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Abstract

The e�ects of a locally inhomogeneous uni-

verse on the uncertainty of the Hubble con-

stant as determined from measured time de-

lays in gravitational lens systems is discussed.

The e�ect has been described adequately in

the literature, but it is usually not taken into

account when discussing measurements of H

0

using gravitational lens time delays. Depend-

ing on the cosmological model and the red-

shifts of the particular lens system considered,

the e�ect of local inhomogeneity can signif-

icantly increase the uncertainty in the deter-

mination of H

0

, and in `probable' cosmological

models can be the dominant uncertainty.

a. Introduction

The idea of measuring the Hubble constant

H

0

using the time delay between images of

a source which is multiply imaged due to

the gravitational lens e�ect was introduced by

Refsdal (1964), who also discussed the higher-

order dependence on the other main cosmolog-

ical parameters, in modern notation the cos-

mological constant �

0

and the density param-

eter 


0

(Refsdal 1966). In particular, Refsdal

(1966) introduced the `cosmological correction

function' T which describes these higher-order

e�ects. Kayser & Refsdal (1983) showed that

this same formalism also applies in the case

of an arbitrary lens mass distribution and in

the extreme case of a locally inhomogeneous

universe, the so-called empty-cone approxima-

tion. Since the cosmological correction func-

tion depends only on the redshifts of the lens

and source and on the distances involved, it

is straightforward to generalise even further,

using the formalism and methods set out in

Kayser et al. (1997), to cases intermediate

between the traditional approach (which as-

sumes an idealised universe consisting of a per-

fect 
uid) and the empty-cone approximation.

Recently, not only has the general idea of

measuring H

0

by lens time delays become

more acceptable, but (partly the cause of this)

other uncertainties, such as measuring (and in-

terpreting!) the time delay itself (see Pelt et

al. (1996) and references therein) and mod-

elling the lens mass distribution have become

better understood, so that now the dominant

uncertainties are cosmological|the values of

�

0

and 


0

and the parameter � discussed be-

low, which describes local inhomogeneity.

b. Basic theory

i. Time delay

One can write an expression for the time delay

(cf. Kayser & Refsdal (1983))

H

0

= (�t)

�1

Tf (1)

where H

0

is the Hubble constant, �t the time

delay, T the cosmological correction function

and f is a function of observational quantities

and the mass distribution of the lens and will

not be further discussed here. The cosmologi-

cal correction function

T =

H

0

c

D

d

D

s

D

ds

(1 + z

D

)

z

s

� z

d

z

d

z

s

(2)

is de�ned so that T ! 0 for z

s

! 0.
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Figure 1 Dependence of the angular size

distance D on �

0

and �

The angular size distance from the observer

and from an object at z = 2 to another at

higher redshift as a function of the redshift

z for di�erent cosmological models. Thin

curves are for � = 0, thick for � = 1. The

upper curves near z = 0 (z = 2 at lower

right) are for �

0

= 2, the lower for �

0

= 0.




0

= 1 for all curves. The distances are

given in units of c=H

0

.

ii. Cosmological distances and

the e�ects of a locally inhomo-

geneous universe

See, e. g., Kayser et al. (1997) for an overview

of cosmological distances and for a method of

taking inhomogeneities into account when cal-

culating cosmological distances. Figures 1{3

show the dependence of the angular size dis-

tance (the relevant distance for gravitational

lensing) on the cosmological model and on

the inhomogeneity parameter �, which is the

fraction of smoothly distributed matter within

the light cone which determines the distance;

1� � is the fraction of the matter distributed

clumpily. Here it is assumed that all clumps

are outside the light cone (`clumps' inside hav-

ing been taken into account explicitly as a

gravitational lens e�ect) and far enough away

so that the e�ects of shear can be ignored.
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Figure 2 Dependence of D on �

0

and 


0

For � = 1 D(�

0

;


0

) is plotted. The source

redshift is z = 2. Starting from (�

0

;


0

) =

(1; 0) and spiraling clockwise, contours are

at 0:6; 0:5; 0:4; 0:3; 0:2; 0:1; b where b separates

the cosmological models with and without

a big bang (in the latter the distance is not

de�ned for z = 2).
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Figure 3 Dependence of D on �

0

and 


0

The same as Fig. 2 but for � = 0. From

upper left to lower right, contours are at

0:3; 0:4; 0:5; 0:6; b.
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Figure 4 Dependence of T on D

s

, D

ds

and

�

For a �xed cosmological model (�

0

= 0

and 


0

= 1, as indicated) T (z

s

) is plotted.

