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ABSTRACT Supervised image classification problems rely on training data assumed to have been
correctly annotated; this assumption underpins most works in the field of deep learning. In consequence,
during its training, a network is forced to match the label provided by the annotator and is not given the
flexibility to choose an alternative to inconsistencies that it might be able to detect. Therefore, erroneously
labeled training images may end up “correctly” classified in classes which they do not actually belong
to. This may reduce the performances of the network and thus incite to build more complex networks
without even checking the quality of the training data. In this work, we question the reliability of the
annotated datasets. For that purpose, we introduce the notion of ghost loss, which can be seen as a regular
loss that is zeroed out for some predicted values in a deterministic way and that allows the network to
choose an alternative to the given label without being penalized. After a proof of concept experiment, we
use the ghost loss principle to detect confusing images and erroneously labeled images in well-known
training datasets (MNIST, Fashion-MNIST, SVHN, CIFAR10) and we provide a new tool, called sanity
matrix, for summarizing these confusions.

INDEX TERMS classification, computer vision, deep learning, mislabeled data, noisy labels

I. INTRODUCTION

LARGE amounts of publicly available labeled training
images are at the root of some of the most impressive

breakthroughs made in deep supervised learning in recent
years. From several thousands of images (e.g. MNIST [9],
CIFAR10 [8], SVHN [12]) to millions (e.g. ImageNet [3],
Quick Draw [5]), such datasets are often used as a basis
upon which new techniques are developed and compared
to keep track of the advances in the field. However, both
the collection and the annotation of such large datasets
can be time-consuming and are thus often computer-aided,
if not completely automated. This results in the produc-
tion of datasets that have not been manually checked by
humans, which is a practically impossible task in many
cases. Consequently, one cannot exclude the possibility that
annotation errors or irrelevant images are present in the final
datasets released publicly. These are generally randomly
split into a training set from which a network learns to
classify the images and a test set used to measure the
performances of the network on unseen images, both of
which may thus contain misleading images. By construction
of these two sets, some errors can be consistent between
them, which makes them difficult to detect and may reduce

FIGURE 1. Training images of MNIST, Fashion-MNIST, SVHN officially
labeled as “4”, “shirt”, “9”. The ghost loss helps detecting such problematic
training images.

the performances when the network is deployed in a real
application. The other errors in the training and test sets
contribute to decrease the performances on the test set,
which might thus appear artificially challenging since top
performances are out of reach. In all cases, rather than
questioning the reliability of the data, the usual approach to
improve the results is to design larger and deeper networks,
or networks that are able to deal with label noise [4], [13].
We believe that a careful prior examination of the dataset
is more important, since it could greatly help solving the
classification task.

In this work, we introduce the principle of a “ghost loss”
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to help analyzing four widely used training sets (MNIST,
Fashion-MNIST [16], SVHN, CIFAR10) without requiring
a manual inspection of thousands of images. First, we
detail the notion of ghost loss, which allows the network to
choose an alternative to the label provided by the annotator
without being penalized during the training phase. This
way, when an image is mislabeled, the network is given
the possibility to report that it has detected a potentially
misleading image. This is done by zeroing out the loss
associated with the "most likely" wrong prediction. A proof
of concept experiment is presented in order to properly
illustrate its usefulness in a basic case. Then, the ghost loss
is used to examine the four previously mentioned training
sets. We show that some confusions are indeed present, such
as those displayed in Figure 1, and we define a new tool,
called sanity matrix, to summarize them. We also show
that different types of confusions can be detected. They
may originate from annotation errors, irrelevant images, or
from images that are intrinsically ambiguous and deserve
multiple labels. Let us emphasize that, in this work, we focus
on using the notion of ghost to analyze datasets. Further
developments will be envisioned in future works. Codes will
be released in due time.

II. RELATED WORK
Dealing with label noise in the context of supervised
machine learning is a well-known issue that challenges
researchers since the early developments of classifiers, as
detailed in [1]. A vast corpus of techniques has been
developed, most of which are listed in a recent exhaustive
survey [7], where even the latest methods related to general
deep learning algorithms are indexed. Interestingly, in [7],
authors propose to classify techniques for handling label
noise into six (possibly overlapping) categories. In the
following, we briefly describe those that are related to our
work.

