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INTRODUCTION

Lensing statistics gives a method of testing the cosmological constant at in-

termediate redshifts|at low and high redshifts the possibilities for measuring �

0

are limited and even at intermediate redshifts �

0

often cancels out in observable

relations|using well-understood lensing theory and standard astrophysical assump-

tions.

It has recently been suggested by many authors (see, for example, Fukugita et al.

1

and references therein) that gravitational lensing statistics can provide a means of

distinguishing between di�erent cosmological models, most e�ectively concerning the

value of the cosmological constant. Kochanek

2

has suggested a method based not

on the total number of lens systems but rather on the redshift distribution of known

lens systems characterised by observables such as redshift and image separation.

Looking at a few di�erent models, he concludes that at, �-dominated models are

�ve to ten times less probable than more `standard' models. The advantage of this

method is that it is not plagued by normalisation di�culties as are most schemes

involving the total number of lenses.

Since Kochanek was apparently able to get some interesting results using statis-

tics based on only four gravitational lens systems, I wanted to exlpore this more

thoroughly by looking at not just a few but all models characterised by �

0

and 


0

as well as varying degrees of homogeneity. I also looked at selection e�ects and did

some simulations to get a handle on what the results mean.

THEORY

I make the `standard assumptions' that the Universe can be described by the

Robertson-Walker metric and that lens galaxies can be modelled as non-evolving

singular isothermal spheres (SIS). This leads an equation for the relative di�erential

optical depth
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where a� := 4�

�

v�

c

�

(v� := v of an L� galaxy),  is the Faber-Jackson/Tully-Fisher

exponent, � the Schechter exponent, D

d

the angular size distance between the ob-

server and the lens and

Q(z

d

) := (1 + z

d

)
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The optical depth depends on the cosmological model through Q(z

d

) as well as

through the angular size distances, because of the fact thatD

ij

= D

ij

(z

i

; z

j

; �

0

;


0

; �).

The inuence of �, which gives the fraction of homogeneously distributed, as op-

posed to compact, matter is felt only in the calculation of the angular size distances,

whereas the cosmological model in the narrower sense makes its inuence felt here

as well as through Q(z

d

). The angular size distances can be calculated for arbitrary

cosmological models by the procedure given in Kayser & Helbig.
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CALCULATIONS

The following gravitational lens systems meet my selection criteria: 0142-100

(UM 673), 0218+357, 1115+080 (Triple Quasar), 1131+0456, 1654+1346 and 3C324.

(For more details on these systems see Refsdal & Surdej.

5

)

I considered the following ranges of values for the cosmological parameters:

�10 < �

0

< +10

0 < 


0

< 10

In order to measure the relative probability of a given cosmological model, I

de�ned the quantity f as follows: p

0 < f :=

R

z

l

0

d�

R

z

s

0

d�

< 1; (3)

where z

l

is the observed lens redshift for a particular system. (z

d

is used to denote

the variable corresponding to lens redshift as opposed to the measured value for

a particular lens.) The distribution of the di�erent f values (one for each lens

system in the sample) in b equally-sized bins in the interval ]0,1[ gives the relative

probability p of a given cosmological model, with

p =

b

Y

i=1

1

n

i

!

(4)

where n

i

is the number of systems in the i-th bin. (This de�nition allows only a

few discrete values, of course.) The variable b is a free parameter; since the most

information is obtained when b is equal to the number of systems, I adopt this value

for b.



RESULTS AND DISCUSSION

My results are in Fig. 1, plot b. (This is for � = 0:5; the results do not depend

strongly on �.

3

See Kayser & Helbig

4

for a discussion of this parameter.) One

can see basically that areas of equal probability occur in some fashion which is

not stochastic. Although there are only a few discreet values for the probability

as de�ned in Eq. (4), nevertheless one sees a degeneracy|there is a wide range of

cosmological models for a given probability. Plot c shows the result of neglecting

the observational bias, e.g. assuming that the lens could have its redshift measured

whatever this redshift were. As a comparison with plot b shows, this leads to a bias

against models with a high median expected lens redshift|those near the de Sitter

model.

