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Abstract 
 
This paper analytically investigates the effect of flexible restraints on the modal properties of a 
shallow cable with small bending stiffness. An asymptotic second-order accurate closed form equation 
for the natural frequencies of the cable is presented. This expression generalizes a well-known result 
of the literature, valid in the particular case of perfectly clamped end sections, and allows one to 
define a single parameter that globally describes the flexibility of the cable restraints. The 
identifiability of this parameter within a frequency-based identification procedure is then critically 
discussed and a simple yet effective procedure to simultaneously identify the axial force and the 
bending stiffness of the cable is presented. A numerical example illustrates the performance of the 
proposed identification procedure in the case of frequencies contaminated by measurement errors.  
 
 
INTRODUCTION 
 
Identification of the axial force in stay cables is of paramount importance for health monitoring and 
safety assessment purposes. Vibration based testing techniques provide the ground for quick and 
cheap identification strategies, based on the knowledge of (a) a set of identified natural frequencies, 
and (b) a structural model that relates natural frequencies to the axial force value. Reliability of 
results, hence, is inherently related to the predictive capabilities of the underlying structural model. 
Errors may arise, in particular, from the modeling of cable bending stiffness and boundary conditions. 
 
Different modeling strategies have been proposed and thouroghly investigated in the literature, 
including: (a) the classic taut-string model [1, 2], (b) cable models accounting for the bending 
stiffness, but neglecting the effects due to the sagging and to the axial extensibility [3, 4], (c) cable 
models accounting for bending stiffness, cable sagging and axial extensibility effects [5]. In most 
cases, stay cables are characterized by small values of the sag-to-span ratio (in the order of few 
percents) and of the Irvine parameter l2 [6, 7]. As a consequence, they can be modeled as straight and 
unstreachable one-dimensional structural elements by neglecting sagging and axial extensibility 
effects. On the other hand, neglecting bending stiffness can lead to oversimplified structural schemes 
and unacceptable inaccuracies on the results of axial force identification procedures [3]. Very often, 
the bending stiffness values can only be roughly estimated through approximate expressions, due to 
the complex internal geometry (e.g. bundles of parallel or helical strands with or without cement 
grouting) of stay cables.  On a practical ground, hence, bending stiffness should be added to the 
unknowns of the structural identification problem. 
 
Boundary conditions are often assumed in the form of either perfectly hinged or perfectly clamped 
cable end sections, to simplify the analytical treatment of the problem. More realistic structural 
schemes, however, could be defined by introducing equivalent translational and rotational springs at 
the cable end sections to model the flexibility of both the anchoring devices and the support structures. 



Definition of equivalent springs is strongly related to the particular technological solutions adopted to 
realized the cable anchorages and is inherently related to several different sources of uncertainties, 
such as those related to geometric imperfections and aging of the anchoring devices [3]. As a 
consequence, the flexibility of the supports should be included as well among the unknowns of the 
structural identification problem.  
The latter remark naturally yields one to consider the problem of judging about the identifiability of 
support flexibility parameters within the context of an axial force identification procedure. This topic 
has been recently addresses by the authors in a series of papers [8-11] aiming at defining a minimal set 
of  unknown structural parameters along with some guidelines to judge about their identifiability for 
two different classes problems: (a) identification procedures based on the knowledge of a set of 
natural frequencies of the cable, and (b) identification procedures combining informations related to 
both the natural frequencies and mode shapes of the cable.  
 
In the present paper, some of the main findings of the aforementioned authors’ works will be reviewed 
and applied to assess the effect of flexible end restraints on the modal properties of a taut cable with 
small bending stiffness. Within this context, an asymptotic second-order accurate closed form 
equation for the natural frequencies of the cable is first presented. This expression generalizes a well-
known result of the literature, valid in the particular case of perfectly clamped end sections [12], and 
allows one to define a single parameter that globally describes the flexibility of the cable restraints. 
The identifiability of this parameter within a frequency-based identification procedure is then 
critically discussed and a simple yet effective procedure to simultaneously identify the axial force and 
the bending stiffness of the cable is presented. The proposed procedure allows to generalize the 
current practice aiming at fitting the frequency vs. mode number relation obtained with simpler 
structural models (e.g. the taut string model). Moreover it paves the way to a simple assessment of the 
effects of the uncertainties related to the definition of the flexibility of the cable restraints on the 
identified structural parameters. A numerical example is presented to illustrate the performance of the 
proposed identification procedure in the case of frequencies contaminated by measurement errors. 
 
