Patient-Specific Metabolic Variability and Precision Glycaemic Control in Critical Care

March 2020

Vincent Uyttendaele

A thesis submitted in partial fulfilment of the requirements for the joint degree of

Doctor of Philosophy in Biomedical Engineering,

University of Liège, Liège, Belgium,
University of Canterbury, Christchurch, New Zealand.

Under the supervision of:
Dr. Thomas Desaive
Prof. J. Geoffrey Chase
Patient-Specific Metabolic Variability and Precision Glycaemic Control in Critical Care

JURY MEMBERS:

Prof. Pierre DAUBY (Chairman)
Prof. Bernard LAMBERMONT
Prof. Jean-Charles PREISER
Prof. Guillaume DRION
Prof. Thomas DESAIVE (Supervisor)
Prof. Geoffrey CHASE (Supervisor)
The presented research was supported by the FRIA – Fund for Research and Training in Industry and Agriculture (Belgium); the EU H2020 R&I programme (MSCA-RISE-2019 call) under the grant agreement #872488 – DCPM; the NZ National Science Challenge 7, Science for Technology and Innovation; and the MedTech Centre for Research Expertise (CoRE) funded by the New Zealand Tertiary Education Committee.

© 2020 Vincent Uyttendaele; University of Liège, Belgium; University of Canterbury, New Zealand.
Abstract

Critically ill patients often experience stress-induced hyperglycaemia. Elevated blood glucose levels are associated with increased morbidity and mortality. Glycaemic control demonstrated improved outcomes for these patients. However, other studies failed to replicate the results, primarily blaming the increased risk of hypoglycaemia and glycaemic variability, both associated with worse outcomes. These confounding outcomes have resulted in acceptance of hyperglycaemia and reduced outcomes, causing ongoing debate on glycaemic control.

The goal of the thesis is to define what makes glycaemic control hard to achieve safely, prove safe, effective control impacts patient outcome, and demonstrate it is possible to achieve safe, effective control for all patients, despite targeting lower glycaemic ranges.

Metabolic variability is the main factor making glycaemic control hard to achieve safely. More specifically, sudden changes in patient-specific response to insulin (intra-patient variability) can lead to severe hyper- and hypo-glycaemia. Novel analysis of model-based insulin sensitivity and its variability clearly showed while inter-patient variability can be significantly different across patients, intra-patient variability is equivalent. Therefore, no patient is harder nor easier to control, and thus all patients should be able to benefit from similar quality of control. In turn, conclusions on glycaemic control from studies failing to do so may be biased due to poor protocol design, rather than physiological factors related to severity and outcome.

Intra-patient variability is still very large, and it is not possible to discriminate more and less variable patients, reducing the quality of control deliverable in practical clinical scenarios. This research developed a novel 3D stochastic model to optimally segregate more and less variable patients based on prior behaviours. This approach enabled significantly improved, and tighter prediction of risks associated with a given insulin and/or nutrition intervention. Clinical trial results in NZ have shown improved control and safety using this new 3D stochastic model.

To demonstrate these outcomes, a clinical trial using STAR, a model-based, patient-specific glycaemic control framework, was designed and implemented at the University Hospital of Liège. Results showed STAR succeeded in providing safe, effective control to virtually all patients, despite targeting lower target bands associated with better outcomes. However, increased workload compared to the standard protocol was identified as a limitation.

Finally, this thesis develops a means to dramatically increase the STAR measurement interval from 1-3 hourly to 1-6 hourly without significantly degrading performance or safety. Virtual trials clearly defined the risk and reward trade-off between control performance, patient safety, workload, and nutrition. This result allows clinical staff to choose from a far wider range of options and approaches to provide safe, effective control, with clearly defined risk trade-offs.