Thin curves correspond to � = 1, thick

to � = 0. From top to bottom, z

d

=z

s

=

0:7; 0:5; 0:3; 0:1; 0:1; 0:3; 0:5; 0:7.

c. The cosmological cor-

rection function

Figures 4{15 show the dependence of T on

the cosmological model. The parameter space

examined roughly corresponds to cosmological

models which cannot be ruled out observation-

ally. Thus, the spread of T gives an idea of

the uncertainty in H

0

when determined from a

measured time delay, in addition to any uncer-

tainties in (the interpretation of) the measure-

ment itself and the lens model. Alternatively,

if H

0

and the lens models are well-constrained

by other means, each lens system with a mea-

sured time delay provides an independent con-

straint on �

0

and 


0

. The dependence of T on

the cosmological parameters comes solely from

the in
uence of the latter on the angular size

distances. Since � = 0 is an extreme case,

one could then rule out world models above a

contour line such as in Fig. 11; this is inter-

esting since the direction of these contours is

such that a degeneracy present in many other

cosmological tests|lensing statistics, m-z re-

lation, age of the universe|can be broken.
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Figure 5 Dependence of T on D

s

, D

ds

and

�

The same as Fig. 4 but for a di�erent values

of �

0

and 


0

.
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Figure 6 Dependence of T on D

s

, D

ds

and

�

The same as Fig. 4 but for a di�erent values

of �

0

and 


0

.
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Figure 7 Dependence of T on D

s

, D

ds

and

�

The same as Fig. 4 but for a di�erent values

of �

0

and 


0

.
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Figure 8 Dependence of T on �

0

, 


0

and

�

For �xed source and lens redshifts (z

d

= 0:9

and z

s

= 1:3) T (


0

) is plotted. As in Fig. 4,

thin curves correspond to � = 1, thick to

� = 0. The curves for which T < 0 for




0

< 0:5 are for �

0

= 2; in this case lower val-

ues of 


0

correspond to the so-called bounce

models (see, e.g., Kayser et al. (1997)). For

the other curves, from top to bottom �

0

=

1:0; 0:0; 0:0; 1:0.
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Figure 9 Dependence of T on �

0

, 


0

and

�

The same as Fig. 8 but with z

d

and z

s

equal

to the values in the gravitational lens sys-

tem 0218 + 357.
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Figure 10 Dependence of T on �

0

and 


0

For �xed source and lens redshifts (z

s

=

1:3 and z

d

= 0:9) T (�

0

;


0

) is plotted, here

for the case of � = 1. From (�

0

;


0

) =

(0; 0) spiraling clockwise, contours are at

1:1; 1:0; 0:9; 0:8; 0:7; b.
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Figure 11 Dependence of T on �

0

and 


0

The same as Fig. 10 but for � = 0. From

lower left to upper right, contours are at

1:1; 1:2; 1:3; 1:4; 1:5. The contour at lower

right is b, the one next to it 1:1.
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Figure 12 Dependence of T on � and 


0

For �xed source and lens redshifts (z

s

= 1:3

and z

d

= 0:9) T (�;


0

) is plotted, here for the

case of �

0

= 0. From left to right, contours

are at 1:25; 1:20; 1:15; 1:10; 1:05; 1:00; 0:95; 0:90.
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Figure 13 Dependence of T on � and 


0

The same as Fig. 12 but for k = 0. Contours

as in Fig. 12.
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Figure 14 Dependence of T on z

s

and z

d

For a �xed cosmological model, (�

0

= 0 and




0

= 1) T (z

d

; z

s

) is plotted, here for � = 1.

From lower left to upper right, contours are

at 0:99; 0:96; 0:93; 0:90; 0:87; 0:84.
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Figure 15 Dependence of T on z

s

and z

d

The same as Fig. 12 but for � = 0. From

lower left to upper right, contours are at

1:1; 1:4; 1:7; 2:0; 2:3; 2:6; 2:9; 3:2.

d. Summary and conclu-

sions

The uncertainty due to cosmological consider-

ations, parametrised by the cosmological cor-

rection function T , in the value of H

0

as de-

rived from a measured time delay generally be-

haves as follows when the other parameters are

held constant:

1

� jT j increases with increasing z

d

� jT j increases with decreasing �

� T increases with z

s

for � = 1 and de-

creases for � = 0

� jT j increases with increasing 


0

� jT j increases with increasing �

0

except

when 


0

is small

in order of generally decreasing importance.

Thus, if one is interested in minimising this un-

certainty, one should measure the time delay

preferentially in systems where z

d

=z

s

is rela-

tively low and, less important, where z

s

itself is

small. Should � prove to be � 1 then the need

1

See also Kayser & Refsdal (1983)

for small source and (relatively) small lens red-

shifts is less urgent, and the dependence on �

0

would be made even smaller than it already

generally is. Similarly, a small value for 


0

would decrease the uncertainties due to � and

�

0

. Of course, if one knows H

0

already, then

the criteria for desirable source and lens red-

shifts and for desirable values of the other cos-

mological parameters are reversed, since then

one could use the observations to constrain �

0

and 


0

.

It is interesting to contrast the dependency

of T on the cosmological parameters �

0

, 


0

and � with that of the statistics of multiply-

imaged systems in surveys (see, e. g., Fukugita

et al. (1992)): the order of decreasing impor-

tance in the latter case is �

0

, 


0

and �, just

the opposite as for the case of T considered

here.
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