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Abstract 

 

Critically ill patients often experience stress-induced hyperglycaemia. Elevated blood glucose levels are 

associated with increased morbidity and mortality. Glycaemic control demonstrated improved outcomes 

for these patients. However, other studies failed to replicate the results, primarily blaming the increased 

risk of hypoglycaemia and glycaemic variability, both associated with worse outcomes. These 

confounding outcomes have resulted in acceptance of hyperglycaemia and reduced outcomes, causing 

ongoing debate on glycaemic control.  

The goal of the thesis is to define what makes glycaemic control hard to achieve safely, prove safe, 

effective control impacts patient outcome, and demonstrate it is possible to achieve safe, effective 

control for all patients, despite targeting lower glycaemic ranges. 

Metabolic variability is the main factor making glycaemic control hard to achieve safely. More 

specifically, sudden changes in patient-specific response to insulin (intra-patient variability) can lead to 

severe hyper- and hypo- glycaemia. Novel analysis of model-based insulin sensitivity and its variability 

clearly showed while inter-patient variability can be significantly different across patients, intra-patient 

variability is equivalent. Therefore, no patient is harder nor easier to control, and thus all patients should 

be able to benefit from similar quality of control. In turn, conclusions on glycaemic control from studies 

failing to do so may be biased due to poor protocol design, rather than physiological factors related to 

severity and outcome. 

Intra-patient variability is still very large, and it is not possible to discriminate more and less variable 

patients, reducing the quality of control deliverable in practical clinical scenarios. This research 

developed a novel 3D stochastic model to optimally segregate more and less variable patients based 

on prior behaviours. This approach enabled significantly improved, and tighter prediction of risks 

associated with a given insulin and/or nutrition intervention. Clinical trial results in NZ have shown 

improved control and safety using this new 3D stochastic model. 

To demonstrate these outcomes, a clinical trial using STAR, a model-based, patient-specific glycaemic 

control framework, was designed and implemented at the University Hospital of Liège. Results showed 

STAR succeeded in providing safe, effective control to virtually all patients, despite targeting lower target 

bands associated with better outcomes. However, increased workload compared to the standard 

protocol was identified as a limitation. 

Finally, this thesis develops a means to dramatically increase the STAR measurement interval from 1-

3 hourly to 1-6 hourly without significantly degrading performance or safety. Virtual trials clearly defined 

the risk and reward trade-off between control performance, patient safety, workload, and nutrition. This 

result allows clinical staff to choose from a far wider range of options and approaches to provide safe, 

effective control, with clearly defined risk trade-offs. 

Overall, a series of analyses and clinical trials have shown safe, effective control is necessary to improve 

outcomes, and can be achieved for all patients. These outcomes are possible using patient-specific, 

model-based glycaemic control protocols developed in this thesis, which directly account for both intra- 

and inter- patient variability and reduce workload.  
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Résumé 

 

Le stress et l’inflammation chez les patients critiques déclenchent une cascade de réactions ayant pour 

effet une production endogène de glucose anormalement élevée et une résistance accrue à l’insuline, 

provoquant de l’hyperglycémie. L’insulinothérapie est donc prescrite chez ces patients, dans le but de 

réduire ces niveaux anormalement élevés de glycémie, associés à des comorbidités multiples. Plusieurs 

études ont mis en évidence les bénéfices liés au contrôle strict de la glycémie, mais l’augmentation 

importante des risques d’hypoglycémie et de la variabilité glycémique, tous deux indépendamment 

associés à des complications sévères, ont ouvert un débat quant aux effets positifs ou néfastes liés à 

ce contrôle. En effet, bien que des glycémies normales soient davantage bénéfiques pour les patients, 

des glycémies légèrement plus hautes permettent de minimiser les risques d’hypoglycémie. 

Cette thèse tente d’identifier les facteurs impactant la qualité et la sécurité du contrôle de la glycémie, 

ainsi que de démontrer qu’il est possible d’offrir un contrôle de qualité pour tous les patients. 

Un des facteurs principaux rendant le contrôle difficile est la variabilité de la sensibilité à l’insuline. La 

sensibilité varie d’un individu à l’autre, évolue avec le temps, et est directement responsable des risques 

potentiels d’hypoglycémie. Dans cette thèse, il est montré qu’alors que la sensibilité à l’insuline entre 

les patients est différente, la variabilité temporelle est équivalente. Il en résulte que la qualité du contrôle 

de la glycémie doit être similaire chez tous les patients, et qu’un protocole mal adapté ne permet pas 

de s’en assurer. 

Caractériser la variabilité de la sensibilité à l’insuline est donc primordial dans le contrôle de la glycémie. 

Dans STAR, un protocole de contrôle de glycémie, cette variabilité est prise en compte grâce à un 

modèle mathématique, déterminant la sensibilité à l’insuline spécifique du patient, ainsi qu’un modèle 

stochastique pour en évaluer sa variabilité. Un nouveau modèle stochastique 3D est développé pour 

améliorer la prédiction de l’évolution de la sensibilité à l’insuline. Il se base sur l’évolution antérieure de 

de cette variable, et permet de mieux quantifier les risques d’hypoglycémie liés à un traitement 

spécifique. Un essai clinique en Nouvelle-Zélande a pu montrer une amélioration de la sécurité du 

contrôle de la glycémie grâce à ce nouveau modèle. 

