Overview of my master thesis

Lab meeting at Duke University

Alice Ledent, second year of the master's degree in biology, University of Liège (ULG)

Overview of my master thesis

Lab meeting at Duke University

Alice Ledent, second year of the master's degree in biology, University of Liège (ULG)

Title

 Unravelling the Quaternary biogeography history of European bryophytes through Approximate Bayesian Statistics

- □ What's the impact of global warming on species repartition?
 - □ → Studying past climate changes
 - (Petit et al. 2005)

- What's the impact of global warming on species repartition?
 - □ → studying past climate changes
 - (Petit et al. 2005)
- Which climatic phenomenon makes the actual repartition of species?
 - ightharpoonup the called "Quaternary" glacial periods
 - □ Last Glacial Maximum (LGM, 21.000 YBP) = the more virulent
 - (Hewitt 1999)
- Europe : stronger consequences than in North America or in the Southern hemisphere
 - Why? Harder climatic conditions and dispersal barriers W-E
 - (Hewitt 2000)

- What's the impact of global warming on species repartition?
 - □ → studying past climate changes
 - (Petit et al. 2005)
- Which climatic phenomenon makes the actual repartition of species?
 - ightharpoonup the called "Quaternary" glacial periods
 - □ Last Glacial Maximum (LGM, 21.000 YBP) = the more virulent
 - (Hewitt 1999)
- Europe: stronger consequences than in North America or in the Southern hemisphere
 - Why? Harder climatic conditions and dispersal barriers W-E
 - (Hewitt 2000)

- □ Where to survive in Europe?
 - □ 1) Mediterranean refugia hypothesis (SRH)
 - species survived in 52 Mediterranean refugia
 - refugia = sources for continental recolonization
 - (Hewitt 1999) and (Médail & Diadema 2009)

- □ Where to survive in Europe ?
 - 1) Mediterranean refugia hypothesis (SRH)
 - species survived in 52 Mediterranean refugia
 - refugia = sources for continental recolonization
 - (Hewitt 1999) and (Médail & Diadema 2009)
 - 2) Northern micro-refugia hypothesis (NRH)
 - South = isolated from the other parts of Europe
 - Southern refugia = sink, no source of biodiversity
 - Northern micro-refugia = sources for recolonization
 - (Petit et al. 2003) et (Petit et al. 2005)
 - Non-exclusives hypotheses!
 - depending on: physiological characteristics and biogeographical affinities
 - for ('review'): (Bhagwat & Willis 2008)

- □ Where to survive in Europe ?
 - 1) Mediterranean refugia hypothesis (SRH)
 - species survived in 52 Mediterranean refugia
 - refugia = sources for continental recolonization
 - (Hewitt 1999) and (Médail & Diadema 2009)
 - 2) Northern micro-refugia hypothesis (NRH)
 - South = isolated from the other parts of Europe
 - Southern refugia = sink, no source of biodiversity
 - Northern micro-refugia = sources for recolonization
 - (Petit et al. 2003) et (Petit et al. 2005)
 - Non-exclusive hypotheses!
 - depending on: physiological characteristics and biogeographical affinities
 - for ((review >): (Bhagwat & Willis 2008)

- Biogeographical studies = vertebrates or angiosperms
 - ightharpoonup what about bryophytes?
 - less tolerant → first to suffered from changes
 - higher dispersal capacities ightarrow able to cross seas and oceans
 - for « review » : (Lewis et al. 2014)

- Biogeographical studies = vertebrates or angiosperms
 - \square \longrightarrow what about bryophytes ?
 - less tolerant → first to suffered from changes
 - higher dispersal capacities → able to cross seas and oceans
 - for « review » : (Lewis et al. 2014)
 - New hypothesis
 - E and W of Europe evolve separately
 - W colonized by Macaronesia or North America
 - (Désamoré et al. 2012) et (Stenøien et al. 2011)
 - Few studies on the biogeography of bryophytes
 - \blacksquare \rightarrow first meta-study in the domain (18 species)
 - as examples : (Désamoré et al. 2012), (Désamoré 2013), (Stenøien et al. 2011) et (Urmi & Schneller 2004)