1. Loss functions. Many works focus on designing loss
functions that are more robust to label noise than usual
losses, such as [17], [18]. In this category, our work is
somehow close to [18], which allows the network to refrain
from making a prediction at the cost of receiving a penalty.
A difference is that in our case, the network has to make
a prediction for each class, but we zero out the loss for
one of them. This principle is also close to [19], where
the loss ignores the training samples with the largest loss
values. However, in our case, only the prediction for one
class is ignored (almost based on the loss value as well),
not the training sample itself. Besides, works focusing on
designing robust loss functions generally do not attempt to
identify which training samples are mislabeled, contrary to
our work.

2. Consistency. Some works (including ours) are based
on the hypothesis that samples of the same class share
similar features. Hence, the features of a mislabeled sample
are not correlated with the features of the samples of its
assigned class. For instance, this idea is used in [20] through

a Siamese network trained to predict the similarity between
faces, via the distance between their features in a lower-
dimensional space. In comparison, our work can be seen as
comparing the features with a fixed prototype of reference
and thus does not need pairwise training.

3. Data re-weighting. These techniques attempt to down-
weight the importance of the training samples that might
be mislabeled during the learning process. The method
previously mentioned [19] is a particular case of this class,
as some training samples are assigned a null weight. In our
case, a null weight is assigned on the predictions level, hence
a training sample is never completely discarded. In [21],
authors propose to re-weight the gradients computed from
the predictions of the network to accomodate for the noisy
labels. The weights depend on the type of loss function used
and on the prediction values themselves. In our case, zeroing
out the loss for one prediction also modifies the gradients
but is loss-agnostic.

4. Label cleaning. Some works attempt to clean the labels
on-the-fly during training. For instance, [22] use transfer
learning strategies to compare the features of an image with
features of reference (as for method 2.) before deciding to
accept the label as is or to modify it. However, this method
requires a clean subset of data, which requires careful prior
examination. Our work does not require that and does not
modify the labels directly. It rather helps analyzing the
dataset after a network has been trained.

Finally, let us note that no paper actually provides a way
to assess the quality of a dataset as we do in this work,
nor really aims at exposing mislabeled images. Besides,
related works focus on reaching high performances, while
we intentionnally reduce the discriminative power of our
network to achieve our objectives.

III. METHOD

We assume to have a K-classes classification network which
outputs, for each input image, K feature vectors of a given
size n. The k-th feature vector is associated with the k-th
class and can be seen as a vector of class-specific features
used to compute a prediction value ypred, k that determines
whether the input image belongs to that k-th class or not.
For instance, in [14], the length of the k-th feature vector
is used to compute ypred, k, but other choices can be made,
such as its distance from a fixed reference vector, as in [2].
Most standard architectures can be seen as using n = 1
and the k-th “feature vector” is ypred, k itself. As for any
network, the prediction vector ypred made of the K values
obtained from the K feature vectors is compared with a one-
hot encoded ground-truth vector ytrue through a loss function
L(ytrue, ypred). The k-th component of ytrue is noted ytrue, k.
We assume that the loss can be decomposed as the sum of
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K losses, in a multiple binary classifiers fashion:

L(ytrue, ypred) =
K∑

k=1

ytrue, k L
k
1(ypred, k)

+ (1− ytrue, k)L
k
0(ypred, k) , (1)

where Lk
1(ypred, k) (resp. Lk

0(ypred, k)) is the loss generated
by ypred, k when ytrue, k = 1 (resp. 0). One generally chooses
the same Lk

1(.) for all the values of k, up to class-specific
multiplicative factors used to handle class imbalance; the
same principle holds for Lk

0(.). For example, in the case
of the categorical cross-entropy loss preceded by a softmax
activation, one has n = 1, Lk