STAR a également été implémenté dans un essai clinique en Belgique, afin de montrer une fois encore 

qu’un protocole adapté, prenant en compte la variabilité métabolique des patients, peut contrôler la 

glycémie de manière sécurisée et efficace. Cet essai clinique quantifie également, pour la première fois, 

l’impact du contrôle de la nutrition, en plus de l’insuline, aux soins intensifs. Les résultats de l’étude 

montrent une nouvelle fois une augmentation significative de la qualité de contrôle, et un apport 

nutritionnel beaucoup plus adapté que lorsque la nutrition est laissée à l’appréciation du staff médical.  

Enfin, au vu de l’augmentation de la charge de travail induite par des mesures cliniques plus fréquentes 

demandées par STAR, cette thèse évalue également l’impact lié à l’utilisation d’intervalles de mesure 

plus longs sur le contrôle de la glycémie. Au travers de simulations, le compromis entre les risques et 

les bénéfices lié à un suivi moins régulier de la glycémie sont clairement définis, donnant des pistes de 

réflexion concernant la meilleure stratégie à adopter. 

Cette thèse démontre, au travers d’analyses in-silico et d’essais cliniques, qu’un contrôle strict, sécurisé, 

et efficace de la glycémie est non seulement possible, mais indispensable pour tous les patients, 

puisque la variabilité métabolique est identique et indépendante de leur état.  
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Chapter 1: Introduction to Hyperglycaemia and Glycaemic 

Control in the Intensive Care Unit 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter introduces the general context of this thesis, presents the major current issues in the field 

of glycaemic control (GC) in the intensive care unit (ICU), and presents the fundamental problems. It is 

concluded by an outline of the general organisation of this thesis to address these problems. 
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1.1. General Context 

Metabolism is a complex biochemical process turning nutrition into energy for all the body’s functions. 

Metabolism can be seen as a set of systems, driven by a wide range of chemical reactions, with survival 

the only aim [1]. One of these systems is the endocrine system, composed of all the organs which 

secrete hormones. Hormones are chemical messengers secreted in response to specific stimuli. They 

are used in regulatory signalling and control system, often acting as a (positive or negative) feedback 

system. 

One of the roles of the endocrine system is to control glucose homeostasis. Glucose is the main source 

of energy for metabolism, and is vital to organs. Some organs, including the central nervous system 

(CNS), use only glucose as their source of energy [2]. It is thus important for the body to maintain 

sufficient blood glucose (BG) concentration, or glycaemia, without having too high or too low a level [1]. 

The metabolism needs to maintain sufficient BG for organs function, while maintaining glucose 

homeostasis or balance using the glycaemic regulatory system [1, 3].  

The glycaemic regulatory system uses two antagonist hormones secreted in the pancreas: insulin and 

glucagon [1, 3]. While insulin reduces BG levels by promoting catabolic reactions, which break down 

and store glucose, glucagon increases BG levels by promoting anabolic, glucose raising, reactions [1]. 

Other hormones, such as glucocorticoids, epinephrine, adrenaline, and growth hormone, also impact 

glucose homeostasis, and act overall to raise BG levels [4, 5]. 

Catabolic reactions (glycolysis, glycogenesis, and lipogenesis) are characterised by degradation of 

glucose to adenosine triphosphate (ATP), for energy production, or transformation of glucose into 

glycogen, fats, or lipids, decreasing thus metabolic BG levels [1, 3]. These reactions all reduce BG 

levels. In contrast, anabolic reactions (glycogenolysis and gluconeogenesis) are characterised by the 

synthesis of glucose, from glycogen or other substrates, often referred to endogenous glucose 

production (EGP), and act to increase BG levels [1]. These reactions mainly occur in the liver, the 

muscles, the adipose tissues, and the kidneys. 
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Normal BG concentrations, or normoglycaemia, range between 4.4-6.1 mmol/L in healthy patients [1]. 

After a meal, as carbohydrates (CHO) are broken down to glucose by the gut and absorbed in the blood, 

BG levels increase. Elevated BG levels, called hyperglycaemia, lead to insulin released by the 

pancreatic cells, to reduce BG levels back to normal ranges. During exercise, the metabolism and 

muscles require more glucose as they need more energy. Without the effect of glucagon to promote 

EGP, BG levels would decrease below normoglycaemia. These low BG levels are called hypoglycaemia. 

There exists no strict definition or thresholds for hyperglycaemia and hypoglycaemia [6]. However, BG 

levels between 8.0-10.0 mmol/L are often referred as moderate hyperglycaemia, while BG levels above 

10.0 mmol/L (the renal threshold for glucose) are called severe hyperglycaemia. Similarly, BG levels 

between 2.2-3.9 mmol/L are called moderate hypoglycaemia, and BG levels below 2.2 mmol/L are 

referred as severe hypoglycaemia. Importantly, long-term hyper- and short-term hypo- glycaemia are 

independently associated with higher mortality and morbidity in ICU patients, including severe infection, 

sepsis and septic shock, myocardial infarction, critical-illness polyneuropathy, severe brain damage, 

and multiple-organ failure, showing the importance of good glucose regulation [5, 7-14]. 