Overall, a series of analyses and clinical trials have shown safe, effective control is necessary to improve outcomes, and can be achieved for all patients. These outcomes are possible using patient-specific, model-based glycaemic control protocols developed in this thesis, which directly account for both intra- and inter-patient variability and reduce workload.
Résumé

Le stress et l'inflammation chez les patients critiques déclenchent une cascade de réactions ayant pour effet une production endogène de glucose anormalement élevée et une résistance accrue à l'insuline, provoquant de l'hyperglycémie. L'insulinothérapie est donc prescrite chez ces patients, dans le but de réduire ces niveaux anormalement élevés de glycémie, associés à des comorbidités multiples. Plusieurs études ont mis en évidence les bénéfices liés au contrôle strict de la glycémie, mais l'augmentation importante des risques d'hypoglycémie et de la variabilité glycémique, tous deux indépendamment associés à des complications sévères, ont ouvert un débat quant aux effets positifs ou néfastes liés à ce contrôle. En effet, bien que des glycémies normales soient davantage bénéfiques pour les patients, des glycémies légèrement plus hautes permettent de minimiser les risques d'hypoglycémie.

Cette thèse tente d'identifier les facteurs impactant la qualité et la sécurité du contrôle de la glycémie, ainsi que de démontrer qu'il est possible d'offrir un contrôle de qualité pour tous les patients.

Un des facteurs principaux rendant le contrôle difficile est la variabilité de la sensibilité à l'insuline. La sensibilité varie d'un individu à l'autre, évolue avec le temps, et est directement responsable des risques potentiels d'hypoglycémie. Dans cette thèse, il est montré qu'alors que la sensibilité à l'insuline entre les patients est différente, la variabilité temporelle est équivalente. Il en résulte que la qualité du contrôle de la glycémie doit être similaire chez tous les patients, et qu'un protocole mal adapté ne permet pas de s'en assurer.

Caractériser la variabilité de la sensibilité à l'insuline est donc primordial dans le contrôle de la glycémie. Dans STAR, un protocole de contrôle de glycémie, cette variabilité est prise en compte grâce à un modèle mathématique, déterminant la sensibilité à l'insuline spécifique du patient, ainsi qu'un modèle stochastique pour en évaluer sa variabilité. Un nouveau modèle stochastique 3D est développé pour améliorer la prédiction de l'évolution de la sensibilité à l'insuline. Il se base sur l'évolution antérieure de cette variable, et permet de mieux quantifier les risques d'hypoglycémie liés à un traitement spécifique. Un essai clinique en Nouvelle-Zélande a pu montrer une amélioration de la sécurité du contrôle de la glycémie grâce à ce nouveau modèle.

STAR a également été implémenté dans un essai clinique en Belgique, afin de montrer une fois encore qu'un protocole adapté, prenant en compte la variabilité métabolique des patients, peut contrôler la glycémie de manière sécurisée et efficace. Cet essai clinique quantifie également, pour la première fois, l'impact du contrôle de la nutrition, en plus de l'insuline, aux soins intensifs. Les résultats de l'étude montrent une nouvelle fois une augmentation significative de la qualité de contrôle, et un apport nutritionnel beaucoup plus adapté que lorsque la nutrition est laissée à l'appréciation du staff médical.

Enfin, au vu de l'augmentation de la charge de travail induite par des mesures cliniques plus fréquentes demandées par STAR, cette thèse évalue également l'impact lié à l'utilisation d'intervalles de mesure plus longs sur le contrôle de la glycémie. Au travers de simulations, le compromis entre les risques et les bénéfices lié à un suivi moins régulier de la glycémie sont clairement définis, donnant des pistes de réflexion concernant la meilleure stratégie à adopter.

Cette thèse démontre, au travers d'analyses in-silico et d'essais cliniques, qu'un contrôle strict, sécurisé, et efficace de la glycémie est non seulement possible, mais indispensable pour tous les patients, puisque la variabilité métabolique est identique et indépendante de leur état.
Contents

Chapter 1 : Introduction to Hyperglycaemia and Glycaemic Control in the Intensive Care Unit 1
 1.1. General Context ... 2
 1.2. Hyperglycaemia in Critically Ill Patients ... 3
 1.2.1. Stress-induced Hyperglycaemia ... 3
 1.2.2. Breaking the Loop ... 5
 1.3. Glycaemic Control in the Intensive Care Unit .. 5
 1.3.1. Insulin therapy – An Eternal Debate? ... 5
 1.3.2. Model-Based Glycaemic Control .. 7
 1.4. What Are the Needs? .. 7
 1.5. Preface ... 9