1(.) = − log(.) for all k and
Lk
0(.) = 0 for all k.
In this configuration, the network is not allowed to ques-

tion the true labels ytrue provided by the annotator. Indeed, in
the back-propagation process, in order to minimize the loss,
it is forced to update all the feature vectors towards given
target zones, i.e. zones where their associated prediction
values are close to (or far from) target values such as 0,
0.5, 1, ... . However, this can be problematic in some cases.
For example, if an image of a horse is erroneously labeled
as a truck, then the network has to find a way to produce
a feature vector “horse” whose prediction value indicates
that the image is not of a horse and a feature vector “truck”
whose prediction value indicates that the image represents
a truck. Now, considering that the network has many other
training images of horses and trucks correctly labeled at its
disposal, it will be able to detect their characteristics and
to produce discriminative “horse” feature vectors for horses
and “truck” feature vectors for trucks. Therefore, despite
being labeled as truck, the erroneously labeled image of a
horse is still likely to exhibit a horse feature vector giving a
prediction value which is much “more significant” than the
prediction values of the airplane, frog, or any other class. By
“more significant”, we mean closer to the aforementioned
target value, e.g. “more likely” in a probabilistic setting. In
such a case, it would be more appropriate not to penalize
the horse feature vector, which conveniently already appears
to be associated with “the most significant non true class”.
This is the motivation behind the present work.

Definitions.
In order to give the network the capacity to opt for an
alternative to the labels provided by the annotator, we
introduce the notions of “ghost feature vector” and “ghost
loss”. The ghost feature vector of an image is the feature
vector corresponding to the most significant prediction value
among the K − 1 feature vectors not corresponding to
the feature vector of the true class. The contribution to L
engendered by the ghost feature vector is zeroed out and is
called a ghost loss:

L
kghost
0 (ypred, kghost)← 0 . (2)

This means that, during the training phase, the ghost feature
vector is not forced to target any particular zone, and is not
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FIGURE 2. Illustration of the ghost feature vector and ghost loss principle. A
training image (a) of a digit “7” is mislabeled as “4”. The network (b) outputs
feature vectors (c). The feature vector leading to the most significant prediction
value among those different from the feature vector “4” is selected as the ghost
feature vector. Here, the feature vector “7” is expected to be the ghost feature
vector. The loss generated by this ghost feature vector is then zeroed out (d).

involved in the update of the weights from one batch to
the next; it is essentially invisible in the back-propagation,
hence its name. The concept of ghost vector is illustrated in
Figure 2.

From an implementation point of view, training a network
with ghost feature vectors and a ghost loss is similar to
training it without, only the loss defined in Equation 1 needs
to be adjusted. Given a one-hot encoded label ytrue and the
prediction vector of the network ypred, the loss Lghost can be
written as:

Lghost(ytrue, ypred) =
K∑

k=1

ytrue, k L
k
1(ypred, k)

+ γk(1− ytrue, k)L
k
0(ypred, k) , (3)

where γk = 0 if k = kghost, and γk = 1 otherwise.
Two important characteristics are thus associated with a

ghost feature vector: its class kghost, which is always one of
the K − 1 classes not corresponding to the true class of the
input image, which we call the ghost class, and its associated
prediction value ypred, kghost , that we call ghost prediction. The
ghost class kghost of an image is obtained in a deterministic
way, at each epoch, as the class of the most significant non
true class prediction; it is not a Dropout [15], nor a learned
Dropout variant (as e.g. [10]). The ghost class of an image
can change from one epoch to the next as the network trains.
Ideally, a ghost feature vector will have a significant ghost
prediction when its ghost class is a plausible alternative to
the true class or if the image deserves an extra label, and
will not otherwise. The evolution of a ghost feature vector
during the training is dictated by the overall evolution of
the network.

Subsequently, in the situation described above, at the end
of the training, the image of a horse labeled as a truck
should actually display two significant prediction values:
one for the feature vector corresponding to the “truck” class
since the network was forced to do so, and one for the
feature vector corresponding to the “horse” class. Indeed,
the network probably selected the “horse” feature vector as
ghost feature vector because the image displays the features
needed to identify a horse and it was not forced to give it
a non significant prediction value. Looking at the images
with significant prediction values at the end of the training
allows to detect the images for which the network suspects
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FIGURE 3. Graphical representation of the network structure used for the
experiments in this paper.

an error in the label, or for which assigning two labels might
be relevant.

We can derive a new tool from the notions defined above
that helps aggregating information on the number of training
images that might be considered as suspicious. This tool
takes the form of a matrix, which we call “sanity matrix”,
in which the counts of the pairs (true class, ghost class) are
reported when the ghost prediction is sufficiently significant
with respect to a given threshold.