In everyday life, people with diabetes are example of glycaemic dysregulation [1, 3, 15]. There are two 

major types of diabetes. Type 1 diabetes is characterised by an insulin secretion failure from the 

pancreatic cells [1, 15]. Insulin is thus not sufficiently secreted (or not at all). Type 2 diabetes (T2D) is 

characterised by increased insulin resistance by the cells [1, 15]. Insulin is thus not sufficiently effective 

to reduce BG levels. While these two pathologies differ, they both lead to sustained hyperglycaemia. 

Because long-term hyperglycaemia is associated with diverse complications [16-20], these individuals 

need exogenous insulin to help their pancreas and glycaemic regulatory system maintain glucose 

homeostasis. However, these individuals are not the only ones suffering from glucose dysregulation. 

1.2. Hyperglycaemia in Critically Ill Patients 

1.2.1. Stress-induced Hyperglycaemia 

During the early phase of critical illness, severe stress can impair the glucose regulatory mechanism in 

patients with or without known diabetes, caused by a complex interplay of reactions to ensure glucose 

energy is available to vital organs [3, 5, 8, 13, 21]. The stress response to the insult of critical illness 



 

4 

 

increases counter-regulatory hormones, such as cortisol, epinephrine and glucagon, catecholamines, 

and growth hormone, all of which promote anabolic glucose raising reactions [3, 5, 13, 21-24]. In 

addition, there is overproduction of cytokines, such as tumour necrosis factor alpha (TNF-α) and 

interleukin-1 (IL-1), both pro-inflammatory mediators, altering the insulin signalling pathway, resulting in 

higher insulin resistance, and thus, impaired glucose uptake by insulin-mediated cells (muscles and 

adipose tissues) [3, 5, 21, 22]. Finally, there is a pro-inflammatory acute immune response (AIR), which 

has similar glucose raising impact [13, 21, 23]. The increased glucose production and insulin resistance 

in all these cases leads to excessive BG levels [5], called stress-induced hyperglycaemia. 

In addition, this hyperglycaemic metabolic state, and thus elevated BG levels, are pro-inflammatory [22], 

as are stress hormone and AIR responses noted previously. This outcome leads to an important 

inflammatory response to insult, which can be addressed by the anti-inflammatory effect of insulin 

lowering BG levels [13]. However, the increased insulin resistance induced by the stress response limits 

the impact of insulin in reducing this inflammatory behaviour and BG levels. Hence, these behaviours 

can act as positive feedback loops, leading to further increased glycaemic levels and increased insulin 

resistance. Thus, these patients can be both significantly hyperglycaemic and equally hyper-insulinemic. 

Other contributors, such as pre-existing diabetes, level of nutrition, and medications also play a role [3, 

5, 13]. More specifically, glucose regulatory system impairment is generally greater in patients with 

diabetes as insulin secretion is already impaired and cannot compensate for increased BG [21]. Drugs, 

such as glucocorticoids, β-blockers or catecholamines, often used in critical care and often diluted with 

glucose solutions, are known to increase hyperglycaemia and further increase insulin resistance [25, 

26]. However, the first two have been shown to have a lesser impact on BG levels in the ICU due to the 

very high insulin resistance [26]. Finally, inappropriately high nutritional support with excessive CHO 

content, especially during the early phase of critical illness, can also lead to excessive hyperglycaemia 

[5, 23, 27-29]. 

Together, the set of stress and inflammatory responses create self-sustained feedback loops from 

stress-induced hyperglycaemia (Figure 1.1), which are associated with increased morbidity and 

mortality [3, 5, 7, 13, 30] and occur in 30-50% of ICU patients [7, 31]. 
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Figure 1.1 – Self-sustained positive feed-back loops of stress-induced hyperglycaemia, where lowering glucose can 

mitigate these loops. 

1.2.2. Breaking the Loop 

Due to the association of hyperglycaemia with higher complications [5, 7, 13, 30], it is essential to break 

this self-sustained or positive feed-back loop driven, stress-induced hyperglycaemia. Given excessive 

glucose production and high insulin resistance, the only way to break the loop is to use exogenous 

insulin to lower BG levels. Higher insulin concentrations can account for excessive insulin resistance to 

lower BG levels, while also providing anti-inflammatory effects. Together, they can break the self-

sustained stress-induced hyperglycaemia loops [5, 13].  

However, the acute phase of metabolic illness is adaptive and patient-specific [8, 27, 29]. Insulin 

resistance can thus vary over time, and excessive insulin administration can lead to hypoglycaemia, a 

critical safety concern [10, 11, 32-34]. 