Chapter 2 : Data and Statistical Analysis ... 13
 2.1. Introduction .. 14
 2.2. Data Representation ... 15
 2.2.1. Median vs. Mean ... 16
 2.2.2. Cumulative Distribution Functions .. 16
 2.3. Hypothesis Testing .. 18
 2.3.1. Categorical Data Comparison ... 19
 2.3.2. Continuous Data Comparison ... 19
 2.3.3. Confidence Intervals ... 20
 2.3.4. Large Sample Size Effect ... 22
 2.3.5. Bootstrapping .. 23
 2.3.6. Multiple Comparisons Problem and Bonferroni Correction ... 25
 2.4. Equivalence Testing .. 26
 2.5. Reporting Metrics/Statistics in Glycaemic Control ... 27
 2.6. Summary .. 28

Chapter 3 : STAR – A Personalised, Model-Based, and Risk-Based Dosing Approach for Glycaemic Control .. 31
 3.1. Introduction .. 32
 3.2. STAR Framework .. 33
 3.2.1. A Unique Approach ... 33
 3.2.2. Insulin Sensitivity ... 33
 3.2.3. Physiological Model .. 34
 3.2.4. Stochastic Model ... 36
 3.2.5. STAR Risk-Based Dosing Approach .. 37
 3.2.6. Safety and Efficacy of the STAR Framework ... 43
10.2. Methods .. 146
10.2.1. STAR-3D Glycaemic Control Framework .. 146
10.2.2. Patients and Cohort .. 148
10.2.3. Clinical Results Comparison Analysis .. 149
10.2.4. Virtual Trial Comparison Analysis .. 150
10.2.5. Compliance Analysis .. 150

10.3. Results .. 150
10.3.1. Clinical Results ... 150
10.3.2. Clinical Results Once Target Band Reached ... 155
10.3.3. Virtual Trials Results .. 157
10.3.4. Compliance to Protocol .. 158

10.4. Discussion ... 159
10.5. Summary ... 161

Chapter 11 : STAR-Liège Clinical Trial .. 163

11.1. Introduction ... 164
11.2. Methods .. 165
11.2.1. STAR-Liège Clinical Trial Design ... 165
11.2.2. Standard Protocol ... 166
11.2.3. Protocol Comparison and Analysis .. 167

11.3. Results .. 168
11.3.1. STAR vs. STAR-IO ... 168
11.3.2. STAR and STAR-IO vs. SP .. 171
11.3.3. Compliance Analysis .. 172

11.4. Discussion ... 172
11.5. Summary ... 179

Chapter 12 : Longer Treatment Intervals, the Risk and Reward Trade-off ... 181

12.1. Introduction ... 182
12.2. Methods .. 182
12.2.1. STAR 1-6 Hourly Extension ... 182
12.2.2. Virtual Trials .. 183
12.2.3. Patient Cohorts ... 184
12.2.4. Comparison Analysis .. 184

12.3. Results .. 185
12.3.1. Stochastic Model Comparison .. 185
12.3.2. STAR Virtual Trial Results .. 187
12.3.3. STAR Upper Limit Controlled (STAR-ULC) Virtual Trial Results 190

12.4. Discussion ... 191
12.5. Summary ... 196
List of Figures

Figure 1.1 – Self-sustained positive feed-back loops of stress-induced hyperglycaemia 5

Figure 2.1 - P-hacking demonstrated .. 14

Figure 2.2 – P-values interpretation .. 15

Figure 2.3 – Normalised histogram of N=5000 sampled values from a Log-Normal distribution 17

Figure 2.4 – Example of cumulative distribution functions ... 17

Figure 2.5 - Comparison of CDFs for different Gaussian distributions .. 18

Figure 2.6 – Calculated 95% CI of the mean of the population as a function of data sample size 21

Figure 2.7 – P-value dependency on sample size. .. 22

Figure 2.8 – Bootstrapping method summary. .. 23

Figure 2.9 – Calculation of the 95% CI using bootstrapping methods ... 24

Figure 2.10 – Hypothesis testing using bootstrapped 95% CI of difference in means. 25

Figure 2.11 – Statistical significance and clinical equivalence between two distributions 26

Figure 3.1 – Schematic representation of the glucose-insulin model .. 35

Figure 3.2 – Risk-based dosing approach of the STAR framework ... 37

Figure 3.3 – STAR GC framework in 4 steps .. 38

Figure 3.4 – Example of SI\textsubscript{n} identification from clinical data.. 39