Let us note that the ghost loss principle should not be
used along with the categorical cross-entropy loss preceded
by a softmax activation. Indeed, in such a case, the use of
Lk
0 is obsolete since the cross-entropy loss can be seen as a

particular case of Equation 1 in which Lk
1(.) = − log(.) for

all k and Lk
0(.) = 0 for all k. Therefore, the introduction of

γk in Equation 3 has no impact on the loss.

IV. EXPERIMENTS
A. NETWORK USED
The network used in the following experiments comes
from [2]. It is a simplified and adapted version of the
network introduced in [14]. The network that we use for
the experiments is represented in Figure 3 and is composed
of the following elements, as in [2].

First, two 9×9 (with strides (1,1) then (2,2)) convolutional
layers with 256 channels and ReLU activations are applied,
to obtain feature maps. Then, we use a fully connected layer
to a K×n matrix, followed by a BatchNormalization and an
element-wise sigmoid activation, which produces what we
call the Hit-or-Miss (HoM) layer composed of K feature
vectors of size n. We set n = 16 as in [2]. The Euclidean
distance with the central feature vector C : (0.5, . . . , 0.5) is
computed for each feature vector of HoM, which gives the
prediction vector of the model ypred. This is done such that,
for a given image, the feature vector of the true class is close
to C (prediction value ypred, k close to 0) and the feature
vectors of the other classes are far from C (prediction
value ypred, k close to

√
n/2 = 2). In this spirit, regarding

the loss defined in Equation 3, we choose Lk
0(ypred, k) and

Lk
1(ypred, k) such that, for all k:

Lk
0(ypred, k) = 0.5 max(0, y2pred, k − 1.9 ypred, k + 0.9) , (4)

and

Lk
1(ypred, k) = max(0, y2

pred, k − 0.1 ypred, k) . (5)

(a) (b)

FIGURE 4. Illustration of the type of loss used in our experiments, in the
2-dimensional case (n = 2). The loss associated with the feature vector of the
true class is given by plot (a). The loss-free hit zone is the area within the black
circle. The loss generated by the other feature vectors is given by plot (b). The
loss-free miss zone is the area outside the black circle.

The loss associated with the feature vector of the true class
(L1) and the loss associated with the other feature vectors
(L0) are represented in Figure 4 in the case where n = 2.
The zones where the losses equal zero are called hit zones
(for L1) and miss zones (for L0) and are reached when
ypred, k < 0.1 and ypred, k > 0.9 respectively. The network
has to try to place the feature vector of the true class in the
hit zone of its own space, and the feature vectors of the other
classes in the miss zones of their respective spaces. For the
classification task, the label predicted by our network is the
index of the lowest entry of ypred.

Besides, a decoder follows the HoM layer to help vi-
sualize the results, as represented in Figure 3, but is not
mandatory for the ghost loss to work. During the training, all
the feature vectors of HoM are masked (set to 0) except the
one related to the true class, then they are concatenated and
sent to the decoder, which produces an output image Xrec,
that aims at reconstructing the initial image X . The decoder
consists in two fully connected layers of size 512 and 1024
with ReLU activations, and one fully connected layer to a
tensor with the same dimensions as the input image, with a
sigmoid activation. The quality of the reconstructed image
Xrec is evaluated through the mean squared error with X .
This error is down-weighted with a multiplicative factor α
set to 0.392 and is then added to Lghost to produce the final
composite loss.

In the following, the networks are run during 250 epochs
with the Adam optimizer with a constant learning rate of
0.001, with batches of 128 images.

B. PROOF OF CONCEPT
In order to illustrate the principle of the ghost loss detailed
above, we perform the following “proof of concept” ex-
periment. We consider the MNIST training set for clearer
visual representations. We assign the label “0” to the first
image, which actually depicts a digit “5”, as shown in
Figure 5. Then, we run our network without using the
ghost feature vectors nor the ghost loss. At the end of the
training, we compute the prediction values of that image.
In the present setting, let us recall that we expect small
prediction values for the more legitimate classes and large
prediction values for the non plausible classes. As expected,

4 VOLUME 1, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2978283, IEEE Access

Deliège et al.: Ghost Loss to Question the Reliability of Training Data

(1) (2) (3) (4) (5) (6) (7)