- Biogeographical studies = vertebrates or angiosperms
 - \square \longrightarrow what about bryophytes?
 - less tolerant → first to suffered from changes
 - higher dispersal capacities ightarrow able to cross seas and oceans
 - for « review » : (Lewis et al. 2014)
 - New hypothesis
 - E and W of Europe evolve separately
 - W colonized by Macaronesia or North America
 - (Désamoré et al. 2012) et (Stenøien et al. 2011)
 - Few studies on the biogeography of bryophytes
 - \blacksquare \rightarrow first meta-study in the domain (18 species)
 - as examples : (Désamoré et al. 2012), (Désamoré 2013), (Stenøien et al. 2011) et (Urmi & Schneller 2004)

- The principal goal of this study is the estimation, in Europe, of the impact of the last glacial maximum on bryophytes repartition.
- Especially,
 - (1) to contrast 5 biogeographical hypotheses for each studied species,
 - (2) to group species that present a consensual biogeographical response,
 - □ (3) to corroborate the groupings to the species ecological affinities.

- The principal goal of this study is the estimation, in Europe, of the impact of the last glacial maximum on bryophytes repartition.
- Especially,
 - (1) to contrast 5 biogeographical hypotheses for each studied species,
 - (2) to group species that present a consensual biogeographical response,
 - □ (3) to corroborate the groupings to the species ecological affinities.

- The principal goal of this study is the estimation, in Europe, of the impact of the last glacial maximum on bryophytes repartition.
- Especially,
 - (1) to contrast 5 biogeographical hypotheses for each studied species,
 - (2) to group species that present a consensual biogeographical response,
 - □ (3) to corroborate the groupings to the species ecological affinities.

- The principal goal of this study is the estimation, in Europe, of the impact of the last glacial maximum on bryophytes repartition.
- Especially,
 - (1) to contrast 5 biogeographical hypotheses for each studied species,
 - (2) to group species that present a consensual biogeographical response,
 - (3) to corroborate the groupings to the species ecological affinities.

- □ H0: no impact of the LGM on European bryophytes repartition
- H1: N and S not separated but N dead during the LGM
 - lacksquare recolonization of the N by the S
- H2 : N and S separated → independent evolution
- H3a: W and E not separated but W dead LGM
 - lacksquare ightarrow recolonization of the W by the E
- H3b : W and E not separated but W dead LGM
 - lacksquare ightarrow recolonization of the E by the W
- H4: W and E separated → independent evolution
- \blacksquare H5: Europe: all disappear \rightarrow recolonization by external inputs
- + for each scenario, test of the external inputs

- H0: no impact of the LGM on European bryophytes repartition
- H1: N and S not separated but N dead during the LGM
 - \blacksquare \rightarrow recolonization of the N by the S
- H2 : N and S separated → independent evolution

+ for each scenario, test of the external inputs

- HO: no impact of the LGM on European bryophytes repartition
- H1: N and S not separated but N dead during the LGM
 - \blacksquare \rightarrow recolonization of the N by the S
- □ H2 : N and S separated → independent evolution
- H3a: W and E not separated but W dead LGM
 - lacksquare o recolonization
- H3b: W and End
 - lacksquare ightarrow recolonization
- H4: W and E se
- H5 : Europe : all

+ for each scenario, test of the external inputs

- H0 : no impact of the LGM on European bryophytes repartition
- H1: N and S not separated but N dead during the LGM
 - lacksquare ightarrow recolonization of the N by the S
- luleq H2 : N and S separated ightarrow independent evolution
- □ H3a: W and E not separated but W dead LGM
 - \blacksquare \rightarrow recolonization of the W by the E
- □ H3b: W and E not separated but W dead LGM
 - lacktriangle ightarrow recolonization of the E by the W
- H4: W and E separated → independent evolution
- □ H5 : Europe : all disappear → recolonization by exter
- + for each scenario, test of the external inputs

