression RRT = I of orthogonality, we have

ṘR
T +RṘ

T = 0 =⇒ Ṙ = −RṘ
T
R = ṘR

T

︸ ︷︷ ︸
≡Ω̂

R.

■ The axial vector of Ω̂ is the angular velocity vector ω:

ω × a = Ω̂(a), ∀a ∈ R
3.

■ The angular velocity vector ω has the following axis-angle representation:

ω =
(
1− cos(ϕ)

)
e× ė+ sin(ϕ)ė

︸ ︷︷ ︸
change in axis

+ ϕ̇e︸︷︷︸
change in angle

;

indeed, this representation follows from differentiating tr(R) = 1 + 2 cos(ϕ) and R(e) = e:

tr
(
Ω̂R

)
= −2 sin(ϕ)ϕ̇ =⇒ tr

(
Ω̂
R−RT

2

)
= −2 sin(ϕ)ϕ̇ =⇒ tr

(
Ω̂Ê

)
= −2ϕ̇ =⇒ ω · e = ϕ̇,

(I −R)(ė)− Ω̂(e) = 0 =⇒ e× (ω × e) = e×
(
(I −R)(ė)

)
=⇒ ω = e×

(
(I −R)(ė)

)
+ ϕ̇e.
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■ The Poisson equation can be written equivalently as follows:

Ṙ = R
̂̃
Ω with

̂̃
Ω such that Ω̂ = R

̂̃
ΩRT;

indeed, by differentiating the expression RTR = I of orthogonality, we have

ṘTR+RTṘ = 0 =⇒ Ṙ = −RṘTR = RRTṘ︸ ︷︷ ︸
≡

̂̃
Ω

,

Ω̂ = ṘRT = RRTṘ︸ ︷︷ ︸
≡

̂̃
Ω

RT.

■ The axial vector of
̂̃
Ω is the vector ω̃ such that:

ω̃ × a =
̂̃
Ω(a), ∀a ∈ R

3.

■ The vectors ω and ω̃ are related as follows:

ω = R(ω̃);

indeed,

R
̂̃
ΩRT(a) = R

(
ω̃ ×

(
RT(a)

)) (Piola)
= R(ω̃)×

(
RRT(a)

)
= R(ω̃)× a.
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■ Let us begin with considering the space of complex numbers

C = {a+ bi : a, b ∈ R, i2 = −1}.

■ We can add and multiply in C, for example,

(a+ bi) + (ã+ b̃i) = (a+ ã) + (b+ b̃)i,

(a+ bi)(ã+ b̃i) = (aã− bb̃) + (ab̃+ ãb)i.

■ These operations on complex numbers can be related to operations on matrices. Indeed, by

associating any complex number a+ bi with a corresponding matrix

[
a −b
b a

]
, we have

[
a −b
b a

]
+

[
ã −b̃

b̃ ã

]
=

[
(a+ ã) −(b+ b̃)

(b+ b̃) (a+ ã)

]
,

[
a −b
b a

] [
ã −b̃

b̃ ã

]
=

[
(aã− bb̃) −(ab̃+ ãb)

(ab̃+ ãb) (aã− bb̃)

]
.
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Re

Im

cos(ϕ)

sin(ϕ)ϕ

exp(iϕ) = cos(ϕ) + sin(ϕ)i (Euler)

blanc

■ Operations on complex numbers are related to 2D geometry.

■ We can factor any complex number in polar coordinates:

a+ bi = r exp(iϕ), ã+ b̃i = r̃ exp(iϕ̃).

■ Multiplying two complex numbers corresponds to multiplying their lengths and their angles:

(a+ bi)(ã+ b̃i) = rr̃ exp
(
i(ϕ+ ϕ̃)

)
.

■ Thus, in 2D, a rotation by an angle of ϕ can be represented by a multiplication by a complex

number exp(iϕ) of unit magnitude. Quaternions extend this concept to 3D.
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■ Quaternions are an extension to complex numbers.

■ While operations on complex numbers are related to 2D geometry, operations on quaternions are

related to 3D geometry.

■ While a complex number a+ bi can be associated with an ordered pair (a, b) of real numbers, a

quaternion q can be associated with an ordered quadruple (q0, q1, q2, q3) of real numbers. An

alternative notation is q = (q0, qv) with qv = (q1, q2, q3).

