# A PANMICTIC AMAZONIAN WORLD?

**Epiphytic bryophytes testify** 

Understanding population connectivity is fundamental for biodiversity conservation and management

- Different spatial scale
- Different temporal scale

### Amazonian rainforest

- One of the biggest biodiversity hotspot
- 6 million square kilometers
- High  $\alpha$ -diversity but low  $\beta$ -diversity
  - $\rightarrow$  Lot of species broadly distributed
- Pleistocene climate oscillations
- human-induced fragmentation

Understanding population connectivity is fundamental for biodiversity conservation and management

- Different spatial scale
- Different temporal scale

### Amazonian rainforest

- One of the biggest biodiversity hotspot
- 6 million square kilometers
- High  $\alpha$ -diversity but low  $\beta$ -diversity  $\rightarrow$  Lot of species broadly distributed
- Pleistocene climate oscillations
- human-induced fragmentation



### Epiphytic bryophytes

- Spatially explicit habitats
- Short life-cycles and poïkilohydric condition
- Factors influencing distribution are variable
- Niche segregation
- Dispersal limitation
- Historical factors



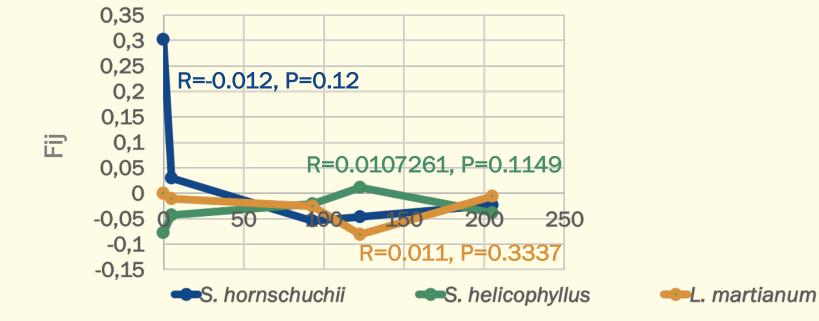
#### Mota & ter Steege (2015) : One panmictic metapopulation

- Null model analyze
- Individuals randomly distributed across the Amazonian forest
- No ecological mechanism driving their distribution
- No trace of impact of global change or deforestation yet
  - $\rightarrow$  need of genetic data

### Epiphytic bryophytes

- Spatially explicit habitats
- Short life-cycles and poïkilohydric condition
- Factors influencing distribution are variable
- Niche segregation
- Dispersal limitation
- Historical factors




### Mota & ter Steege (2015) : One panmictic metapopulation

- Null model analyze
- Individuals randomly distributed across the Amazonian forest
- No ecological mechanism driving their distribution
- No trace of impact of global change or deforestation yet
  - $\rightarrow$  need of genetic data!

## Objectives

Amazonian epiphytic bryophytes = one panmictic population ?

- Do Amazonian epiphytes exhibit a spatial genetic structure (SGS) at regional (< 500 km) scales ?</p>
  - $\rightarrow$  Mantel test : regression between Fij and distances among individuals
  - $\rightarrow$  Is the p-value of the slope significant (<0.05) ?



## Objectives

Amazonian epiphytic bryophytes = one panmictic population ?

- Do Amazonian epiphytes exhibit a spatial genetic structure (SGS) at regional (< 500 km) scales ?</p>
  - $\rightarrow$  Mantel test : regression between Fij and distances among individuals
  - $\rightarrow$  Is the p-value of the slope significant?

#### If there is a significant SGS,

- At which spatial scale does it occur?
- Is niche conservatism (isolation-by-ecology) rather than dispersal limitation (isolation-by-distance) the main driver of distribution across Amazonia ?
  - $\rightarrow$  Partial Mantel test : comparison of the variance explained by those factors
  - $\rightarrow$  Regression between Fij and geographic distances among individuals
  - $\rightarrow$  Regression between Fij and ecological distances among individuals

Ecological distances : 0 = same forest type; 1 = different forest types

Gatersleben August 2017

### Material and methods

### Sampling

- 14 species of Amazonian epiphytic bryophytes
- > 500 individuals (15-50 per species)
- 2 forest types : lowland and white sand forest
- 50,000 km<sup>2</sup> area



### Lab technique

- Sanger sequencing at traditional cpDNA and nDNA loci  $\rightarrow$  rake
  - $\rightarrow$  Next Generation sequencing
- Genotyping By Sequencing (GBS)
- Elshire et al. 2011 (except reverse PCR primer : Sonah et al. 2013)
- Libraries sequenced on Illumina NextSeq 500
- Data demultiplexed and loci built <u>de novo</u> on Stacks

### Material and methods

### Sampling

- 14 species of Amazonian epiphytic bryophytes
- > 500 individuals (15-50 per species)
- 2 forest types : lowland and white sand forest
- 50,000 km<sup>2</sup> area



### Lab technique

Sanger sequencing at traditional cpDNA and nDNA loci  $\rightarrow$  rake

 $\rightarrow$  Next Generation sequencing

- Genotyping By Sequencing (GBS)
- Elshire et al. 2011 (except reverse PCR primer : Sonah et al. 2013)
- Libraries sequenced on Illumina NextSeq 500
- Data demultiplexed and loci built <u>de novo</u> on Stacks

### First results on Stacks

#### Parameters

- Min depth of coverage to create a stacks : 3
- Max distance allowed between stacks : 2
- Max distance allowed to align secondary reads : 4
- Max number of stacks allowed per *de novo locus*: 3
- % of the population having the SNP needed to retain the SNP : 50

 $\Rightarrow$  small number of SNPs polymorphic among individuals!

| Species                   | Number of SNPs |
|---------------------------|----------------|
| Archilejeunea parviflora  | 204            |
| Bazzania hookeri          | 193            |
| Leucobryum martianum      | 180            |
| Syrrhopodon helicophyllus | 243            |
| Syrrhopodon hornschuchii  | 159            |
| Thysananthus amazonicus   | 221            |
| Octoblepharum albidum     | 275            |
| Octoblepharum pulvinatum  | 232            |
| Syrrhopodon annotinus     | 163            |
| Syrrhopodon simmondsii    | 144            |
| Calymperes lonchophyllum  | 79             |

### Improvements

Why small number of SNPs polymorphic?

- Stacks ? Haploid data? Parameters choice?  $\rightarrow$  Try with iPyrad
- Lab? Adapter concentration? Poor quality sequences  $\rightarrow$  Trim the sequences

### Reliability of the SNPs

- Enough intra-individual variation to asses population genetic questions?
- Structure or phylogeny to see if they can distinguish 2 species?

#### **Check for contaminations**

Blast?

#### Presence of mixed specimen

- Especially in challenging genera
- Barcoding? But no known loci for these species
- Structure to identify different clusters within « one species »

### Improvements

Why small number of SNPs polymorphic?

- Stacks ? Haploid data? Parameters choice?  $\rightarrow$  Try with iPyrad
- Lab? Adapter concentration? Poor quality sequences  $\rightarrow$  Trim the sequences

### Reliability of the SNPs

- Enough intra-individual variation to asses population genetic questions?
- Structure or phylogeny to see if they can distinguish 2 species?

### Check for contaminations

Blast?

### Presence of mixed specimen

- Especially in challenging genera
- Barcoding? But no known specific loci for these species
- Structure to identify different clusters within « one species »



# THANK YOU FOR YOUR ATTENTION!