Hypothèses biogéographiques

■ H0: no impact of the LGM on European bryophytes repartition

- □ H4: W and E separated → independent evolution
- \blacksquare H5 : Europe : all disappear \rightarrow recolonization by external inputs
- + for each scenario, test of the external inputs

Hypothèses biogéographiques

Hypothèses biogéographiques

- H0: no impact of the LGM on European bryophytes repartition
- H1: N and S not separated but N dead during the LGM
 - lacksquare ightarrow recolonization of the N by the S
- H2 : N and S separated → independent evolution
- H3a: W and E not separated but W dead LGM
 - lacksquare recolonization of the W by the E
- H3b: W and E not separated but W dead LGM
 - lacksquare ightarrow recolonization of the E by the W
- □ H4: W and E separated → independent evolution
- \blacksquare H5: Europe: all disappear \rightarrow recolonization by external inputs
- + for each scenario, test of the external inputs

- H0: no impact of the LGM on European bryophytes repartition
- H1: N and S not separated but N dead during the LGM
 - lacktriangledown recolonization of the N by the S
- □ H2 : N and S separated → independent evolution
- □ H3a: W and E not separated but W dead LGM
 - \blacksquare \rightarrow recolonization of the W by the E
- □ H3b: W and E not separated but W dead LGM
 - \blacksquare \rightarrow recolonization of the E by the W
- □ H4: W and E separated → independent evolution
- \square H5: Europe: all disappear \rightarrow recolonization by external inputs
- + for each scenario, test of the external inputs

Methods

- Biogeographical studies = descriptive statistics
 - To describe a biogeographical scenario on the basis of observed genetic data
 - not necessarily a link between genetic data and biogeographical scenario
 - confrontation of scenarios is not possible
 - for examples: (Bhagwat & Willis 2008), (Désamoré 2013), (Hewitt 1999), (Petit et al. 2003) et (Petit et al. 2005).
- Méthode utilisée pour le mémoire : ABC
 - Modéliser des scénarios biogéographiques → simuler des jeux de données correspondant
 - comparaison avec les données observées
 - lien direct entre le scénario biogéographique et les données génétiques
 - Confrontation de scénarios possibles
 - Pour (review » : (Csilléry et al. 2010)

Methods

- Biogeographical studies = descriptive statistics
 - To describe a biogeographical scenario on the basis of observed genetic data
 - not necessarily a link between genetic data and biogeographical scenario
 - confrontation of scenarios is not possible
 - for examples : (Bhagwat & Willis 2008), (Désamoré 2013), (Hewitt 1999), (Petit et al. 2003) et (Petit et al. 2005).
- □ Method used in this study : ABC
 - $lue{}$ To model biogeographical scenarios o to create trees o to simulate correspondent genetic data
 - \blacksquare \rightarrow comparison with observed genetic data
 - direct link between the biogeographical scenario and the genetic data
 - confrontation of scenarios is possible
 - for « review » : (Csilléry et al. 2010)

- □ 1) Create tree topology
 - For each scenario and each species, determine prior distribution of demographic parameters
 - absolute nucleotide substitution rates
 - migration rates between populations
 - effective population size (given by SDMs)
 - □ 10⁶ random draws of all the parameters => 10⁶ trees for each scenario and each species
- 2) Create sequence matrices
 - Define the likelihood => sequence mapping on the trees
 - \blacksquare 1 matrix for each trees => 10⁶ matrices per scenario et species

- □ 1) Create tree topology
 - For each scenario and each species, determine prior distribution of demographic parameters
 - absolute nucleotide substitution rates
 - migration rates between populations
 - effective population size (given by SDMs)
 - □ 10⁶ random draws of all the parameters => 10⁶ trees for each scenario and each species
- □ 2) Create sequence matrices
 - Define the likelihood => sequences mapping on the trees
 - \square 1 matrix for each tree => 10^6 matrices per scenario and species