■ Special sets of quaternions are

Qv = {η ∈ R
4 : η = (0,η), η ∈ R

3} (vectors),

Q1 = {q ∈ R
4 : ‖q‖2 = q20 + qv · qv = 1} (unit quaternions).
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■ While operations on complex numbers can be related to operations on matrices, we can define

operations on quaternions by relating them to operations on matrices, namely, by associating

any quaternion q = (q0, q1, q2, q3) with a corresponding matrix

[
q0 + q3i −q1 − q2i
q1 − q2i q0 − q3i

]
.

■ For example, addition:

[
q0 + q3i −q1 − q2i
q1 − q2i q0 − q3i

]
+

[
q̃0 + q̃3i −q̃1 − q̃2i
q̃1 − q̃2i q̃0 − q̃3i

]

=

[
(q0 + q̃0) + (q3 + q̃3)i −(q1 + q̃1)− (q2 + q̃2)i
(q1 + q̃1)− (q2 + q̃2)i (q0 + q̃0)− (q3 + q̃3)i

]
.

■ For example, multiplication:

[
q0 + q3i −q1 − q2i
q1 − q2i q0 − q3i

] [
q̃0 + q̃3i −q̃1 − q̃2i
q̃1 − q̃2i q̃0 − q̃3i

]

=




q0q̃0 − q3q̃3 + (q0q̃3 + q̃0q3)i −q0q̃1 + q̃2q3 + (−q0q̃2 − q̃1q3)i
−q1q̃1 − q2q̃2 + (q1q̃2 − q̃1q2)i −q̃0q1 − q2q̃3 + (q1q̃3 − q̃0q2)i

q̃0q1 + q2q̃3 + (q1q̃3 − q̃0q2)i −q1q̃1 − q2q̃2 + (−q1q̃2 + q̃1q2)i
q0q̃1 − q̃2q3 − (−q0q̃2 − q̃1q3)i q0q̃0 − q3q̃3 + (−q0q̃3 − q̃0q3)i


 .
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■ For quaternions, addition, multiplication, and other operations are defined as follows:

(addition) q + q̃ = (q0 + q̃0, qv + q̃v),

(multiplication) q ⊙ q̃ = (q0q̃0 − qv · q̃v, q0q̃v + q̃0qv + qv × q̃v),

(conjugation) qc = (q0,−qv),

(norm) ‖q‖2 = q20 + qv · qv,

(inverse) q−1 = ‖q‖−2qc.

■ The following identities hold:

(q ⊙ q̃)c = q̃c ⊙ qc, (q ⊙ q̃)−1 = q̃−1 ⊙ q−1, ‖q ⊙ q̃‖ = ‖q‖ ‖q̃‖.

■ The multiplication can also be written in terms of linear mappings as

q ⊙ q̃ =

[
q0 −qT

v

qv q0I + Q̂v

]

︸ ︷︷ ︸
≡QL

[
q̃0
q̃v

]
=

[
q̃0 −q̃T

v

q̃v q̃0I −
̂̃
Qv

]

︸ ︷︷ ︸
≡Q̃R

[
q0
qv

]
.
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■ For quaternions, the exponential is defined as follows:

exp(q) =

+∞∑

k=0

1

k!
qk (note: this is not a component-wise exponential),

in which the quaternion power is defined recursively as follows:

qk = q ⊙ qk−1 = qk−1 ⊙ q, q0 = (1,0).

■ The following properties hold:

d

dt
exp(tq) = q ⊙ exp(tq) = exp(tq)⊙ q;

indeed:

d

dt
exp(tq) =

+∞∑

k=1

tk−1qk

(k − 1)!
= q ⊙

+∞∑

k=0

1

k!
(tq)k = q ⊙ exp(tq),

d

dt
exp(tq) =

+∞∑

k=1

tk−1qk

(k − 1)!
=

+∞∑

k=0

1

k!
(tq)k ⊙ q = exp(tq)⊙ q.
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■ The exponential of a vector η = (0,η) in Qv returns a unit quaternion exp(η) in Q1:

exp(η) =

(
cos(‖η‖), sin(‖η‖)

η

‖η‖

)
∈ Q1;

indeed, with

η
0 = (1,0),

η
1 = (0,η),

η
2 = (−η · η,0) =

(
− ‖η‖2,0

)
,

η
3 =

(
0,−‖η‖2η

)
,

. . . ,
we have

exp(η) =

+∞∑

k=0

1

k!
η
k =

(
1−

‖η‖2

2!
+ . . . ,

(
‖η‖ −

‖η‖3

3!
+ . . .

)
η

‖η‖

)
.

