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Abstract—The sizing process of microgrids requires to run
multiple simulations that can be computationally intensive de-
pending on the desired accuracy. An effective way to reduce the
simulation time is to compress the available data by selecting
representative days from the list of days to be evaluated, such
as the 365 days of a year, and assigning them a weight. The
aim of this paper is to determine a recommended number of
representative days for the sizing of microgrids with an industrial
load profile. To this end, real load profiles were collected and
analyzed from 22 companies. A sensitivity analysis on the optimal
sizing identified according to the number of representative days
is carried out for two representative days selection methods. A
reliability indicator is proposed and allows to show that, with an
optimization-based selection method, 10 representative days are
enough on average to characterize the system.

Index Terms—Load profiles, microgrids, representative days,
selection methods, sizing

I. INTRODUCTION

A microgrid is a small but complete electrical network
equipped with its own resources for electricity generation and
consumption. The microgrids considered in this paper are
Belgian companies that have a known consumption pattern
and can decide to invest in photovoltaic panels (PV) and a
battery energy storage system (BESS). To correctly size a
microgrid, financial flows over its lifetime (e.g. 20 years)
must be considered. These financial flows can be estimated
accurately by simulating in detail the microgrid operations.
The sizing methodology adopted in this paper is based on the
use of a microgrid simulator and a sizing module in charge of
navigating in the search space to find an optimum. This sizing
module therefore progressively generates configurations to be
evaluated which are transmitted to the simulator. The latter
simulates the operations of these configurations over one year
and forwards cost indicators to the sizing module as explained
in more detail in Section III. However, applying this procedure
can be very time consuming, especially when the microgrid
operations are managed by an optimization-based controller
that solves an optimization problem at every time step. There
are essentially two ways to reduce computation time:

1) at the simulator level by reducing the simulation time of
a configuration through the use of representative days;

2) at the sizing module level by reducing the number
of configurations to be evaluated by navigating more

efficiently within the search space through the use of
more advanced optimization techniques.

This paper focuses on the use of representative days in order
to speed up the process of sizing microgrids. A representative
day selection step must therefore be added to the procedure.
Each selected day is assigned a weight that represents the
number of days in the year with similar characteristics. Thus,
the sum of the weights of the selected days must therefore
be equal to the number of days in the year. Consequently,
the cost indicators of the evaluated configurations can be
approximated and simulation times are drastically reduced.
However, the lower the number of representative days (NRD),
the less reliable the results are. A trade-off must therefore be
made between simulation time and accuracy of the results.

Energy-related problems often use representative days to
lighten computations. However, in many cases, the choice
of the number of representative periods is not discussed or
specified [1], [2]. This can be explained by the lack of
criteria or because the choice was made to carry out a very
specific study. In other cases, heuristic methods accompanied
by random selection methods are applied [3]–[6]. More rarely,
the choice of the representative days is made by clustering
methods [7]–[10] or optimization-based models [11], [12].

The goal of this paper is to evaluate a recommended number
of representative days, by establishing a reliability indicator,
for the sizing of microgrids with an industrial load profile.
For this purpose, we collected 22 annual consumption profiles
from companies located in Belgium. As all these companies
have different activities, the diversity of the solutions obtained
is significant as illustrated in Section II. In Section III,
the microgrid sizing problem and the methodology used to
solve it are detailed. Section IV describes the two selection
methods analyzed in this paper, i.e. a random method and
an optimization-based method. Then Section V presents the
methodology used to derive the optimal microgrid sizing
as a function of the NRD for each company, using both
selection methods. Finally, the established reliability indicator
is presented in Section VI and the results are discussed in
Section VII.

II. LOAD PROFILES CHARACTERIZATION

Given the variety of business activities considered, the load
profiles analyzed in this paper are quite diverse as illustrated
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Fig. 1. Mean and standard deviation of the companies normalized load profiles
grouped into 3 types.

in Fig. 1. Due to a lack of data, it was assumed that the
withdrawal capacity contracted by the companies is equal to
twice the highest peak consumption over the year. This value
was therefore used to normalize the 22 load profiles, which
have been classified into three types as presented in Fig. 1.
The latter illustrates that some profiles are relatively flat and
others have large changes in consumption between peak and
off-peak times. In addition, there is a wide variety of peak and
off-peak consumption and duration ratios and some profiles do
not include a base load.