 
THE CABLE MODEL 
 
Let us consider a stay cable of length l, with constant bending stiffness (EI) and mass per unit of 
length (m), subject to an axial force T (see Fig. 1). By neglecting sag-extensibility and shear 
deformability effects, undamped planar flexural vibrations are governed by the partial differential 
equation: 
 

EI ∂x4y – T ∂x2y + m ∂t2y = 0 (1) 
 
where y(x, t) is the transverse displacement of the cable centerline, x∈[0, l] is a spatial coordinate 
running over the chord of the element and t is the time.  By introducing the characteristic frequency 
W0 = √(T/ml2) and the non-dimensional bending stiffness e = √(EI/Tl2), Eq. (1) can be re-written in the 
non-dimensional form:    
 

e2 ∂x4u –  ∂x2u + ∂t2u = 0 (2) 
 
where x = x/l, t = w0t and u(x, t) = y(x(x), t(t))/l. General solutions of Eq. (2) can be expressed as u = 
f(x) sin(wt - q), where w is a non-dimensional vibration frequency, q is a phase angle depending on 
initial conditions and f(x) is a mode shape function. The vibration frequencies w and shape functions 
f(x) are the eigensolutions of a fourth order Sturm-Liouville problem defined by the ordinary 
differential equation: 
 



e2 f´´´´ – f´´ – w2f = 0 (3) 
along with suitable boundary conditions modeling the cable restraints. Please notice that a prime is 
adopted to denote differentiation with respect to x. 
 
 

 
Figure 2. Schematic representation of a stay cable on flexible supports subject to a tensile load T. 

 
 

By taking into account both the rotational and translational flexibility of the end restraints, the 
boundary conditions can be introduced as [10]:  
 

(1 – rT0) [e3 f´´´(0) - e f´(0)] + rT0 f(0)= 0 
(1 – rT1) [e3 f´´´(1) - e f´(1)] + rT1 f(1)= 0 

(1 – rR0) e2 f´´(0) - rR0 ef´(0)= 0 
(1 – rR1) e2 f´´(1) + rR1 ef´(1)= 0 

 
(4) 

 
where rTi and rRi (i=0,1) are, respectively, the translational and rotational degree-of-fixity parameters: 
 

 rTi  = e kTi / (1+e kTi) , with: kTi = KTi l/T 
rRi  = kRi / (e+kRi) , with: kRi = KRi /(Tl) 

(5) 

 
As it can be easily appreciated through an inspection of Eq. (5), each degree-of-fixity parameter is 
bounded within the closed unit interval [0,1], with lower and upper bound values corresponding, 
respectively, to the ideal cases of free and perfectly restrained degree-of-freedom. 
 
The general solution of Eq. (3) can be expressed as: 
 

f(x; w) = A1 sin(z1(w) x) + A2 cos(z1(w) x) + 

  A3 exp(-z2(w) x) + A4 exp(- (1-z2(w)) x)  

(6) 

 
where Ai (i=1,…,4) are integration constants, while z1 and z2 are defined as: 
 

e√2 zj(w) =  √[(-1)j+√(1+4e2w 2)],  j=1,2 (7) 

 
Substitution of Eqs. (6) and (7) in (4) yields the algebraic eigenvalue problem:  
 

B(w ; e, P) a = 0 (8) 

 



where a is a column vector listing the integration constant Ai (i=1,…,4) and B is a 4×4 matrix whose 
entries depend on the non-dimensional frequency w, the non-dimensional bending stiffness e and the 
degree of fixity parameters P={rT0 , rT1 , rTR0, rR1 }. 
It is worth noting that values of e typical of stay cables are in the order of 1%-2% or lower [7]. This 
makes the boundary value problem (3)-(4) and its algebraic counterpart (8) singularly perturbed 
problems, hinting at the same time the existence of boundary layers in the mode shapes and possible 
numerical difficulties if appropriate solution strategies are not used.  
 
Due to the smallness of the bending stiffness parameter e, however, approximate solutions of the 
eigenvalue problem (8) can be conveniently obtained through standard perturbation techniques. The 
authors have recently derived in [10] the following second-order accurate asymptotic expression for 
the non-dimensional natural frequencies of the cable:  
 

wk = kp {1+ 2 pe  + [(kp)2/2 + 4p2] e2} + o(e3)  , k=1, 2, 3,... (9) 

 
where p is a single non-dimensional parameter that globally takes into account the flexibility of the 
restraints:   
  

p = 1 + rR - 1/rT 
(10) 

 
with 
 

rR = (rR0 + rR1)/2   and    rT =  2rT0rT1/(rT0+rT1) 
(11) 

  
The Eq. (9) generalizes to the case of cables on flexible translational and rotational supports the 
asymptotic solution derived by Morse and Ingard [12] for a doubly-clamped cable. As expected, at the 
leading order term, the asymptotic solution in Eq. (9) delivers the non-dimensional natural frequencies 
of the taut string model, i.e. kp. The cable bending stiffness and the flexibility of the restraints affect 
the first and second order corrections through the non-dimensional variables e and p.  
 