For comparison, I have also tested the method on the systems used by Kochanek,

2

using m

lim

=1 und � = 1, both of which he implicitly assumes. (Of course, when

one considers �nite values for m

lim

, one cannot include systems with lens redshifts

which have been determined by means other than measured emission redshifts, such

as absorption lines (which assumes that the lens is also the absorber).) The re-

sults are in plot d where the relative probabilities are 0,

1

6

,

1

2

and 1 and comparing

the various models examined by Kochanek con�rm his conclusions. For instance,

the relative probabilities of the Einstein-de Sitter and de Sitter model are 1 and

1

6

, con�rming his result that at, �-dominated models are 5{10 times less probable

than standard ones. (However, taking m

lim

into account and/or using only directly

measured lens redshifts would produce quite di�erent results, as discussed above.)

This plot arti�cially indicates a low probability for models near the de Sitter model

for the same reasons as those discussed in connection with plot c.

NUMERICAL SIMULATIONS

For the numerical simulations, the observables �

00

(the radius of the Einstein ring

or half the image separation corresponding to the diameter of the Einstein ring),

z

s

and galaxy type were chosen randomly from an interval roughly corresponding

to the observed range of values in order to produce synthetic data comparable to

real observations. For a given cosmological model, the corresponding lens redshift

z

l

for each system was calculated from the observables and a randomly generated f

through (numerical) inversion of Eq. (3). This catalog was then used to determine

a relative probability for each of the points in the �

0

-


0

plane in the same manner

as for the real systems.

The Kolmogorov-Smirnov (K-S) test is of course a well understood method for

testing if two distributions are statistically signi�cantly di�erent. (See, e.g., Press

et.al.
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for a general discussion and de�nition of the K-S probability.) However, this

test can only be used for distributions with more than � 20 data points. Therefore

I plot in Fig. 1 in plots b, c, and d the probability given by Eq. (4) and in plot e

the K-S probability.

I have done simulations for a variety of world models and also for numbers of

systems between 20 and 50. In the interest of brevity, I present only one plot. Plot

e in Fig. 1 shows the results derived from a catalogue of simulated gravitational lens

systems. Since, even with 50 systems, no area can be excluded based on the K-S
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Figure 1: a. The relative di�erential optical depth (thin curve) and the calculated lens

brightness m (thick curve) as functions of z

d

. The world model is the de Sitter model (�

0

=

1:0, 


0

= 0:0) and the observables are those for the gravitational lens system 0142�100. The

ordinate gives the magnitude in Johnson R. For realistic limiting spectroscopic magnitudes

(� 24

m

) it is clear that one cannot sample the probability distribution without a strong bias.

b. Relative probability for the systems mentioned in the text, with a realistic value for m

lim

.

Here and in the other halftone plots, the relative probability increases linearly from white

to black. c. The same as b., but neglecting m

lim

, which, as in plot d., makes the models

near the de Sitter model appear more probable than they are. d. Relative probability for

the systems used by Kochanek. e. Results based on a catalogue of 50 simulated systems.

(Note the di�erent scale on the axes.) The cosmological model used to generate the lens

redshifts is the homogeneous Einstein-de Sitter model (� = 1:0, �

0

= 0:0, 


0

= 1:0).

probability|the white area has p = 0 due to the fact that at least one lens would

be fainter than m

lim

in these world models, as discussed in Helbig & Kayser

3

|

I conclude that, although one can qualitatively understand the physics which at

least in part is responsible for the results presented in Fig. 1, the actual relative

probabilities are more indicative of intrinsic scatter in the redshifts of the lenses

than a hint of the correct cosmological model.

SUMMARY AND CONCLUSIONS

For known gravitational lens systems the redshift distribution of the lenses was

compared with theoretical expectations for 10

4

Friedmann-Lemâ�tre cosmological

models, which more than cover the range of possible cases. The comparison was used

for assigning a relative probability to each of the models. However, my simulations

indicate that a reasonable number of observed systems cannot deliver interesting

constraints on the cosmological parameters using this method. Therefore, it seems

that lensing statistics can tell us something about the cosmological model only if

one makes use of all information, which means coming to grips with normalisation

di�culties.
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