FIGURE 5. (1) Initial image of a digit “5”, that we mislabel as “0”. Then, the
reconstructions from feature vector “0” when no ghost feature vector is allowed
(2), one ghost feature vector is allowed for this image only (3), one ghost
feature vector is allowed for each training image (4). None of the
reconstructions based on the feature vector of the “true class 0” matches the
initial image. Then, the corresponding reconstructions from feature vector “5”
(5,6,7). When ghost feature vectors are allowed, the network is able to
reconstruct the initial image from the feature vector “5”, which corresponds to a
non-true class, while it is not the case when no ghost feature vector is allowed.
This indicates that the introduction of ghost feature vectors enables the
network to learn representative features of non-true classes, when necessary.

(a) no ghost feature vector (b) one ghost feature vector

FIGURE 6. Prediction values of the 20 runs for the erroneously labeled image
when (a) no ghost feature vector is allowed (the network is confident that the
image is a “0” and nothing else), and when (b) a ghost feature vector is
allowed for this image. For (b), the network consistently suspects that the
image might actually display the digit “5”.

the lowest prediction value corresponds to the class “0”,
with ypred, 0 = 0.22; the image is thus ‘correctly’ classified
by the network, which is an obvious case of overfitting. The
second lowest prediction value corroborates our hypothesis
since it corresponds to the class “5”, with ypred, 5 = 1.10.
Given that ypred, 5 > 0.9, the network managed to place the
feature vector “5” in the miss zone, despite the fact that the
image actually represents a “5”. The decoder can be used
to visualize the information contained in feature vectors “0”
and “5”, as shown in Figure 5. It appears that, even though
the image is correctly classified as a “0” and the network
was trained to reconstruct the image from feature vector
“0”, the reconstruction based on feature vector “0” does not
match the initial image. Of course, the reconstruction based
on feature vector “5” does not represent a proper “5” either.
The experiment is repeated several times. In total, 20 runs of
our network are performed, consistently leading to similar
conclusions, as it can be visualized in Figure 6(a).

Then, we run the same experiment, but we allow one
ghost feature vector via the ghost loss only for that erro-
neously labeled image. We do not impose that this ghost
feature vector has to be feature vector “5”; we simply allow
the network, at each epoch, to choose one feature vector
per image that will not generate any loss. At the end of the
training, we compute the prediction values of that image. In
this case, we obtain ypred, 0 = 0.10 and ypred, 5 = 0.14, which
indicates that the network does not trust the label provided
since feature vector “5”, obviously chosen as ghost feature
vector, is close to the hit zone (prediction < 0.1). All the
remaining feature vectors are in the miss zone (prediction

> 0.9) as expected. In this case, reconstructing the image
from the information contained in feature vector “0” is again
far from the initial image, while the reconstruction from
feature vector “5” is close to the initial image (see Figure 5).
Again, the experiment is run 20 times. It appears that the
ghost feature vector selected by the network is feature vector
“5” for the 20 runs and that it is consistently close to (and
occasionally inside) the hit zone, with a mean prediction
value of 0.17, as reflected in Figure 6(b). In fact, the feature
vector “5” is even closer to the hit zone than the feature
vector “0” in 10 runs.

Finally, we run the same experiment, but we allow one
ghost feature vector per training image, as if we were in
the realistic situation of not being aware of that erroneous
label. The results are similar to the previous case. The
reconstruction from feature vector “0” is bad while the one
from feature vector “5” is good (see Figure 5). Among 20
runs, the ghost feature vector is always feature vector “5”,
with a mean prediction value of 0.14, and it is closer to the
hit zone than the feature vector “0” in 7 runs.

C. AUTOMATIC DETECTION OF ABNORMALITIES IN
WELL-KNOWN TRAINING SETS
In the following experiments, we allow one ghost feature
vector for each image of the training set via the ghost loss.
This enables us to analyze the dataset and detect possibly
mislabeled images by examining the ghost feature vectors,
their associated ghost classes and ghost predictions. Let us
recall that, for each experience, we trained our network 20
times, which gives us as many models, and we examine
the 20 ghost feature vectors associated with each image by
these models.