Figure 3.5 – Forward 1-3 hourly prediction of future SI variability ... 40

Figure 3.6 – The 1h forward 5th-95th percentile prediction range of BG 41

Figure 3.7 – 5th-95th percentile BG prediction ranges for different combinations of insulin and nutrition intervention .. 41

Figure 3.8 – Evolution of BG (top panel) given a specific insulin (second panel) and nutrition (third panel) inputs, and identification of the new SI level (bottom panel) .. 42

Figure 5.1 – Per-protocol cumulative distribution function of BG .. 62

Figure 5.2 – Per-protocol median [IQR] evolution of hourly resampled BG stratified in 6-hour blocks over the first 15 days of control ... 63

Figure 6.1 – Cohort selection from original 371 SPRINT patients .. 76

Figure 6.2 – Cohort 1 cumulative SI levels over 6-hour time intervals for the first 72 hours of glycaemic control .. 83
Figure 6.3 – Equivalence testing on SI for each 6 hour block for Cohort 1 and Cohort 2 84
Figure 6.4 – Median [IQR] evolution of SI and BG over time for survivors (blue) and non-survivors (red) in Cohort 1 (a) and Cohort 2 (b). .. 85
Figure 6.5 – Cohort 1 cumulative hour-to-hour percentage changes in SI level over 6 hour time intervals for the first 72 hours of glycaemic control. .. 88
Figure 6.6 – Equivalence testing on SI variability (%ΔSI) for each 6 hour block for Cohort 1 and Cohort 2 ... 89
Figure 7.1 – Overall cumulative SI levels (L/mU/min) between male and female cohorts. 101
Figure 7.2 – Comparison of cumulative distribution of SI levels (L/mU/min) between male and female cohorts ... 102
Figure 7.3 – Equivalence testing on SI for each 6-hour blocks ... 103
Figure 7.4 – Overall cumulative %ΔSI between male and female cohorts. 104
Figure 7.5 – Comparison of cumulative distribution of %ΔSI (%) levels between male and female cohorts over 6-hour time intervals for the first 72 hours of GC. ... 105
Figure 7.6 – Equivalence testing on insulin sensitivity variability (%ΔSI) for each 6-hour block..... 106
Figure 7.7 – Hypothesis and equivalence testing using 6-hour blocks from 100 resampled (N=50) male and female sub-cohorts from which 16% have T2DM... 106
Figure 8.1 – GC episodes selection from the original 606 patients .. 115
Figure 8.2 – Example of data density before and after merging bin process, 116
Figure 8.3 – Number of data triplets per bin before (a) and after (b) merging side bins along the y-axis. ... 118
Figure 8.4 – Comparison between the new 3D model (colour) and the original 2D model (green)... 119
Figure 8.5 – Percentage change in the 5th (a), 50th (b), and 95th (c) percentiles between the original 2D and the new 3D stochastic models ... 120
Figure 8.6 – Percentage change in the width of the 5th-95th percentile prediction range between the 3D and 2D models ... 120
Figure 8.7 – Per-patient predictive power within the 25th-75th percentile prediction range (left) and within the 5th-95th percentile prediction range (right) of the new 3D (blue) and old 2D (red) models. 122
Figure 8.8 – Excerpt from a patient showing fitted SI (blue) as well as 5th-95th percentile prediction range for the new 3D (green) and the old 2D (red) models ... 122
Figure 9.1 – Uni-, bi-, and tri- variate kernel density estimation for 10 data triplets. 133
Figure 9.2 – Graphical representation of kernel density estimation using raw data (left) or logarithmic transformed data (right). ... 136
Figure 9.3 – Comparison between the 5th (left) and 95th (right) percentile predictions of likely future SI for the 2D (green) and the 3D (orange) models. ... 136

Figure 9.4 – Excerpt of SI evolution (black) and corresponding 2D (blue) and 3D (red) forward prediction ranges for a specific virtual patient. ... 137

Figure 9.5 – Median [IQR] ratio between the 3D and 2D models 5th-95th percentile prediction width as a function of the hour-to-hour percentage change in SI (%ΔSI). ... 138

Figure 9.6 – Prediction range ratios CDFs when identified SI is within predicted ranges (blue) or outside (red). .. 141

Figure 10.1 – GC episode selection from the original 181 patients (200 episodes) included in the STAR-3D clinical trial. ... 148

