

THE VORTEX CORONAGRAPH IN A NUTSHELL

perfect on-axis cancellation for a circular aperture

IMPLEMENTATIONS OF THE VORTEX PHASE MASK

scalar vortex * helical piece of glass vector vortex = spatially variant HWP * liquid crystal polymers * subwavelength gratings * photonic crystals

Annular Groove Phase Mask

MANUFACTURING DIAMOND AGPM @ UPPSALA

Vargas Catalan et al. (2016)

1. diamond coated with Al and Si layers (sputtering)

 e-beam pattern transferred with solvent-assisted moulding

BEST PERFORMANCE IN THE LAB – 2018 UPDATE

dedicated test
 bench (VODCA)
 now available at
 ULiège

10+ science-grade L-band AGPMs etched & tested

broadband rejection> 1000 : 1

INSTALLATION AND COMMISSIONING

- piggyback on existing coronagraphic IR cameras
- short commissioning runs (1-2 nights)

PERFORMANCE AND MAIN RESULTS SO FAR

NIRC2 & NACO TRANSITION DISK SURVEY

SPHERE/IRDIS Y band polarimetry (Benisty et al. 2015)

Protoplanet prediction (Dong et al. 2015)

goal: search for protoplanets at the origin of disk structures

THE KECK/NIRC2 + VORTEX VIEW OF MWC758

Reggiani et al. 2018

MWC758B: YET ANOTHER PROTOPLANET CANDIDATE?

- 0.1" separation (20 au),
 ΔL = 7
- movement consistant with Keplerian orbit
- if photospheric emission, would be ~50 M_{Jup}
 - not consistent with structure of inner disk
- accreting protoplanet or disk feature?

Ruane et al. 2017

KECK CORONAGRAPHIC DEEP FIELD: EPS ERI

deepest detection limits around an adolescent Sun-like star

ON SKY PERFORMANCE: THREE YEARS OF VORTEX @ NIRC2

359 vortex

 observations in
 2016-2017, using
 OACITS focal-plane
 pointing control

 automatic pipeline provides raw and post-processed contrast curves for ADI and RDI

gain in contrast from post-processing

Xuan et al. (subm)

ON SKY PERFORMANCE: ADI VS RDI

- RDI better at small separations
- critical separation depends on amount of field rotation

CONTRAST PREDICTIONS BASED ON RANDOM FORESTS

- random forests used to identify main
 explanatory variables
 and make predictions
- ADI performance mostly explained by (i) field rotation, (ii) integration time, (iii) magnitude
- for RDI performance, FWHM of PSF becomes as important

predicted vs measured contrast

RMSE ~ 0.3 dex

Xuan et al. (subm)

HOW TO BETTER EXPLOIT THE DATA?

• interesting science at 1-3 λ /D

- * strongly affected by residual speckles
- * non-Gaussian noise
 –> more false positives
- hard to validate candidates

NIRC2+vortex image sequence

 ADI-based techniques produce SNR, but do not inform on nature of the source

machine learning can help

VORTEX

SUPERVISED LEARNING

- goal: learn function f mapping input samples \mathcal{X} to labels \mathcal{Y} given a labeled dataset $(x_i, y_i)_{i=1,...,n}$: $\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \mathcal{L}(y_i, f(x_i)) + \lambda \Omega(f)$
- mapping function *f* based on (deep) neural network
 - * layers of neurons whose parameters can be tuned to approximate a complex function
 - * DNN can be trained with labeled datasets
- problem: need labels & large training sample!

SUPERVISED DETECTION OF EXOPLANETS

1. generation of labeled data

2. training the DNN

3. prediction

Gomez Gonzalez et al. 2018

Input cube X and y to train/test/validation sets Input cube, N frames Convolutional LSTM layer *kernel=(3x3), filters=40* PSF **MLAR** patches 3d Max pooling size = (2x2x2)Trained classifier **Convolutional LSTM layer** kernel=(2x2), filters=80 Probability of 3d Max pooling positive class k residuals. size = (2x2x2)k SVD back to low-rank N x Pann **Dense** layer image approximation Binary map units=128 space levels ReLU activation + dropout Output dense layer units=1 X : MLAR samples probability V: Labels Sigmoid activation threshold = 0.9

LABELED DATASET

Labels: $y \in \{c^-, c^+\}$

TEST WITH INJECTED COMPANIONS (SPHERE/IRDIS DATA)

4 fake companions injected in data set ... can you spot them?

NEW RESEARCH PATHS AND FUTURE PROJECTS

EXTENDING THE AGPM CONCEPT

- AGPM first developed for thermal infrared (L, M, N bands)
 - * excellent performance on ~30% bandwidth
- shorter wavelengths
 - * science-grand K-band AGPM now available
 - * H-band AGPM development started
- higher topological charges
 - Iess sensitive to tip-tilt, at the expense of larger IWA

charge-4 vortex, work in progress

VORTEX

NEAR - NEW EARTH IN THE ALPHA CENTAURI REGION

ESO project funded by Breakthrough Initiatives * what? search for rocky planets around a Cen A&B * how? refurbish VISIR and put it behind UT4+AOF * when? 100h observing campaign in mid-2019 vortex team contribution * provide optimized AGPM for 10-12.5µm filter * design optimized Lyot stop * develop closed-loop focal-plane pointing control (QACITS)

NOTIONAL IMAGES OF ALPHA CENTAURI SYSTEM

- habitable zone at 0.8" 1.1" (A) or 0.5" 0.65" (B)
- Contrast ~10⁻⁶ for 2 R⊕ planet
- apodized Lyot stop to carve dark hole around secondary

A VORTEX UPGRADE FOR SPHERE?

goal: open the 1-3 λ /D parameter space

- * increase number of detections
- * access a few RV planets

need to identify main limitations to 4QPM performance

- ***** component degradation?
- * effect of dead actuators?
- ***** low-order WF aberrations?
- K-band AGPM ready to go!

(Monday poster)

NEXT STEPS: VLT/ERIS AND ELT/METIS

- ERIS: L & M band AGPMs
 - * standard vortex coronagraph with simple Lyot stop
- METIS: L, M & N band AGPMs
 - ring-apodized vortex coronagraph: cancels diffraction from huge central obstruction

10702–151 KENWORTHY

(Monday poster)

10702-369 KENWORTHY

(Thursday poster)

METIS SCIENCE HIGHLIGHTS

- direct imaging of several RV planets
- potential to detect temperate rocky planets
- exoplanet characterization with high-res LM-band IFS

keep light spinning!