1) Analysis of MNIST
First, we study the agreement between the models about
the 20 ghost classes selected for each image on the MNIST
dataset, which is composed of images representing hand-
written digits from “0” to “9”. For that purpose, we examine
the distribution of the number of different ghost classes
given to each image. It appears that the 20 models all agree
on the same ghost class for 16.859 training images, which
represents 28% of the training images. These images have a
pair (true class, ghost class) and their distribution suggests
that some pairs are more likely to occur, such as (3, 5)
for 2333 images, (4, 9) for 2580 images, (7, 2) for 1360
images, (9, 4) for 2380 images, which gives a glimpse of
the classes that might be likely to be mixed up by the
models. Confusions may occur because of errors in the
true labels, but since these numbers are obtained on the
basis of an agreement of 20 models trained from the same
network structure, this may also indicate the limitations of
the network structure itself in its ability to identify the
different classes. However, a deeper analysis is needed to
determine if these numbers indicate a real confusion or not,
that is, which of them make hits (ghost prediction < 0.1)
and which do not. We can examine if the 20 models agree on
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True class
0 1 2 3 4 5 6 7 8 9

G
ho

st
cl

as
s

0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 2 0 0 6 0 0
2 0 0 0 0 0 0 0 1 0 0
3 0 0 0 0 0 2 0 0 0 0
4 0 0 0 0 0 0 1 0 0 20
5 0 0 0 8 0 0 1 0 0 0
6 0 0 0 0 0 2 0 0 0 0
7 0 7 2 0 1 0 0 0 0 2
8 0 0 0 1 0 0 0 0 0 0
9 0 0 0 1 13 0 0 1 0 0

TABLE 1. Sanity matrix for MNIST training images having a unique ghost
class and their mean ghost prediction smaller than the hit zone threshold.

the ghost predictions of the corresponding feature vectors.
For that purpose, for each image, we compute the mean
and the standard deviation of its 20 ghost predictions. An
interesting and important observation is that when the mean
ghost prediction gets closer to the hit zone threshold m,
then the standard deviation decreases, which indicates that
all the models tend to agree on the fact that a hit is needed.

We can now narrow down the analysis to the images
that are the most likely to be mislabeled, that is, those
with a mean ghost prediction smaller than 0.1; there are
71 such images left, which provides the sanity matrix given
in Table 1. From the expected confusions mentioned above,
that is (3, 5), (4, 9), (7, 2), (9, 4), we can see that (7, 2) is
not so much represented in the present case, while (1, 7)
and (7, 1) subsisted in a larger proportion, and that (4, 9)
and (9, 4) account for almost half of the images. A last
refinement to our analysis consists of looking at the number
of hits among the 20 ghost vectors of these 71 images. It
appears that all these images have at least 55% (11/20) of
their ghost feature vectors in the hit zone and that more
than 75% (55/71) of the images have a hit for at least 75%
(15/20) of the models, which indicates that when the ghost
prediction is smaller than 0.1, it is the result of a strong
agreement between the models.

Finally, the 71 images, sorted by number of hits, are
represented in Figure 7. The number of hits, the ghost class,
and the true class are indicated for each image. Some of
these images are clearly mislabeled, such as the image with
the first [16, 5, 3] tag and the one with the [20, 7, 4] tag.
Others are terribly confusing by looking almost the same
but having different true classes, such as the images with the
[12, 2, 7] and [18, 7, 2] tags, which explains the ghost classes
selected. While pursuing a different purpose, the DropMax
technique used in [10] allowed the authors to identify “hard
cases” of the training set which are among the 71 images
represented in Figure 7. Some misleading images in the test
set, presenting similar errors as those shown in Figure 7,
are displayed in e.g. [11]. All in all, MNIST training set
appears to be globally reliable, even though a few images
could be either removed or relabeled.

FIGURE 7. The 71 images of MNIST training set whose 20 ghost feature
vectors have a mean ghost prediction smaller than the hit zone threshold,
sorted by increasing number of hits. A triplet [a, b, c] indicates that a hits have
been observed in the ghost class b whereas the true class is c.