- 3) Compare with observed sequence matrix
 - Choose descriptive statistics to resume matrices
 - Compute Euclidian distance to
 - resume all the statistics of a matrix
 - determine distance between each simulated matrix and the observed one
- □ 4) choose the best scenario
 - Sort the distances by ascending order
 - Take the 1000 first distances
 - Obtain the posterior distribution of demographic parameters
 - mean, median,...
 - Calculate the percentage of each scenario in the 1000 best coalescence simulations

he best scenario is the one that has the highest %

- □ 3) Compare with observed sequence matrix
 - Choose descriptive statistics to resume matrices
 - Compute Euclidian distance to
 - resume all the statistics of a matrix
 - determine distance between each simulated matrix and the observed one
- 4) Selection of the best scenario
 - Sort the distances by ascending order
 - □ Take the first 1000 distances
 - Compute the percentage of each scenario among the 1000 best coalescence simulations
 - The best scenario is the one that has the highest %
 - Obtain the posterior distribution of demographic parameters
 - mean, median,...

Biogeographical hypothesis (example)

Species Distribution Modeling

- Models → simplification
- $lue{\Box}$ SDMs ightarrow prediction of suitability for the development of species
- □ Statistical or mathematical association between dependent (data on distribution of species) and independent variables (environmental factors) → extrapolation to the whole study area

Dependent variable

Independent variable

Species distribution models

Calypogeia muelleriana

Independent variables

- □ Type
 - Climatic variables: Worldclim 1.4, present, past and future
 - Soil, lithology and geology
 - Elevation and derived variables
 - Variables obtained through remote sensing
 - Human demography and land use

- Raster
 - each pixel = a value of the climatic variable

Independent variables

- 🗆 Туре
 - Climatic variables: Worldclim 1.4, present, past and future
 - Soil, lithology and geology
 - Elevation and derived variables
 - Variables obtained through remote sensing
 - Human demography and land use

- □ Raster
 - each pixel = a value of theclimatic variable

[111122431122243612225466222543662252446625525443544525444444254]

Dependent variables

- □ Occurrence points
- Point shapefile

Two principal types of model

- □ Presence-only
 - Descriptive, describe a climatic envelop
 - Backgrounds don't change anything
- □ Presence-absence/pseudo-absence
 - Probabilistic, distribution of probability of presence
 - Pseudo-absence = when no absence data are available
 - → randomly distributed into the background
 - Backgrounds change the model

Dependent variables

- □ Occurrence points
- Points shapefile

Two principal types of model

- Presence-only
 - Descriptive, describe a climatic envelop
 - Backgrounds don't change anything
- Presence-absence/pseudo-absence
 - Probabilistic, distribution of probability of presence
 - Pseudo-absence = when no absence data are available
 - → randomly distributed into the background
 - Backgrounds change the model

Model

- □ Raster
 - Each pixel is associated with a value = index of suitability
- □ Can be projected
 - Into another area
 - In the past
 - In the future
- Binarisation (optional)
 - □ Threshold \rightarrow if \geq T 1; if < T 0
 - Area of suitability for the species
- □ MESS analyze (optional)
 - Define a envelop of analogous climate
 - Model can projected on analogous region only

1	1	0	0
1	1	0	0
1	0	0	1
0	0	1	1

How to get effective population size?

- Define 100% of probability of presence (1) = min X; max Y individuals
 - □ The range usually taken is min 1 and max 50 individuals
- \Box Sum all of the pixels \rightarrow Ne_{min}
 - □ if binarised model => sum all the value 1
 - If not => standardize the values by divided each value by the maximum value
 + sum the pixels
- \square Multiply the sum by $Y \rightarrow Ne_{max}$
- □ This range is use in the ABC as a prior parameter
 - One range for each species and each period (if projections)
- \Box It's possible to cut the model into different regions => NeA, NeB

Example in our study

- Model cut into 6 parts
 - North-East of Europe
 - North-West of Europe
 - South-East of Europe
 - South-West of Europe
 - North America
 - Macaronesia

Range of Ne for each region

- To get Ne East => Ne N-E + Ne S-E
- □ To get Ne South => Ne S-E + Ne S-W
- □ ...