Once the non-dimensional natural frequencies are known, a simple re-scaling operation yields the 
natural frequencies Wk of the cable as:   
 

Wk = W0  wk  =  W0  kp {1+ 2 pe  + [(kp)2/2 + 4p2] e2} + o(e3)  , k=1, 2, 3,... (12) 

 
The Eq. (12) allows one to appreciate how, the progression of the natural frequencies reported to the 
mode rank) is a quadratic function of the mode number k with only two terms: the intercept and the 
second degree coefficient. As a consequence, only two out of the three independent parameters {W0, e, 
p} can be identified on the basis of the knowledge of a set of natural frequencies of a stay cable 
characterized, as it is usual, for small values of the non-dimensional bending stiffness parameter e. 
 
 
THE PARAMETER IDENTIFICATION PROBLEM 
 
The second-order accurate asymptotic equation (12) can be used to set up a simple but effective 
procedure to simultaneously identify the parameters W0  and e. Once these parameters are known, the 
cable axial force and bending stiffness can be simply evaluated as:  



 

T = mlW02    and    EI = Tl2e2 (13) 

 
The proposed identification procedure, firstly developed by the authors in [10], is based on a standard 
linear regression analysis in a transformed coordinate system. The proposed method is as simple as 
the classic identification strategies relying on the taut string model but additionally allows one to (a) 
get an estimate of the cable bending stiffness, and (b) explicitly accounting for the flexibility of the 
restraints through the parameter p. Although this parameter is generally unknown and cannot be 
estimated on the sole knowledge of a set of measured frequencies (as long as typical stay cables with 
e<<1 are considered), as it has been theoretically shown in the previous Section, the proposed 
identification strategy allows one to simply assess the influence of the flexibility of the cable restraints 
on the outcomes of the identification procedure. 
 
Let us consider an ordered set of M natural frequencies {Wk1, Wk2, …, WkM}, with kj ∈ N+ for any 
j∈[1,M] and ki<kj if and only if i<j. The points of the set can be re-ordered by introducing a pair of 
integral coordinates (hm, gm)  defined as:  
 

hm = 1/m · Smj=1,m [Wkj/(kj p)]   and    gm= 1/m · Smj=1,m  k2j , m=1, 2,..., M (14) 

 
Substitution of Eq. (12) in the above definitions of (hm, gm) yields the linear relationship:  
 

hm =  b0 + b1 gm (15) 

 
with intercept b0 and slope coefficient  b1, respectively defined as:   
 

b0= W0 · (1 + 2pe + 4p2e2)   and   b1= W0/2 · p2e2 (16) 

 
Whenever a set of M frequencies {Wk1*, Wk2*, …, WkM*} is known from tests, the definitions in Eq. 
(14) can be used to plot the experimental data in the plane (hm, gm). Standard linear fitting techniques, 
then, can be adopted to get estimates b0* and b1* of the intercept and slope coefficient of the linear 
equation (15). Substitution of b0* and b1* in Eq. (16) yields of non-linear algebraic equations that can 
be solved to get estimates W0*  and e*  of the unknown parameters W0 and e. By noticing that b0 is of 
the same order of magnitude of  W0, b1 is  of the same order of magnitude of  e2 and e<<W0 for typical 
stay cables, first-order accurate approximate expressions for  W0 and e read:  
 

W0* = b0* (1 - 2pe* ) (17) 

 
and  
 

e*= √[(2b1* )/(pb0 )] 
(18) 

 
A simple inspection of Eqs. (17) and (18) reveal that the flexibility of the restraints doesn’t affect the 
estimate of the non-dimensional bending coefficient, but introduces a bias on the estimator W0*: 
 



bias[W0*]=2(p*-p) e*W0*  
(19) 

 
where p* and p denote, respectively, an assumed value and the unknown true value of the parameter 
modeling the restraints.  
 
Upper and lower bounds of the bias can be easily determined in the special, but practically important, 
case of negligible translational flexibility of the cable restraints. In this case the parameter p turns out 
to be bounded in the unit interval [0,1], and the maximum absolute value of the difference (p*-p) is 
equal to one. Whenever information on the rotational stiffness of the support is not available, as it is 
often the case, a pragmatic choice leading in general to a minimization of the bias (19) is to set p*=0.5. 
Any other user-defined choice is also possible, including an interval analysis. 
 