2) Analysis of Fashion-MNIST

Zalando’s Fashion-MNIST dataset is a MNIST-like dataset
in the fashion domain. The images are divided in ten classes:
T-shirt/top (0), trouser (1), pullover (2), dress (3), coat (4),
sandal (5), shirt (6), sneaker (7), bag (8), ankle boot (9).
We proceed exactly as above to analyze this dataset with
ghost feature vectors. It appears that the 20 models all
agree on the same ghost class for 39074 training images,
which represents 65% of the training images. This large
percentage can be seen as a first warning sign of frequent
confusions between classes. Among them, 7848 have a mean
ghost prediction smaller than 0.1, which still represents
more than 13% of the training set. The sanity matrix can be
found in Table 2 and a few of these images are displayed
in Figure 8. Let us also note that 1123 of them display
20 hits in their ghost class. These results indicate that the
classes of Fashion-MNIST may not be as well separated
as in the case of MNIST. For example, from Table 2, it
can be inferred that the classes “T-shirt/top” and “shirt” are
likely to be mixed up by the network, the same observation
holds for “sandal” and “sneaker” or “ankle boot” and
“sneaker” quite rightly. Such proposed alternatives are not
particularly surprising when looking at the images displayed
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True class
0 1 2 3 4 5 6 7 8 9

G
ho

st
cl

as
s

0 0 0 4 45 0 0 994 0 0 0
1 0 0 0 83 0 0 0 0 0 0
2 0 0 0 0 138 0 46 0 0 0
3 35 1004 4 0 156 0 9 0 0 0
4 0 0 185 33 0 0 95 0 1 0
5 0 0 0 0 0 0 0 1220 0 13
6 1131 0 60 0 51 0 0 0 0 0
7 0 0 0 0 0 1105 0 0 0 801
8 2 0 0 0 0 0 2 0 0 0
9 0 0 0 0 0 34 0 597 0 0

TABLE 2. Sanity matrix for Fashion-MNIST training images having a unique
ghost class and their mean ghost prediction smaller than the hit zone
threshold. The classes are: T-shirt/top (0), trouser (1), pullover (2), dress (3),
coat (4), sandal (5), shirt (6), sneaker (7), bag (8), ankle boot (9).

FIGURE 8. A selection of training images of Fashion-MNIST whose 20 ghost
feature vectors have a mean ghost prediction smaller than the hit zone
threshold. The classes are: T-shirt/top (0), trouser (1), pullover (2), dress (3),
coat (4), sandal (5), shirt (6), sneaker (7), bag (8), ankle boot (9).

in Figure 8, which are hardly distinguishable with the naked
eye. Interestingly, many “trouser” images have their ghost
feature vectors in the “dress” class, which comes from the
fact that many images of dresses are simply represented
by a white vertical pattern, as for some trousers. These
observations raise the question of the quality of the dataset.
While it is possible that some confusions can be handled
with larger and deeper networks, a visual inspection of the
images identified as misleading in this first study reveals
that this classification problem might be partially ill-posed,
in the sense that several categories could be merged or two
labels could be assigned to many images. Alternatively, one
can argue that the resolution of the images is simply too low
to properly identify the correct class, and that a much more
interesting problem would be the classification of higher
resolution images of fashion items. In any case, artificial
difficulties arise with Fashion-MNIST dataset, which are
probably present in the test set as well. Fashion-MNIST may
thus not necessarily be used as a “direct drop-in replacement
for the original MNIST dataset for benchmarking machine
learning algorithms” as openly intended; it may rather serve
as a valuable complementary dataset.