Applications

- Biogeography: Study the effects of global change and distribution of species in the past
- Biodiversity
 - Search for new populations of endangered organisms
 - Selecting areas for reintroduction
 - Biodiversity patterns and hot spots
 - Reserve design
 - Basis of the IUCN classification of endangered species

Limitations

- Pseudoequilibrium hypothesis: we assume that the population is in balance or pseudoequilibrium with environmental conditions
- Biotic interactions
- Uncertainty of the input data and computations
- No space component: biogeographical barriers, limitations in the dispersal capacity of the species, and so on.

Bryophytes are good model because of their high dispersal capacities

Dynamic models

Dynamic models

Dynamic models

- Green-red gradient = gradient of suitability
- Pink = suitable but not colonizable area

Corsinia coriandrina

Improved dynamic models

Thank you for your attention!

Bibliography

- Bhagwat, S.A. & Willis, K.J., 2008. Species persistence in northerly glacial refugia of Europe: a matter of chance or biogeographical traits? *Journal of Biogeography*, 35(3), pp.464–482. Available at: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2699.2007.01861.x/full [Accessed October 16, 2014].
- Csilléry, K. et al., 2010. Approximate Bayesian Computation (ABC) in practice. Trends in ecology & evolution, 25(7), pp.410–8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20488578 [Accessed July 9, 2014].
- Désamoré, A., 2013. Hiding for surviving? Quaternary evolutionary history of bryophytes in Europe.
- Désamoré, A. et al., 2012. How do temperate bryophytes face the challenge of a changing environment? Lessons from the past and predictions for the future. Global change biology, 18(9), pp.2915–24. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24501067 [Accessed October 30, 2014].

Bibliography

- Hewitt, G., 1999. Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society, 68(1-2), pp.87–112. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0024406699903322.
- Hewitt, G., 2000. The genetic legacy of the Quaternary ice ages. *Nature*, 405(6789), pp.907–13. Available at: http://dx.doi.org/10.1038/35016000 [Accessed October 29, 2014].
- Lewis, L.R., Rozzi, R. & Goffinet, B., 2014. Direct long-distance dispersal shapes a New World amphitropical disjunction in the dispersal-limited dung moss Tetraplodon (Bryopsida: Splachnaceae) C. Maggs, ed. *Journal of Biogeography*, 41(12), pp.2385–2395. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-84904784057&partnerID=tZOtx3y1 [Accessed December 23, 2014].
- Médail, F. & Diadema, K., 2009. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. *Journal of Biogeography*, 36(7), pp.1333–1345. Available at: http://doi.wiley.com/10.1111/j.1365-2699.2008.02051.x [Accessed November 15, 2014].

Bibliography

- Petit, R.J. et al., 2003. Glacial refugia: hotspots but not melting pots of genetic diversity. Science (New York, N.Y.), 300(5625), pp.1563-5. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12791991 [Accessed July 10, 2014].
- Petit, R.J., Hampe, A. & Cheddadi, R., 2005. Climate changes and tree phylogeography in the Mediterranean. *Taxon*, 54(4), pp.877–885. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-32344453618&partnerID=tZOtx3y1.
- Stenøien, H.K. et al., 2011. The narrow endemic Norwegian peat moss Sphagnum troendelagicum originated before the last glacial maximum. *Heredity*, 106(2), pp.370–82. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-78751652500&partnerID=tZOtx3y1 [Accessed October 27, 2014].
- Urmi, E. & Schneller, J.J., 2004. Contrasting phylogeographic patterns in Sphagnum fimbriatum and Sphagnum squarrosum (Bryophyta, Sphagnopsida) in Europe., pp.784–794.