1.3. Glycaemic Control in the Intensive Care Unit 

1.3.1. Insulin therapy – An Eternal Debate? 

GC using insulin therapy is thus used to reduce BG to safer concentrations, and several studies have 

shown improved outcomes by reducing organ failure, clinical burden, and cost [35-45]. However, other 
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studies failed to replicate these results, showing increased glycaemic variability and higher risk of 

hypoglycaemia [46-53], which are both independently associated with severe complications and death 

[10, 11, 14, 54-59]. The optimal target band for GC has since been strongly debated and remains unclear 

[60, 61]. More specifically, whether GC protocols should target normoglycaemic ranges (4.4-6.1 

mmol/L), or tolerate permissive hyperglycaemia (≥8.0 mmol/L) is the main question [24]. 

A summary of some clinical studies results and outcomes analysing the impact of using lower or higher 

target bands on clinical outcome is presented in Table 1.1. Clearly, studies showing improved outcomes 

and supporting the use of lower glycaemic ranges managed to provide safe (<1.5% of patients 

experiencing severe hypoglycaemia), and effective (>50% BG in target band) control for nearly all 

patients. In contrast, other studies, typically opposed to lower ranges, resulted in much higher incidences 

of hypoglycaemia (>6.9% of patients experiencing severe hypoglycaemia) and lower efficacy (<50% BG 

in target band and increased glycaemic variability) for more patients. A first level analysis would suggest 

poor GC safety and efficacy are associated with higher risks, rather than the lower target band itself; 

specifically, not the band (of control), but the method (of control). 

These disparities, and several contradictory published results and methods, led to many editorials and 

meta-analyses expressing disagreement on the subject [8, 60-69]. To date, the recommendations of 

moderate, rather than tight, BG targets for GC in ICU [70-74] reflects the “first do no harm” or 

“uncertainty” principle [60], where the increased risk of hypoglycaemia can be more harmful for the 

patient than the potential benefits from GC [10, 11, 32]. However, these recommendations are heavily 

based on studies that failed to provide safe and effective control for all patients [75].  

High time in target band, high safety from hypoglycaemia, and low glycaemic variability, all associated 

with reduced mortality [38, 71, 76-80], reflect controller capacity to provide safe, effective control. They 

all also indicate this control quality must be consistent over time and most (or all) patients, which only a 

relatively few studies considering outcome achieved [35, 36, 45, 81]. In contrast, significant inter- and 

intra- patient metabolic variability makes GC hard to achieve safely and drives glycaemic variability and 

control safety [82-86].  
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Table 1.1 – Summary of some existing studies on GC supporting or not supporting the use of lower target bands. 

 
% patient 

experiencing 

hypoglycaemia 

%BG in 

target band 
Target Band 

Supporting 

lower 

glycaemic 

levels 

Van Den Berghe et al. [35] 0.05 / 4.4-6.1 Y 

Chase et al. [81] 0.3 54 4.4-6.1 Y 

Stewart et al. [87] 1.5 87 4.4-8.0 Y 

Mesotten et al. [43] 0.9 67 4.4-6.1 Y 

Krinsley et al. [36] 0.34 70 4.4-6.1 Y 

Pachler et al. [44] 0.05 / 4.4-6.1 Y 

Blaha et al. [88] 0.8 83 4.4-8.3 Y 

Finfer et al. [46] 6.9 / 4.5-6.0 N 

Preiser et al. [47] 8.7 42.8 4.4-6.1 N 

Kalfon et al. [89] 13.2 / 4.4-6.1 N 

De la Rosa et al. [48] 8.3 <50 4.4-6.1 N 

Brunkhorst et al. [50] 17% / 4.4-6.1 N 

1.3.2. Model-Based Glycaemic Control 

Hence, computerised, patient-specific model-based solutions directly accounting for intra- and inter- 

patient variability are needed to personalise and optimise GC [90, 91]. In contrast, typical table-based 

“one size fits all” or ad hoc clinical protocols lack patient-specificity and often rely on clinical judgment, 

introducing variability. Model-based GC methods offer an advantage as they quantify patient-specific 

metabolism and variability, and consistently modulate insulin and/or nutrition with respect to these time-

varying variables [92-97].  

More particularly, metabolic models allow identification of patient-specific key physiological parameters 

reflecting patient metabolic state [91, 98, 99], such as insulin sensitivity (SI) [85], a key parameter 

describing patient-specific metabolic condition [85, 93, 100-103]. Model-based GC allows greater 

patient-specificity in treatment and has the advantage of being adaptable across cohorts and clinical 

practices [104]. They thus offer a “one method fits all” solution providing personalised care. It has been 

shown to provide tighter, and thus less variable, control, significantly improving clinical outcomes [41, 

43, 81, 85, 95, 96, 104-109]. 

1.4. What Are the Needs? 

GC is at a crossroad between permissive hyperglycaemia and the inability to provide safe, and effective 

control [64]. The negative association of GC with hypoglycaemia and glycaemic variability overbalance 

the positive association with improved outcome. To benefit patients, GC must be safe, with minimal 
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incidence of hypoglycaemia, effective, with high time in target band and reduced variability, and 

replicable across different ICU clinical practices for robustness.  

There is thus a critical need to understand and define what makes safe GC difficult, and demonstrate 

high GC quality is achievable for all patients, despite targeting lower ranges. More specifically, if all 

patients can benefit equally from safe and effective GC, avoiding thus incidence of hypoglycaemia, 

clinical outcome associated with the different GC target ranges should be reconsidered. In turn, this 

would make a case for GC targeting lower BG ranges, and provide evidence for updated guidelines on 

GC. 