■ The logarithm of a unit quaternion q = (q0, qv) in Q1 can be defined as

log(q) = arcsin(‖qv‖)
qv

‖qv‖

for sufficiently small ‖qv‖, so that log
(
exp(η)

)
= η behaves as expected. Thus, the logarithm of

a unit quaternion returns a vector.

■ For small vectors and unit quaternions, we have the following approximations:

exp(η) ≈ (1,η), log(q) ≈ qv.
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■ A rotation of ϕ about a unit axis e is represented by a unit quaternion as

q =
(
cos
(ϕ
2

)
, sin

(ϕ
2

)
e
)
.

The rotation of a vector a in R
3 with an angle of ϕ about a unit axis e into a vector ã in R

3 is then

represented as a quaternion triple product as

ã = q ⊙ a⊙ qc;

indeed:

(0, ã) = (q0, qv)⊙ (0,a)⊙ (q0,−qv)

=

[
q0 −qT

v

qv q0I + Q̂v

] [
q0 qT

v

−qv q0I + Q̂v

] [
0
a

]

=

[
1 0

0 qvq
T
v + q20I + 2q0Q̂v + (Q̂v)

2

] [
0
a

]

=

[
1 0

0 R

] [
0
a

]
,

since

sin2(ϕ/2)eeT + cos2(ϕ/2)I + 2 cos(ϕ/2) sin(ϕ/2)Ê + sin2(ϕ/2)(Ê)2

= I + sin2(ϕ/2)
(
ee

T − I + (Ê)2
)
+ sin(ϕ)Ê

= I +
(
1− cos(ϕ)

)(
Ê
)2

+ sin(ϕ)Ê.
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■ The quaternion representation can be written equivalently as follows:

q = exp
(ϕ
2
e
)
;

indeed, with

e0 = (1,0),

e1 = (0, e),

e2 = (−1,0),

e3 = (0,−e),

. . . ,

we have

exp
(ϕ
2
e
)
=

+∞∑

k=0

1

k!

(ϕ
2
e
)k

=

(
1−

1

2!

ϕ2

4
+ . . . ,

(
ϕ

2
−

1

3!

ϕ3

8
+ . . .

)
e

)
.
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■ Let us now let the rotation be a function of time again: q = q(t). The time derivative of the

quaternion representation then satisfies:

q̇ =
1

2
ω ⊙ q (Poisson);

indeed,

˙̃a = q̇ ⊙ a⊙ qc + q ⊙ a⊙ q̇c

=
1

2

[
0 −ωT

ω Ω̂

] [
0

R(a)

]
+

1

2

[
0

R(a)

]
⊙

[
0

−ω

]

=
1

2

[
−ωTR(a) +R(a) · ω

Ω̂R(a)−R(a)× ω

]

!
=

[
0

Ω̂R(a)

]
.

■ For constant ω, the solution to the Poisson equation is given by

q(t) = exp

(
ω

2
t

)
⊙ q(0);

indeed,

q̇(t) =
ω

2
⊙ exp

(
ω

2
t

)
⊙ q(0)

!
=

1

2
ω ⊙ q(t).
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■ The evolution of the quaternion representation of the rotation of the IMU is described by

q̇ =
1

2
ω ⊙ q (Poisson).

For ω constant on [t, t+∆t], the solution at time t+∆t is related to the solution at time t as

q(t+∆t) = exp

(
ω

2
∆t

)
⊙ q(t);

■ The gyroscope measures the angular velocity of the IMU expressed in its moving frame,

namely, the vector ω̃ defined previously, at successive time instants t0, t1, t2, . . . , with time step

∆t, that is, tk = k∆t with k = 0, 1, 2, . . .. The measurements are corrupted by noise.

■ Denoting by qk and Rk the quaternion and linear mapping representations of the rotation of the

IMU at tk, by yω̃,k the gyroscope measurement at tk, and by ξω̃,k the noise at tk and assuming

the angular velocity is approximately constant in each time step, the state evolves as

qk+1 = exp

(
Rk(yω̃,k − ξω̃,k)

2
∆t

)
⊙ qk,

in which Rk serves to convert between the inertial and the moving frame and ξω̃,k is a Gaussian

random variable with a mean vector of 0 and a covariance matrix that we denote by Σω̃ .
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■ Assuming that the acceleration of the IMU is negligible, the accelerometer measures the local

gravity vector in the IMU’s moving frame, at the time instants t0, t1, t2, . . . . The measurements

are corrupted by noise. The evolution of the observable of the accelerometer is written as

ya,k = RT
k (g) + ξa,k,

in which g is the local gravity vector in the inertial frame, Rk serves to convert between the inertial

and the moving frame, and ξa,k is a Gaussian random variable with a mean vector of 0 and a

covariance matrix that we denote by Σa.