Figure 10.2 – Resampled BG cumulative distribution functions for STAR-2D (red) and STAR-3D (blue). ... 152

Figure 10.3 - Per-episode median BG as well as the 25th-75th and 5th-95th percentile ranges for STAR-2D (top) and STAR-3D (bottom). .. 153

Figure 10.4 – Per-episode initial BG (top) and cohort BG / initial BG ratio (bottom). 154

Figure 10.5 – CDFs comparison of the per-episode median %BG in target band for both protocols. 156

Figure 10.6 – Cumulative distribution functions of insulin (left) and nutrition (right) deviation from original recommendations. ... 159

Figure 11.1 – BG, insulin, and nutrition cumulative distribution functions for STAR and STAR-IO ... 169

Figure 11.2 - Per-patient median BG as well as the 25th-75th and 5th-95th percentile ranges for STAR-2D (top) and STAR-3D (bottom). .. 170

Figure 11.3 – Cumulative distribution function of insulin (left) and nutrition (right) deviation from protocol recommendations. .. 173

Figure 11.4 – BG levels, insulin rate, and nutrition rate for Patient A (top) on STAR, and Patient B (bottom) on STAR-IO. .. 176

Figure 11.5 – Per-patient workload CDF for STAR-IO (red) and STAR (blue). .. 177

Figure 12.1 – Stochastic model representation showing the 5th-95th percentile prediction range of future 1-6h SI levels .. 186

Figure 12.2 – Excerpt of virtual trial results for Patient A. ... 188

Figure 12.3 – Excerpt of virtual trial results for Patient B. ... 189

Figure 12.4 – Excerpt of virtual trial results for Patient C. ... 191

Figure 12.5 - Risk and reward trade-off between STAR Standard (solid) and STAR-ULC (dashed) as a function of intervention intervals. .. 194
List of Tables

Table 1.1 – Summary of some existing studies on GC ..7

Table 2.1 – Metrics used to compare GC safety, performance, and workload outcomes. 27

Table 3.1 – Key variables of the Intensive Control Insulin-Nutrition-Glucose (ICING) metabolic glucose model ... 35

Table 4.1 – Summary of SPRINT patient demographics. .. 51

Table 4.2 – Demographics summary of STAR Christchurch and STAR Gyula cohorts. 52

Table 5.1 – Summary of the NS-IIT, NS-IIT-3H, and STAR protocol designs compared in this analysis. ... 59

Table 5.2 – Simulation results summary of the NS-IIT, NS-IIT-3H, and STAR protocols, and reported clinical values of the NICE-SUGAR study ... 62

Table 6.1 – Baseline data from Cohort 1 (145 SPRINT patients) .. 78

Table 6.2 – Baseline data from Cohort 2 (80 SPRINT patients) .. 79

Table 6.3 – SI level (L/mLU/min) median [IQR] comparison between survivors and non-survivors using 6-hour blocks ... 82

Table 6.4 – %ΔSI (%) median [IQR] comparison between survivors and non-survivors using 6-hour blocks ... 87

Table 7.1 – Demographics summary of male and female cohorts from 145 SPRINT patients. 100

Table 7.2 – Median [IQR] SI levels comparison for the first 72 hours between male and female cohorts ... 101

Table 7.3 – Median [IQR] %ΔSI levels comparison between male and female cohorts using 6-hour blocks ... 104

Table 8.1 – Per-patient predictive power comparison between old and new stochastic models 121

Table 8.2 – Per-patient predictive power comparison between old and new stochastic models for two groups ... 123

Table 8.3 – Cross-validation per-patient results for old 2D and new 3D stochastic models 123

Table 9.1 – Five-fold cross-validation results summary of cohort forward predictive power and prediction range comparison between the 2D and 3D stochastic models ... 137

Table 9.2 – Virtual trial results summary for STAR-2D and STAR-3D .. 139

Table 10.1 – Demographics summary of patients included in the STAR-3D and STAR-2D clinical trials. ... 148

Table 10.2 – Cohort clinical results summary for STAR-3D and STAR-2D ... 151
Table 10.3 – Per-episode clinical results summary for STAR-3D and STAR-2D 152

Table 10.4 – Cohort clinical results summary for STAR-3D and STAR-2D once in target band. 155