 
APPLICATION EXAMPLE 
 
The performance of the proposed parameter identification procedure is illustrated in this Section with 
reference to a typical stay cable, characterized by W0=5.66 rad/s, e=0.01, p=0.75 and T=4000 kN. In 
order to simulate experimental input data, the eigenvalue problem (8) has been numerically solved to 
get the first five natural frequencies of the cable. These frequencies, then, have been corrupted by 
multiplying their nominal values by a unit-mean and low intensity Gaussian noise, to account for the 
effects of measurement errors. Different values of noise intensity, ranging from 0 to 2.5%, have been 
considered. For each noise intensity value, a sample of 5,000 sets of noisy natural frequencies has 
been randomly generated.  
 
Each set of noisy natural frequencies has been first represented in the plane  (hm, gm), through an 
application of the transformation of coordinates (14), as it is shown in Fig. 2. For each set of simulated 
experimental data, then, the coefficients b0 and  b1, have been evaluated through an application of the 
ordinary least squares method. The corresponding values of  W0 and e  have been  calculated through 
Eqs. (17) and (18) under two different assumptions on the restraint parameter p, namely: p=0 and p=1. 
These two values, as already noticed in the previous section, correspond to the upper and lower 
theoretical values of p whenever the translational flexibility of the cable restraints can be considered 
as negligible. The outcomes of the proposed identification procedure (curves labeled as ‘LR, p=0’ and 
‘LR, p=1 ’ in Fig. 3) have been compared to those obtained through a simple inversion of the formula 
for the fundamental frequencies of the taut string model (curves labeled as ‘TS’ in Fig. 3). 
 

  
Figure 2. First five natural frequencies of the stay cable. Measured results are simulated by corrupting the solutions of the 
eigenvalue problem (8) through a zero-mean Gaussian noise with intensity In = 1.0%. (a) Representation in the plane (Wk 
/kπ, k). (b) Representation in the plane  (hm, gm). A set of ten simulated measurement results is shown in the figures. 
 



As it can be appreciated from Fig. 3, the proposed identification strategy delivers estimates of the 
characteristic frequency W0 (directly related to the cable axial force through Eq. (15)) as good as those 
obtained through the classic taut-string formula over the whole range of noise intensity values herein 
considered. Differently than the taut-string formula, however, the proposed identification strategies 
allows to easily get upper and lower bound estimates for W0 along with an estimate of the non-
dimensional bending stiffness e. It is worth noting that the estimate of e does not depend on the 
assumed value of the restraint parameter p and is characterized by a coefficient of variation 
significantly higher than the one associated to the estimates of W0 (cf. Figs. 3(b) and 3(c)). This latter 
remark allows one to conclude in order to obtain reliable estimates of the non-dimensional bending 
stiffness e, a large number of experimental data, such as the one that can be obtained e.g. through a 
continuous monitoring strategy, is needed.  
 
CONCLUSIONS 
 
The modal properties of a stay cable anchored to flexible supports have been analytically investigated, 
leading to the definition of a single parameter that globally describes the flexibility of the restraints. 
The identifiability of this parameter within a frequency-based identification procedure has been 
critically discussed and a simple yet effective procedure to simultaneously identify the axial force and 
the bending stiffness of the cable has been presented. The proposed procedure allows to generalize the 
current practice aiming at fitting the frequency vs. mode number relation obtained with simpler 
structural models (e.g. the taut string model). Moreover it paves the way to a simple assessment of the 
effects of the uncertainties related to the definition of the flexibility of the cable restraints on the 
identified structural parameters.  
 

  

  
 

Figure 3.  Results of the proposed identification strategy, averaged over five-thousand runs, as a function of the noise 
intensity for a stay cable anchored to flexible restraints characterized by a theoretical value of the restraint parameter equal 



to p=0.75. (a) Characteristic frequency W0 (target value: W0=5.66 rad/s). (b) Coefficient of variation of the estimated 
value of W0. (c) Non-dimensional bending stiffness å (target value: 0.01). (d) Coefficient of variation of the estimated 
value of ε. The results shown in Fig. 13(a) and (b) have been obtained by setting the restraint parameter p  equal to: p = 0 
(LR, p = 0), and p = 1 (LR, p = 1). Figures (a) and (b) also show a comparison with the outcomes of a simple identification 
procedure based on the taut string model (TS). Notice that a single curve LR is shown in Figures (c) and (d), since 
estimates of å are independent of the restraint parameter p. 
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