■ The magnetometer measures the local magnetic field, induced by earth and the presence of

magnetic material, in the IMU’s moving frame, at the time instants t0, t1, t2, . . . . The measure-

ments are corrupted by noise. The evolution of the observable of the magnetometer is written as

ym,k = RT
k (m) + ξm,k,

in which m is the local magnetic field in the inertial frame, Rk serves to convert between the

inertial and the moving frame, and ξm,k is a Gaussian random variable with a mean vector of 0

and a covariance matrix that we denote by Σm.



Orientation estimation

ULiège, Belgium MATH00488 – Project 44 / 56

q̃

q

R
3

Q1
η

■ Uncertainty in a unit quaternion representing a rotation cannot be directly represented as a

4-dimensional Gaussian random variable because the realizations of a 4-dimensional Gaussian

random variable do not in general satisfy the unit norm constraint and thus are not valid rotations.

■ Instead, we represent an uncertain unit quaternion representing an uncertain rotation as a

composition of a deterministic unit quaternion representing a reference rotation and a random

unit quaternion representing an uncertain rotation deviation:

q = exp

(
η

2

)
⊙ q̃,

in which η is a 3-dimensional centered Gaussian random variable; please note that this is not a

component-wise exponential; it is the quaternion exponential.
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■ The Kalman filter assumes the state observation model and the observation model to be linear.

However, in the previous equations, the state observation model and the observation model are

nonlinear. In order to overcome this issue, we linearize the state observation model and the

observation model at each time instant. This yields the so-called extended Kalman filter.

■ The linearization of the state observation model is obtained as follows:

ηk+1 = 2 log

(
exp

(
Rk(yω̃,k − ξω̃,k)

2
∆t

)
⊙ exp

(
ηk

2

)
⊙ q̃k ⊙ q̃c

k+1

)

= 2 log

(
exp

(
Rk(yω̃,k − ξω̃,k)

2
∆t

)
⊙ exp

(
ηk

2

)
⊙ exp

(
−
Rk(yω̃,k)

2
∆t

))
;

by differentiating with respect to ηk and ξω̃,k at ηk = 0 and ξω̃,k = 0, we obtain

Dηk
ηk+1 = 2 Dq log(q)︸ ︷︷ ︸

≈I

[
exp

(
Rk(yω̃,k)

2
∆t

)]

L

[
exp

(
−

Rk(yω̃,k)

2
∆t

)]

R︸ ︷︷ ︸
≈I

Dηk
exp

(
ηk

2

)

︸ ︷︷ ︸
≈ 1

2

[
0 I

]T

≈ I,

Dξ
ω̃,k

ηk+1 = 2 Dq log(q)︸ ︷︷ ︸
≈I

[
exp

(
−

Rk(yω̃,k)

2
∆t

)]

R︸ ︷︷ ︸
≈I

Dξ
ω̃,k

exp

(
Rk(yω̃,k − ξω̃,k)

2
∆t

)

︸ ︷︷ ︸
≈
[
0 −∆t

2
RT

k

]T

≈ −∆tRk;

hence,
ηk+1 ≈ ηk −∆tRk(ξω̃,k).
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■ The linearization of the observation model is obtained as follows:

ya,k = RT
k (g) + ξa,k

= R̃T
k exp

(
Ĥk

)
T(g) + ξa,k

≈ R̃T
k

(
I + Ĥk

)
T(g) + ξa,k

= R̃T
k

(
I − Ĥk

)
(g) + ξa,k

= R̃T
k (g) + R̃T

k Ĝ(ηk) + ξa,k,

ym,k = RT
k (m) + ξm,k

= R̃T
k exp

(
Ĥk

)
T(m) + ξm,k

≈ R̃T
k

(
I + Ĥk

)
T(m) + ξm,k

= R̃T
k

(
I − Ĥk

)
(m) + ξm,k

= R̃T
k (m) + R̃T

k M̂(ηk) + ξm,k.