This thesis focuses on three main known aspects influencing GC outcome: metabolic variability, 

compliance to protocol, and the impact of measurement frequency on GC safety. Although these key 

factors are well known, this thesis aims to better understand, characterise, and assess their true impact 

and potential implications in GC. More specifically, this thesis aims to answer the four following critical 

questions: 

1. What are the main factors influencing high quality GC, and why did some studies successfully 

provide safe, effective control, while others did not? 

2. Is poor GC due to patient severity and outcome, and thus unavoidable? Or should everyone be 

able to benefit from equally safe and effective control, regardless of clinical outcome? 

3. How can precision GC be achieved for all? And can this patient-specific precision be increased? 

4. What is the risk and reward of longer treatment intervals? 

Based on the answers to these four questions, this thesis then aims to address the identified issues and 

provide solutions to improve patient-specific GC for all ICU patients. The analyses and methods 

presented are developed on retrospective clinical data and validated in pilot clinical trials. 
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1.5. Preface 

Chapter 2 develops the statistical analysis methodology used in this thesis, as well as the metrics used 

to compare GC outcomes. 

Chapter 3 presents and describes the main tools that are used in the context of this thesis. The proven, 

model-based Stochastic TARgeted (STAR) GC framework is detailed, and the concept of validated 

virtual trial methods is also developed. Virtual trials enable assessment of simulated virtual patient GC 

outcomes for different protocols. 

Chapter 4 provides an overview of the different retrospective cohorts of patients used for the different 

analyses. 

Chapter 5 aims to provide an answer to the first question, by comparing two protocol designs from 

contradicting studies. These two protocols both target normoglycaemic ranges, but one managed to 

provide safe control for nearly all patients, while the other did not. 

Chapter 6 provides a first response to the second question, and analyses both inter- and intra- patient 

variability in survivors and non-survivors. It highlights the importance of patient-specificity and patient 

variability in protocol design to provide safe GC for all.  

Chapter 7 further investigate variability, comparing the differences between males and females. Overall, 

together with chapter 6, it shows that, while inter-patient variability is never equivalent across patients, 

intra-patient variability is always equivalent, suggesting all patients should be able to receive equal 

quality GC. 

Chapter 8 develops a first approach to better characterise intra-patient variability and provide more 

accurate predictions of future metabolic variability. The new methodology presented provides high 

evidence of potential improved GC, but has some significant resolution limitations. 

Chapter 9 provides a more robust methodology to predict variability. In turn, these improved predictions 

are used in the STAR model-based GC framework to improve personalisation of the risk-based dosing 

of insulin and nutrition, responding partially to the third question. 
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Chapter 10 presents clinical trial results of STAR using the new methodology developed in Chapters 8 

and 9. Clinical trial results are compared to retrospective data from the original STAR protocol. 

Chapter 11 presents clinical trials results comparing STAR in a Belgian ICU, and quantifying for the first 

time the impact of additionally modulating nutrition, compared to insulin alone, on GC outcome. 

Chapter 12 discusses and analyses the impact of measurement intervals on GC outcome and nutrition 

intake in the context of STAR, to answer the last question. This is done by extending from 1 to 3-hourly 

to 1 to 6-hourly the measurement intervals used in STAR. 

Chapter 13 provides a summary of the key results of this thesis and their implications for GC. 

Finally, Chapter 14 discusses the future steps toward achieving safe, effective GC for all in ICU. 



 

11 

 

 



 

12 

 

  



 

13 
 

Chapter 2: Data and Statistical Analysis 

 

 

 

 

 

 

 

 

 

 

Statistics are something often considered “scary” and “vague”, as understanding specific meanings and 

limitations can be difficult and unintuitive. On the other hand, lack of understanding and false confidence 

in statistical methods can also result in their over-use and miss-application. Hypothesis testing is one 

area of statistics commonly used in medicine, that is both well used and misused [110-112]. 

Hypothesis testing to determine whether a difference is statistically significant at a certain significance 

level α is now extensively used in scientific research. However, there are many erroneous usages and 

misinterpretations of these statistical outcomes, fed by many misconceptions about data analysis and 

statistics [111]. A particularly common misinterpretation is p>α means “the same” rather than, or in 

addition to, “not statistically significantly different”. This chapter thus briefly presents the biostatistical 

methodology and concepts used in this thesis, which underly much of the later analysis. 



 

14 
 

2.1. Introduction 

In this thesis, many comparisons are made 

between different groups, proportions, or 

distributions to answer clinical questions. More 

broadly, scientific or medical research often uses 

parametric or non-parametric methods to 

determine whether a difference between two 

populations is statistically significant or not, at a 

certain pre-set significance level α (often α=0.05). 

However, statistics is a field with many potential 

pitfalls and perils, stemming from common 

misconceptions [111], and leading authors and/or 

readers to erroneous conclusions about the 

significance of published studies. 