Table 10.5 – Per-episode clinical results summary for STAR-3D and STAR-2D once in target band. ... 156

Table 10.6 – STAR-3D-VT cohort results of 200 STAR-3D virtual patients compared to STAR-3D clinical data. ... 157

Table 10.7 – STAR-3D-VT per-patient results of 200 STAR-3D virtual patients compared to STAR-3D clinical data. ... 158

Table 10.8 - Compliance analysis results for STAR-3D. .. 159

Table 11.1 - Summary of the STAR, STAR-IO, and SP protocol designs compared in this analysis. 166

Table 11.2 - Demographic characteristics of patients included in STAR and STAR-IO, and retrospective SP patients. ... 167

Table 11.3 – Clinical cohort results for STAR, STAR-IO, and SP. ... 170

Table 11.4 – Per-patient clinical results for STAR, STAR-IO and SP. ... 171

Table 11.5 – Compliance analysis results for STAR and STAR-IO, and the SP .. 172

Table 12.1 - Summary of STAR and STAR-ULC protocol designs compared in this analysis. 184

Table 12.2 – Virtual trial results of STAR Standard for 1 to 3-, 4-, 5-, and 6- hourly measurements intervals... 187

Table 12.3 – Virtual trial results of STAR-ULC 1 to 3-, 4-, 5-, and 6- hourly, forcing the predicted 95th BG percentile \(\leq 8.5 \) mmol/L. ... 189
Nomenclature

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>%ΔSI</td>
<td>Hour-to-hour percentage change in SI</td>
</tr>
<tr>
<td>AIR</td>
<td>Acute immune response</td>
</tr>
<tr>
<td>APACHE</td>
<td>Acute Physiology and Chronic Health Evaluation</td>
</tr>
<tr>
<td>BG</td>
<td>Blood Glucose</td>
</tr>
<tr>
<td>CDF</td>
<td>Cumulative Distribution Function</td>
</tr>
<tr>
<td>CHO</td>
<td>Carbohydrate</td>
</tr>
<tr>
<td>CGM</td>
<td>Continuous Glucose Monitoring</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>EGP</td>
<td>Endogenous Glucose Production</td>
</tr>
<tr>
<td>GC</td>
<td>Glycaemic Control</td>
</tr>
<tr>
<td>GF</td>
<td>Goal Feed</td>
</tr>
<tr>
<td>ICING</td>
<td>Intensive Control Insulin-Nutrition-Glucose</td>
</tr>
<tr>
<td>ICU</td>
<td>Intensive Care Unit</td>
</tr>
<tr>
<td>IIT</td>
<td>Intensive Insulin Therapy</td>
</tr>
<tr>
<td>IQR</td>
<td>Interquartile range</td>
</tr>
<tr>
<td>LOS</td>
<td>Length of Stay</td>
</tr>
<tr>
<td>NICE-SUGAR</td>
<td>Normoglycemia in Intensive Care Evaluation-Survival Using Glucose Algorithm Regulation</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomised Clinical Trial</td>
</tr>
<tr>
<td>ROT</td>
<td>Rule of Thumb</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SI</td>
<td>Insulin Sensitivity</td>
</tr>
<tr>
<td>SOFA</td>
<td>Sequential Organ Failure Assessment</td>
</tr>
<tr>
<td>SPRINT</td>
<td>Specialised Relative Insulin Nutrition Table</td>
</tr>
<tr>
<td>STAR</td>
<td>Stochastic TARgeted</td>
</tr>
<tr>
<td>T2DM</td>
<td>Type 2 Diabetes</td>
</tr>
</tbody>
</table>

64. Chase JG, Dickson J: **Traversing the valley of glycemic control despair.** Critical Care 2017.

76. Krinsley JS, Preiser JC: **Time in blood glucose range 70 to 140 mg/dl >80% is strongly associated with increased survival in non-diabetic critically ill adults.** Crit Care 2015, 19:179.

139. Othman NA, Docherty PD, Krebs JD, Bell DA, Chase JG: The necessity of identifying the basal glucose set-point in the IVGTT for patients with Type 2 Diabetes. Biomed Eng Online 2015, 14:18.

173. **The NICE-SUGAR Study** [https://studies.thegeorgeinstitute.org/nice/]