■ In these equations, Ĥk is the linear mapping such that ηk is the axial vector of Ĥk, and R̃k is the

linear mapping representation corresponding to the quaternion representation q̃k, so that

qk = exp
(

ηk

2

)
⊙ q̃k corresponds to Rk = exp

(
Ĥk

)
R̃k.
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■ The extended Kalman filter for orientation estimation can be expressed as follows:

◆ Inititialization:

(q̃0|0,C0|0).

◆ For k = 1, 2, . . .:

■ Step 1 (prediction step):

q̃k|k−1 = exp


R̃k−1|k−1(yω̃,k)

2
∆t


⊙ q̃k−1|k−1,

Ck|k−1 = Ck−1|k−1 + (∆t)2R̃k|k−1Σω̃R̃
T
k|k−1.

■ Step 2 (correction step):

η̂k|k = Ck|k−1H
T
kS

−1
k (yk − yk|k−1),

Ck|k = Ck|k−1 −Ck|k−1H
T
kS

−1
k HkCk|k−1,

in which

Hk=

[
R̃T

k|k−1Ĝ

R̃T
k|k−1M̂

]
, Sk=HkCk|k−1H

T
k+

[
Σa 0

0 Σm

]
, yk=

[
ya,k

ym,k

]
, yk|k−1=

[
R̃T

k|k−1(g)

R̃T
k|k−1(m)

]
.

■ q̃k|k = exp

(
η̂k|k

2

)
⊙ q̃k|k−1.
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1. We wrote the equations involved in the correction step of the Kalman filter as follows:

x̂k|k = x̂k|k−1 +Ck|k−1H
T
kS

−1

k

(
yk −Hk(x̂k|k−1)

)
,

Ck|k = Ck|k−1 −Ck|k−1H
T
kS

−1

k HkCk|k−1,

in which

Sk = HkCk|k−1H
T
k +Rk.

(a) Show that the update of the covariance matrix may be written equivalently as follows:

Ck|k = (C−1

k|k−1
+HT

kR
−1

k Hk)
−1.

Hint: Similarly to the matrix identity on Slide 18, show that A−1BT(C +BA−1BT)−1

= (A+BTC−1B)−1BTC−1
. After inserting the expression of Sk into the expression

of Ck|k, use this matrix identity and conclude.

(b) Show that the update of the best estimate of the state may be written equivalently as follows:

x̂k|k = x̂k|k−1 +Ck|kH
T
kR

−1

k

(
yk −Hk(x̂k|k−1)

)
.

Hint: Use the aforementioned matrix identity and the aforementioned equivalent expression of

the update of the covariance matrix.
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2. Write a small library of functions to carry out computations with quaternions. Please represent

quaternions as 4-by-1 vectors and linear mappings representing rotations as 3-by-3 matrices.

(a) Write for each one of the addition, multiplication, conjugation, norm, and inverse operations

defined on Slide 35 a function that implements this operation. For example, write a function

named quaternConj that takes as input a quaternion q and returns as output its

conjugate qc, write a function named quaternProd that takes as input two quaternions q
and q̃ and returns as output their quaternion product q ⊙ q̃, and so forth.

(b) Write for the exponential defined on Slide 37 a function named vector2unitQuatern that

takes as input a 3-by-1 vector η and returns as output the unit quaternion exp(η).

(c) Write a function named quatern2rotMat that takes as input a unit quaternion q and returns

as output the corresponding rotation R. You may use R = qvq
T
v + q20I + 2q0Q̂v + (Q̂v)

2.

As part of your work, include in your report a proof of this formula based on the axis-angle

representation of the rotation on Slide 27 and that of the quaternion on Slide 38. Provide a

detailed justification of each step.

(d) Perform a few checks to verify whether you implemented everything correctly. As part of your

work, describe in your report the checks that you performed.
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3. Let us build some further understanding of the equations involved in the extended Kalman filter.

Let us begin with taking a closer look at the first equation involved in the prediction step. As

explained on Slides 40 and 42, this equation follows from the fact that for ω constant on [t, t+∆t],
the solution to the Poisson equation at time t+∆t is related to the solution at time t as

q(t+∆t) = exp

(
ω

2
∆t

)
⊙ q(t);

indeed, q̃k−1|k−1 and q̃k|k−1 may be associated with q(t) and q(t+∆t), respectively; and the

observed value yω̃,k is a noisy perturbation of the angular velocity vector expressed in the IMU’s

moving frame, which the multiplication with R̃k−1|k−1 transports to the inertial frame. As stated on

Slide 37, for small values of ω
2
∆t, the equation above may be approximated as

q(t+∆t) ≈
(
1,

ω

2
∆t
)
⊙ q(t) =

[
q0(t)−

ω
2
∆t · qv(t)

qv(t) +
ω
2
∆tq0(t) +

ω
2
∆t× qv(t)

]
.