One of the most topical and significant issues in the 

spotlight recently is P-hacking [111, 112]. P-

hacking is the well-intentioned by misguided 

concept of making many comparisons in the hope 

of finding significant difference in one or two 

contexts, as shown in Figure 2.1. In broader terms, 

it is the result of the push for a p-value<0.05, 

regardless of its true meaning. P-hacking might 

involve using different statistical tests, analysing 

(non-motivated) subsets of data, removing outliers, 

comparing different outcome variables, etc [111]. 

 

Figure 2.1 - P-hacking demonstrated from 

https://xkcd.com/882. 
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Figure 2.2 – P-values interpretation from https://xkcd.com/1478. 

Additionally, the interpretation of p-values is often erroneous, motivated by an obsession around this 

dichotomous classification (Figure 2.2) [112, 113]. While this value quantifies the confidence of rejecting 

a null hypothesis (often postulating the absence of difference between independent variables), it does 

not provide information on the statistical power of the analysis, often forgotten in published papers [110], 

nor does it necessarily imply that an alternative hypothesis of similarity is true. Overall, it is important to 

clearly describe and motivate the choice of the statistical methods used and the questions being tested. 

It gives a clear understanding to what extend the use of such methods are meaningful, but also motivates 

the conclusions around it. 

This chapter thus details briefly statistical methods and analysis, and data representation, used in this 

thesis. However, this chapter does not aim at demonstrating these concepts. Overall, the choices and 

methods presented here are heavily based on concepts presented in [110]. 

2.2. Data Representation 

In medical sciences, large clinical datasets are used and compared. In this thesis, patient data may 

include demographic information (e.g. age, body weight, severity scores), but can also include 

continuous, time-dependant data, such as the evolution of BG levels over time. With any continuous, or 

semi-continuous, data set the number of data points can be very large. Hypothesis testing on very large 
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data sets are more likely to give statistical significance to very small differences between populations, 

even if that difference is practically or clinically negligible. 

2.2.1. Median vs. Mean 

When comparing clinical data, the median and interquartile range (IQR) are preferred to the mean and 

standard deviation (SD), because Median and IQR provides a better intuitive representation, 

characterisation, and comparison of the overall distributions of two samples, especially where the data 

is non-normal. The median is also not influenced by large outliers compared to the mean or skewed 

distributions. In short, it does not assume any distribution shape in the original data. In contrast, reporting 

the mean and SD metrics are often, but not necessarily, associated with the idea that the data has a 

Gaussian distribution [110], and, thus, the conclusion that ~96% of the data lies within ±2SD around the 

mean, which is often not the case with metabolic data. N 

For example, a histogram of N=5000 data points sampled from a non-negative lognormal distribution 

(µ=5e-3, σ=0.7) is shown in Figure 2.3. The mean (SD) of this data sample is 1.29( 0.97)µ = =  . 

The SD here implies the sample contains negative values, as 2µ −  would suggest 2.5% of values are 

less than -0.65. Thus, if the original distribution is truly unknown, this mean (SD) does not provide any 

interpretation information about the actual distribution. However, the median [IQR] of this dataset is 1.03 

[0.65 1.64], clearly providing information about the “middle” and “central tendency” of this data, which is 

the goal of this metric. While this issue can be corrected by taking the natural logarithm of the data 

before calculating the mean, many studies do not or do not state whether they have done so. In addition, 

a log-normal mean is less intuitive, and again assumes an underlying distribution. 

2.2.2. Cumulative Distribution Functions 

Cumulative distribution functions (CDFs) are a clear way to compare two samples. It shows the actual 

distribution of data within the samples, and is the integral of the probability density function which 

captures the histogram of the data. Thus, CDFs clearly show the median, and all the different percentiles 

(y-axis) for any given data entry. 
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Figure 2.3 – Normalised histogram of N=5000 sampled values from a Log-Normal distribution (µ=5e-3, σ=0.7). 

 
Figure 2.4 – Example of cumulative distribution functions. 
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From the example presented in Figure 2.3, the corresponding CDF is shown in Figure 2.4 (bottom 

panel). The median is thus easily identifiable, and located at y=0.5, where is x≃1 (true median = 1.03). 

Similarly, you can easily estimate any percentile or range of this specific distribution data, and the 

skewed tail at higher values of x is also evident. 

CDFs are easy to create and use as they simply represent the cumulative count of samples for each x-

axis values. In addition, they allow very easy comparison of two distribution in terms of median and 

variability. Figure 2.5 presents different CDDs of samples drawn from different Gaussian distributions, 

with different mean but equal SD (left panel), and with equal mean but different SD (right panel). Two 

distributions with different medians have a shift horizontally. Two distributions with different variability 

(standard error, or variance) will have a different shape. 

 
Figure 2.5 - Comparison of CDFs for different Gaussian distributions. 

2.3. Hypothesis Testing 

In medical research, it is often desired, or even ‘required’, that a specific change in practice has a 

statistically significant impact on a specific outcome measure. Thus, the difference between two 

distributions, often referred as the control and the test distributions, are usually compared using 

hypothesis testing. In doing so, the aim is to determine whether a null hypothesis (H0) can be rejected 
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or not, at a given significance level α. This significance level is often (arbitrarily) chosen as α=0.05, which 

will be used in this thesis. 