Similarly, the profiles show a great disparity in terms
of power and annual energy consumed. The largest peak
consumption varies from 3 kW to 2400 kW and the annual
consumption from 10 MWh to 8000 MWh. Regarding the
electricity purchase price, in order to fit as well as possible
with the limited invoice data available, we assumed a price
of 0.23C/kWh for a company consuming 10 MWh or less
per year and 0.13C/kWh for a company consuming 2000
MWh or more per year. We also assumed that this price varies
linearly between these two values as a function of the annual
consumption. As regards the selling price, it is considered
equal to 0.04C/kWh for all companies. The purchase price
greatly influences the sizing. For example, two companies with
exactly the same load profile but different purchase prices will
not get the same optimal sizing. Indeed, the one with a high
purchase price will have much more interest in investing in a
storage system than the one with a low price.

III. THE MICROGRIDS SIZING PROBLEM

A microgrid sizing problem can be succinctly expressed as:

max
c,λ

NPV (c, λ) (1a)

s.t. at = λ(vt) ∈ A(c[t−1], st), ∀t (1b)
st+1 = f(st, at, ct), ∀t (1c)
st ∈ St(c[t]), ∀t (1d)

where c, a, and s are the vector of sizing decisions, control
actions and state variables, respectively. The sub-vector c[t]
of c denotes the sizing decisions from time 0 to time t. The
actions available at time t are constrained to be in the set A
that is a function of the investment made so far and the state
of the system. The policy λ converts a state and observation of
exogenous variables (e.g. the consumption and the renewable
production) into an action that controls the system, of which
the function f encodes the dynamics. NPV stands for ”net
present value” and can be expressed as:

NPV (c, λ) =

N∑
y=1

−Iy(c) +Ry(c, a)−Oy(c, a)

(1 + d)y
(2)

The numerator terms are dependent on the microgrid sizing de-
cisions and represent annual costs. I stands for (re)investment
costs (I1 is the initial investment cost) R for revenues and O
for overall operating costs. The present value of the cash flow
is obtained by using a discount factor d that is applied over the
microgrid lifetime in years N . The key challenge of microgrid
sizing is the need to determine and simulate their operation.
Furthermore, financial flows (R and O) are highly dependent
on the control strategy applied. This problem is thus difficult
because the NPV must be evaluated over a large period, the
problem is non-convex, and we must optimize over the set of
policies that satisfy the constraints of the system.

The sizing methodology used in this paper to solve this
problem is based on the decomposition into three nested sub-
problems:

1) From an initial sizing configuration (c0, λ0), a siz-
ing module progressively generates new configurations
(ci, λi) to identify arg maxNPV (c, λ).

2) A simulator, taking as an input (ci, λi), returns an
evaluation of NPV (ci, λi) on a sample of representative
days.

3) The control policy λi is evaluated for every simulated
state in configuration ci.

IV. REPRESENTATIVE DAYS SELECTION ALGORITHMS

As mentioned in the introduction, there are different meth-
ods for selecting representative days. The heuristic algorithms
generally consist of picking the days where the load is the
highest and lowest over the year. When the required number
of representative days is high enough, the algorithm will also
look for the period with the highest and the lowest renewable
energy production for each season. Clustering algorithms [7],
[13] gather similar observations over the year in a same cluster
by defining a distance threshold between observations. In
this way, each representative day can be extracted from a
cluster. The weight associated to each representative day is
then proportional to the number of observations contained in
the cluster from which it is extracted.

Random selection algorithms [11] randomly select days and
evaluate the associated error according to the load duration
curve. It iterates until the error is low enough (threshold
constraint). Alternatively, it can also consider a set of randomly



selected subsets of representative days, and pick the subset
leading to the lowest error (set size constraint).