3) Analysis of SVHN

Following the same process as above, we use ghost feature
vectors to analyze the SVHN dataset. It appears that the 20
models all agree on the same ghost class for 15516 train-
ing images, which represents 21% of the training images.
Among them, 121 have a mean ghost prediction smaller
than 0.1. A few of them are displayed in Figure 9. Several
types of abnormalities can be detected with ghost feature
vectors in this case. First, we are able to detect training
images that are clearly mislabeled as in MNIST, regardless
of the number of digits actually displayed in the image,
as shown in the first row of Figure 9. These errors may
originate from the automatic annotation process [12]. For
example, the images with the tags [16, 0, 2] and [19, 2, 5] are
actually crops of a same larger image, which presumably
had the correct full house number encoded but for which
the cropping procedure may have accidentally missed a
digit, resulting in a shift of the labels of individual digits.
Then, the use of ghost feature vectors allows to detect
images that may deserve multiple labels since multiple digits
are present in the images, as seen in the second row of
Figure 7. It is important to note that the true label of
most of the training images displaying at least two digits
corresponds to the most centered digit. Hence, when several
digits are present and that the label does not correspond to
the most centered one, it is not surprising to observe that
our network suggests ghost classes corresponding to these
centered digits, as in Figure 9. Therefore, one could also
consider these images as cases of mislabeled images rather
than images deserving multiple labels if only one label is
allowed. Again, the automatic procedure used to crop and
label the images can be responsible of these anomalies.
Finally, ghost feature vectors allow to pinpoint some training
images that do not seem to actually represent any digit,
as shown in the third row of Figure 9. Such images may
rather correspond to some kind of background, possibly
cropped close to actual digits that have been missed in
the automatic annotation process. In the cases displayed
in Figure 9, we hypothesize that the 20 models all agree
on the ghost class “1” because of the kind of change of
surface that generates a vertical pattern in the middle of the
images. Several similar images can also be found among
the images whose 20 ghost feature vectors are distributed
in more than one ghost class. It is important to note that
there are also confusing images among those whose mean
ghost prediction is slightly larger than 0.1, which extends
the number of debatable training images. Given the fact that
the test set commonly used for assessing the performances
of models comes from the same database, it is likely to
contain similar misleading images as well, which somehow
sets an upper bound on the best performance achievable on
this dataset. Consequently, if one only looks at test error
rates reported by the models, this dataset might actually
present an artificial apparent difficulty. The test set should
thus be carefully examined and maybe corrected to have a
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FIGURE 9. A selection of training images of SVHN whose 20 ghost feature
vectors have a mean ghost prediction smaller than the hit zone threshold. The
three rows represent images with different types of peculiarities. A triplet
[a, b, c] indicates that a hits have been observed in the ghost class b whereas
the true class is c.

better idea of the true performance of the models.

4) Analysis of CIFAR10
Among the training sets analyzed with the use of ghost
feature vectors, CIFAR10 seems to be the most reliable.
Indeed, using our network, it appears that the 20 models all
agree on the same ghost class for 10728 training images,
which represents 21% of the training images. However,
among them, only 15 have a mean ghost prediction smaller
than 0.1, and a manual check showed that these images
are correctly labeled. Most of them (11) are birds or boats
whose ghost feature vectors correspond to the airplane class,
which is presumably due to their common blue background.
We also extended the threshold and checked dozens of
images with a mean ghost prediction smaller than 0.2
(there are 1812 of them) but we did not find any clearly
mislabeled images. Among the images with several ghost
classes, those with the most significant predictions did not
appear controversial either. Our tests, with the limitations
of the architecture of our network, tend to indicate that the
dataset is correctly annotated. For the record, using ghost
feature vectors in the same way but with a DenseNet-40-
12 [6] backbone network before the HoM layer does not
reveal misleading images either. It even appears that the 20
models do not agree on a single ghost class for any image,
which tends to confirm that CIFAR10 is a reliable dataset.

V. CONCLUSION
We introduce the notion of “ghost”, which allows the
network to select an alternative choice to the label provided
in a classification task without being penalized during the
training phase and thus helps detecting abnormalities in
training images. This is done by zeroing out the loss
associated with the most likely incorrect prediction, which
enables the network to build features in line with the
correct label of mislabeled samples. After illustrating the
use of the ghost loss in a proof of concept experiment,

we use it as a tool for analyzing well-known training sets
(MNIST, Fashion-MNIST, SVHN, CIFAR10) and detect
possible anomalies therein via the novel concept of “sanity
matrix”. As far as MNIST is concerned, a few training
images that are clearly mislabeled are detected, as well as
pairs of images that are almost identical but have different
labels, which indicates that the dataset is globally reliable.
Regarding Fashion-MNIST, it appears that a large number
of training data is considered misleading in some way by
the network, suggesting that some classes could be merged,
or that some images could deserve multiple labels or that
higher resolution images could be provided to define a better
classification problem. In SVHN, we find that several dozens
of images are either mislabeled, deserve multiple labels,
or do not represent any digit, presumably because of the
automatic cropping-based labelling process. The CIFAR10
dataset appears to be the most reliable since no particular
anomaly is detected. The ghost loss, in combination with a
dedicated neural network, could thus be used in the design
of a reliability measure for the images of a training set.
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