There is a wide range of different hypothesis tests, based on the type of data (categorical or continuous 

data for example), and parametric or non-parametric assumptions. Parametric tests, such as the 

Student’s t-test, are based on assumptions in the distribution of the data, which can thus be defined by 

parameters, such as the mean and SD. In contrast, non-parametric tests, such as the Mann-Whitney U 

test or the Fisher Exact tests, are not based on any assumptions on the dataset distribution. In this 

thesis, non-parametric tests are mainly used, as they do not require any assumption on the data 

distribution, and they are valid for Gaussian and non-Gaussian distributed data. However, non-

parametric methods sometimes suffer from lower statistical power than parametric tests, and may also 

offer statistically low p-values when N is large [111]. 

2.3.1. Categorical Data Comparison 

In this thesis, categorical (or proportional) data will be compared using the Fisher Exact test, similar to 

the known χ² test, but more robust and valid for any sample sizes [110]. This test analyses the H0 that 

the two variables are independent, the alternative being the two variables are not independent. The p-

value can be directly calculated using contingency tables. 

2.3.2. Continuous Data Comparison 

Continuous data is defined as data which can fall anywhere along a spectrum, as opposed to discrete 

categories. It does not, in this context, represent a ‘continuous’ data stream in time. Continuous data 

distributions are compared using two well-known non-parametric statistical tests, based on ranking 

comparison of the data. The first is the Mann-Whitney U test (also called Wilcoxon rank sum test), 

analysing whether two independent distributions have equal medians. The second is the Kolmogorov-

Smirnov test, analysing if two independent samples are drawn from the same underlying distribution by 

comparing the distances between points in the sample distributions. 

In contrast to the Mann-Whitney U test, the Kolmogorov-Smirnov test can identify both bias in medians, 

and the shape (variance) difference in distributions. For example, N=100 samples are drawn from each 

distribution presented in the left panel of Figure 2.5. The two resulting distributions are compared using 
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these tests. The corresponding p-values using the Mann-Whitney U and Kolmogorov-Smirnov tests are 

p=0.892 and p=0.002, respectively. Thus, the first test, as expected, does not provide sufficient 

significance (p>0.05) to reject the H0 of data being drawn from distribution with equal medians, while the 

second provides enough statistical significance (p<0.05) to reject the H0 of the two distributions being 

drawn from the same underlying distribution (equal medians and equal variance). 

This example thus clearly illustrates the importance of choosing, and motivating the statistical test used 

to show statistical difference. Both of these tests will be used in this thesis to analyse distributions from 

continuous independent variables. The Mann-Whitney U test will be used if the shape (variance) of the 

potential distribution is not truly relevant or useful, while the Kolmogorov-Smirnov will be preferred when 

focusing on variability. 

2.3.3. Confidence Intervals 

A confidence interval (CI) provides a quantitative way to characterise an unknown general population 

only based on data sampled from this underlying population [110]. By definition, CIs assume the sample 

is representative of the population data it comes from. For example, the CI of the median of a population 

can be estimated from the available observations. One of the main disadvantages of the CI is it relies 

on many assumptions such as data distribution and independency, and can be very complex to calculate 

[110]. 

This CI provides an estimation of how certain it is that the true median of the population lies within in 

this range, based on the sampled data. For example, a 95% CI provide an interval outside of which 

there is only 5% chance that the true median of the underlying population lies outside this range [110]. 

As an example, the resulting 95% CI of samples with different sizes drawn from the Gaussian distribution 

N(µ=4, σ=0.5) in Figure 2.5 (left panel) are computed and shown in Figure 2.6. The larger the available 

data, the tighter the CI, since it is based on more information about the original population, and thus 

there is greater confidence about where true median (or mean) is located.  
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Figure 2.6 – Calculated 95% CI of the mean of the population as a function of data sample size drawn from the 

Gaussian distribution N(µ=4, σ=0.5).  

However, as seen for N=20 in Figure 2.6, by random chance the 95% CI failed to include the true value 

µ=4. Thus, the 95% CI chosen, similarly to the statistical testing described previously, provides an 

arbitrarily chosen significance level of α=0.05, and there is thus a 5% chance that the true median is 

outside this range. As expected based on random chance, in Figure 2.6, it occurred in 1 (5%) in of the 

20 cases analysed. 

Since the CI can provide a powerful description of a population, based on samples from that population, 

it can also be used for robust hypothesis testing [110]. For example, considering the H0 of two 

distributions having the same medians, and thus the difference in medians being null, the 95% CI of the 

difference in medians of the two populations can be compared. If the 95% CI of the difference in medians 

includes H0, the two distributions are not statistically different (p>0.05). However, if the 95% CI does not 

encompass the H0, the two distribution can be considered significantly different (p<0.05). This method 

can be applied at any significance level desired. 
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2.3.4. Large Sample Size Effect 

One problem related to hypothesis testing is the p-value dependence on sample size [111]. The easiest 

way to illustrate this dependence is to consider an example where the Mann-Whitney U test is used to 

compare samples of different sizes drawn from two close probability density functions. In Figure 2.7, 

two density functions (left panel) are presented as well as the corresponding CDFs (middle panel). 