Mixed-integer linear optimization models [11] select the
representative days and their weights in order to minimize the
difference between real duration curves and duration curves
reconstructed from the representative days. More precisely,
the duration curves are discretized into a finite set of levels
called bins. In the present case study, only the load and
PV generation features f are considered. Lf,b represents the
number of periods of a time series where the value of feature
f is higher than the value held by the bin b. In that sense,
Lf,b values represents the discretized form of the real duration
curve of the feature f . The latter are compared to L̂f,b values
which are the values reconstructed from representative days.
L̂f,b is computed as follows:

L̂f,b =
∑
d∈D

wd
Ntot

Af,b,d, ∀f ∈ F , b ∈ B (3)

where Af,b,d is the number of periods during the day d where
the value of feature f is higher than the value held by the bin
b. In other words, it is a discretized duration curve but only
based on the day d. wd is the weight attributed to the day d
and Ntot is the total number of days considered in the time
series. The objective function of the optimization problem is
to minimize the difference between the values of Lf,b and L̂f,b
by acting on two decision variables types: the weights wd and
ud, the latter being binary variables that indicate if the day d
is selected or not. The optimization problem can therefore be
cast as a mixed-integer linear problem as expressed below:

min
ud,wd

∑
f∈F

∑
b∈B

| Lf,b − L̂f,b | (4a)

s.t. L̂f,b =
∑
d∈D

wd
Ntot

Af,b,d, ∀f ∈ F , b ∈ B (4b)∑
d∈D

wd = Ntot (4c)∑
d∈D

ud = n (4d)

wd ≤ udNtot, ∀d ∈ D (4e)
ud ∈ {0, 1}, ∀d ∈ D (4f)
wd ∈ R+ (4g)

Constraint 4c ensures that the sum of the weights corresponds
to the total number of days in the original time series.
The number of representative days n is imposed to the
optimization problem through constraint 4d. Constraint 4e
attributes a zero weight to a day d that is not selected.

There exists many error metrics to quantify the quality of
the selected representative days [11]:
• the error due to the difference in mean between the real

observations and the estimated ones.
• the error related to the duration curves.
• the correlation difference error between loads and pro-

ductions observations. If these observations are not well

Fig. 2. DaysXtractor random selection algorithm.

correlated in the real data, then the same should apply to
estimated loads and productions.

• the error associated to the ramp duration curves which is
the duration curve of the differentiated observations. This
metric is used to capture short-term fluctuations.

To conduct this study, we compared a random selection
method and an optimization-based method1. The implemented
random selection method uses a set size constraint where the
termination condition is imposed by a computation time limit
tlimit as shown in Fig. 2. Each set of representative days is
linked to an error e that is computed similarly to the objective
function 4a and M is a large enough value. This error can only
be determined by first assigning a weight to each randomly
selected day. The latter reflects the number of days in the
time series with similar characteristics. Hence, the sum of
weights of the selected days is equal to 365, if one year of data
is considered. Therefore, the algorithm passes over each day
of the real data, identifies the selected day that most closely
matches it and increments the weight assigned to that day by
one. Finally, the selected set of days is that with the smallest
error e∗.

Obviously, the longer the search time allocated to the
random selection method, the more likely it is to find a good
set of representative days. Nevertheless, we notice that after
a given time limit, the precision of the selected days no
longer increases significantly and tends to stabilize. This is
illustrated in Fig. 3 where the evolution of the mean of the

1Implemented in the DaysXtractor tool available at https://github.com/
sebMathieu/daysxtractor
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Fig. 3. Evolution of the mean NRMS error as a function of the time limit
using the random selection method with NRD = 10.
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Fig. 4. Original and reconstructed load duration curves using the random
method and the optimization-based method with NRD = 4 and a time limit
of 15 s.

normalized root mean square (NRMS) error between the 22
companies original load duration curves and their respective
one reconstructed with their set of 10 representative days as a
function of the time limit is presented. Figure 3 shows that
the NRMS error drops rapidly during the first 12 seconds
of search and then stabilizes below 4.5%. The slight error
increments after 20 seconds are due to the fact that the days
selection process was carried out considering consumption
and photovoltaic production data. Therefore, with more time,
it is possible to find a more representative set of days that
maximizes the overall accuracy of both duration curves but
may slightly penalizes one or the other. For the rest of this
study, we consequently used a time limit of 15 seconds.

Examples of load duration curves with 4 representative
days using both selection methods are presented in Fig. 4.
As expected, the load duration curve reconstructed with the

Fig. 5. Methodology used for the sensitivity analysis.

optimization-based method fits better the original curve.

