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A Connectivity-based Psychometric Prediction 
Framework for Brain-behavior Relationship Studies

Methods

Introduction
• Relationships between brain regions and behavioral functions can be studied by relating inter-individual psychometric variability to variability of brain regional connectivity
• Recent availability of population-based neuroimaging datasets with extensive psychometric characterisation [1] opens promising perspectives to investigate these relations
• The multivariate nature of connectivity-based prediction models severely limits interpretation from a cognitive neuroscience perspective.
• To address this issue, we propose a connectivity-based psychometric prediction (CBPP) framework based on individual region’s connectivity profile.

Preliminary evaluation

Conclusion
• Highest performance observed following FIX with GSR, Pearson correlation 

connectivity and EN
• Overall, FIX and GSR pre-processing improve prediction accuracy
• SVR and EN perform comparably well
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5. Train and test regressors using 10-fold cross-validation

Accuracy = Pearson correlation between actual and predicted psychometric scores

Multiple Linear Regression 
(MLR) [3]

Linear Support Vector 
Regression (SVR) [4]

Elastic Nets (EN) [4]

4. Adjust for confounds

Age, Gender, Handedness, Brain size, Age2, Gender*age, Gender*age2, ICV, Acquisition quarter 

3. Compute functional connectivity (FC)

Pearson correlation Partial correlation (with L2 regularization)

2. Parcellate RS-fMRI data with Schaefer atlas [2]

100-parcel granularity 200-parcel granularity 300-parcel granularity 400-parcel granularity

1. Pre-processing of RS-fMRI data

HCP minimal preprocessing 
pipeline (“minimal”)

Minimal + ICA-FIX

(FIX)

FIX + global signal regression

(FIX+GSR)

Parcel-wise prediction

Figure 1. Average prediction accuracy across the 20 most well predicted psychometric variables using
whole-brain connectivity. Error bars represent 95% confidence interval across psychometric variables.

Figure 3. Prediction accuracy variation across the brain in left 
and right hemisphere, for four selected psychometric scores. 
Negative accuracies were set to zero and shown in gray.Figure 2. Parcel-wise psychometric profiles for two pairs of selected parcels. Yellow filled contour 

shows whole-brain prediction pattern, while blue contour shows parcel-based prediction profile.

• Parcel-based predictions allow investigations of the neurobiological relevance of 
the prediction model and hence of the selected framework

• Future studies should investigate the transferability of this framework to older and 
clinical populations. 

Methods: FIX, 300-parcel granularity, Pearson correlation, SVR
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