The question is then as follows. Please insert the axis-angle representation of the angular velocity

vector of Slide 29 and that of the quaternion of Slide 38 into this approximation. Simplify the

resulting expression (Hint: use trigonometric angle sum identities) (Hint: it follows from e · e = 1
that e · ė = 0). And interpret the end result.
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4. Let us continue to build understanding of the equations involved in the extended Kalman filter.

The second equation in the prediction step and the second equation in the correction step serve to

obtain a quantification of the uncertainty in the estimates of the quaternions obtained to represent

the orientation of the IMU in these steps. However, the covariance matrices Ck|k−1 and Ck|k are

not 4-by-4 covariance matrices that provide a direct quantification of the uncertainty in the

quaternions. Instead, as explained on Slide 44, the uncertainty quantification follows from

q = exp

(
η

2

)
⊙ q̃,

and Ck|k−1 and Ck|k are 3-by-3 covariance matrices for uncertain vectors ηk|k−1 = 0 and ηk|k

in representations of the uncertain quaternions as uncertain rotation deviations about the best

estimates of the quaternions obtained to represent the orientation of the IMU in the prediction and

correction steps. The questions are then as follow:

(a) Please interpret why the second equation in the prediction step involves the addition of one

term to another, and hence increased uncertainty, and the correction step involves the

subtraction of one term from another, and hence decreased uncertainty.

(b) As stated on Slide 37, for small values of
η
2

, exp
(

η
2

)
may be approximated as

exp
(

η
2

)
≈
(
1, η

2

)
. Insert this approximation into the equation stated above, and deduce

from the approximate transformation thus obtained an approximate covariance matrix for the

uncertain quaternion as a function of the covariance matrix of the uncertain vector.



Assignment

ULiège, Belgium MATH00488 – Project 53 / 56

5. Let us apply the extended Kalman filter to the following data set:
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This data set is made available to you in the file data.mat. This data set was taken from the

literature, and it was not generated by means of the sparkfun 9DoF Razor IMU.
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5. You may use the following values for the parameters: ∆t = 1/256 s, Σω̃ = 0.007305 rad2/s2I ,

Σa = 0.0002001I , Σm = 0.0001680I , g = (0, 0, 1), and m = (0.4230, 0.0630,−0.9040).
Please note that since we direct our interest to only the orientation, and not the position, we work

with normalized, hence unitless, data for the accelerometer and the magnetometer.

(a) Please implement the extended Kalman filter. Perform a few checks to verify whether you

implemented everything correctly. Describe in your report the checks that you performed.

(b) Apply the extended Kalman filter to the data set. Plot as a function of time the best estimate of

the quaternion representing the orientation of the IMU, that is, q̃k|k as a function of tk. As the

quaternion has 4 components, you should plot 4 curves. Interpret the results.

(c) Use the formula that you established under Question 4(b) to deduce at each time instant from

the covariance matrix Ck|k an approximate covariance matrix for the uncertain quaternion.

The diagonal elements of this approximate covariance matrix are squares of approximate

standard deviations. Use your solution to Question 5(b) and these approximate standard

deviations to plot as a function of time “plus and minus 3 sigma” uncertainty ranges for the

estimate of the quaternion representing the orientation of the IMU (Matlab: fill).

(d) Use your implementation to provide some insight into the effect of the sensor fusion. As part

of your work, you could consider perturbing the data for the gyroscope by additional noise

(Matlab: randn) (adjust Σω̃ accordingly). And you could consider carrying out a comparison

with a case in which the sensor fusion is disabled by replacing the correction step and the last

step in the extended Kalman filter with q̃k|k = q̃k|k−1 and Ck|k = Ck|k−1.
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6. Apply the extended Kalman filter to a real data set:

Use one of the sparkfun 9DoF Razor IMUs made available to you to collect a data set for a

sequence of rotational movements of the IMU of your choice. Apply the extended Kalman filter to

the data set thus obtained. As part of your work, think carefully about how to set up the experiment

and about how to choose good values for the parameters, such as the covariance matrices

describing the significance of the observational noise. Describe your approach in your report.

(Matlab: s=serial(’COM1’,’Baudrate’,115200); fopen(s);

fscanf(s,’%f,%f,%f,%f,%f,%f,%f,%f,%f’,[9 1]);)
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