V. SIZING AS A FUNCTION OF THE NUMBER OF
REPRESENTATIVE DAYS

A series of simulations and sizing processes were carried out
in order to quantify the impact of the number of representative
days and their selection method on the companies microgrid
sizing. Each company is considered to have sufficient space
to install as much PV and BESS as necessary. The BESS
is modeled as a tank of a given capacity, with charge and
discharge efficiencies, and maximum charge and discharge
power rates. Regarding PV generation, a typical generation
profile for Belgium has been obtained through the PVGIS
platform [14] and used for all companies. The controller
employed applies a rule-based strategy designed to maximize
self-consumption. The simulation time step is one hour and
the investment horizon is 20 years.

The methodology used is described in Fig. 5. The set
N gathers the evaluated NRD and is fixed to: N =
{1, 3, 5, 10, 20, 30, 40, 50, 75, 100, 150}. For each evaluated
NRD, the optimal sizing is identified using a grid-search
algorithm. Then, a complete simulation of the optimal configu-
ration over the 365 days of the year is performed. The financial
indicators derived from this simulation are used to compute
the reliability indicator stated in the following section. The



0 20 40 60 80 100 120 140
Number of representative days [-]

5

10

15

20

25

30

35

40
M

ea
n 

PV
 c

ap
ac

ity
 re

la
tiv

e 
er

ro
r [

%
]

Random
Optimization

Fig. 6. Mean relative error of the PV capacity as a function of the NRD with
both selection methods.

convergence criterion corresponds to the maximum number of
iterations, which was chosen independently for each company
according to the search intervals selected. The larger the search
intervals, the higher the number of iterations must be in
order to guarantee the accuracy of the results. These inter-
vals were identified beforehand by analyzing the companies
consumption profiles and carrying out a preliminary sizing.
This procedure was performed for each company and using
the two previously discussed selection methods.

VI. RELIABILITY INDICATOR

The proposed reliability indicator r is expressed as:

rn,s = 1− |NPVn,s −NPV365,s|
|NPV365,s|

(5)

− |NPV365,s −NPV365,s? |
|NPV365,s? |

The first term quantifies the relative error obtained on the
evaluation of the optimal NPV using n representative days.
And the second term penalizes the reliability factor when
the optimal sizing s obtained using n representative days
differs from the actual optimal sizing s?, i.e. that achieved
by simulating the 365 days of the year.

VII. RESULTS AND DISCUSSION

The mean relative errors obtained for the PV and BESS
capacities as a function of the NRD using the procedure
presented in Fig. 5 are illustrated in Figs. 6 and 7. The
reference values are obtained by sizing the system with 365
representative days. As expected, it can be noted that in general
the selection method based on optimization gives better results
than the random method. Furthermore, we can also notice a
decrease in the relative error as the NRD increases. Neverthe-
less, for the random method some oscillations are observed.

The evolution of the mean (r̄) and standard deviation
of the reliability indicator as a function of the number of
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Fig. 7. Mean relative error of the BESS capacity as a function of the NRD
with both selection methods.
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Fig. 8. Reliability indicator as a function of the NRD with both selection
methods.

representative days is shown in Fig. 8. It can be seen that the
selection method used greatly influences the outcomes. While
convergence is achieved with 10 representative days using
the optimization-based method, the random method converges
only when this number reaches 50. We consider that there is
convergence when:

r̄n ≥ 90% ∀ NRD ≥ n (6)

Moreover, the standard deviation obtained with the random
selection method is larger. Therefore, unlike the optimization-
based method where the reliability of the results is sufficient
from 10 NRD (93% on average), a similar conclusion cannot
be drawn with the random method. The latter must be used
with 150 representative days to obtain the same level of
reliability.



VIII. CONCLUSION

This paper presents a methodology to determine a recom-
mended number of representative days for the sizing of micro-
grids with an industrial load profile. A sensitivity analysis was
carried out on the sizing of microgrids as a function of the
number of representative days using 22 actual Belgian con-
sumption profiles. Two methods for selecting representative
days, the first based on random selection and the second based
on optimization, were analyzed and used. A reliability factor
was established and made it possible to illustrate that beyond
10 days, the optimization-based selection method allows to
obtain results with a degree of reliability higher than 93% on
average.
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