Depending on the context, it is likely that these distributions practically different, especially given the 

large overlapping shown in the left panel. However, in the right panel, corresponding calculated p-values 

for different samples sizes clearly decrease as N increases. Typically, regardless of the statistical test 

used, a small difference in distributions will thus be considered significant for large data sample sizes. 

As a result, a large p-value is not proof of no effect, and a small p-value is not proof of a large effect 

[111], when using these tests with larger data sets. 

In this thesis, thousands of hours of clinical data are used and compared. Therefore, it can be argued 

that, given a statistical test, the p-value is very likely to be small even if differences are not clinically 

significant, influenced by the large data size. A way to avoid this influence is using the bootstrapping 

method. This approach is also a more explicit and robust means to test a hypothesis, as well, even 

though it is not commonly used. 

 
Figure 2.7 – P-value dependency on sample size. P-values are computed using Man-Whitney U test on samples 

drawn from two close Gaussian distributions. 
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2.3.5. Bootstrapping 

Bootstrapping provides statistic inference of population based on a sample assumed to be 

representative of that population. Importantly, it does not make any assumption of the original population 

distribution. The method is depicted in Figure 2.8. The main idea is to calculate the variance of a specific 

estimate, such as the mean or median of the population, based on resampled samples from available 

observations. A larger number (N>100) of bootstrap samples are generated by randomly choosing 

observations, with replacement, from the original sample. Each of the bootstrap samples have the same 

size as the original sample, and could have the same observation multiple times, or not at all. A bootstrap 

estimate of each bootstrap sample, such as the mean or the median, can be calculated, providing 

statistical inference of the true population. Bootstrapping is based on the law of large numbers, where, 

as 'N → , the variance of the bootstrap estimates converges to the true population variance of the 

studied inference statistic.  

The main advantages of this method, in the context of this thesis, is it works for unknown distributions, 

and avoids the large data size effect from some common (non-parametric) statistical tests [111]. 

Additionally, it allows to calculate 95% CIs, not requiring any assumptions or complex calculation, which 

can be used for hypothesis testing (Chapter 2) [114]. This method is also very useful for small available 

data sets, enabling robust comparison. 

 

Figure 2.8 – Bootstrapping method summary. 
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An example is shown in Figure 2.9, where a sample of 10 observations (dark-red dots) were drawn from 

a true population distribution N(µ=6, σ=2) (solid red), with an estimated mean 6.46µ = (dashed black). 

Bootstrapping results provide means (light blue dots) from 100 bootstrapped samples of size N’=10, as 

the original data sample size. The corresponding 95% CI of the population mean (light blue error bar) is 

simply calculated by taking the 2.5th and 97.5th percentile of the bootstrapped means. There is 95% 

confidence that the true population mean (µ=6) lie in this range, which is the case here. 

Equally, to compare two populations median values, each pair of sub-sample medians can be compared 

by subtraction. If the 95% CI of bootstrap estimate difference is < 0, the first set median is significantly 

lower than the second (p<0.05). In contrast, if the 95% CI is > 0, the first set median is significantly 

higher than the second (p<0.05). Finally, if the 95% CI encompasses 0, there is no statistically significant 

difference in the medians of each set (p>0.05). As noted, any significance level α can be tested. 

An example considering N=10 observations from each distribution presented in Figure 2.7 is presented 

in Figure 2.10. The H0 of distributions having equal medians is considered for statistical testing. The 

95% CI of difference in means can thus computed to determine whether H0 can be rejected at a 

significance level α=0.05. Since the 95% CI of difference in means include H0, the null hypothesis cannot 

be rejected (p>0.05). 

 
Figure 2.9 – Calculation of the 95% CI using bootstrapping methods. 
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Figure 2.10 – Hypothesis testing using bootstrapped 95% CI of difference in means. 

2.3.6. Multiple Comparisons Problem and Bonferroni Correction 

The problem with multiple comparisons is that a statistically significant result will be more likely simply 

by random chance, due to the higher number of comparisons [110]. Thus, it is more likely to make a 

research conclusion of significance, when the outcome was simply a function of random chance. More 

specifically, if a statistical test is significant to a level α=0.05, the H0 can be rejected, with maximum 

probability of 5% that this rejection was incorrect if H0 was true (Type I error). If two comparisons on the 

same data are realised and result in statistical significance, the probability that at least one of the p-

values<0.05 by chance is 1.0-0.95²= ~10%. Thus, for larger multiple comparisons, the probability to 

observe one p-value<0.05 significantly increases (Figure 2.1). This problem rises from multiple 

comparisons of the same family of comparisons on (subgroups of) the same dataset, where 

comparisons are not independent. The overall concept also applies to CIs. 

Thus, to account for these multiple comparisons, the significance level applied to the family of 

comparisons is adapted using the Bonferroni correction [110]. This conservative method removes the 

assumptions of comparisons independence. Overall, to ensure there is only 5% (α=0.05) to obtain one 

or more significant tests, each individual comparison is considered significant to an adapted p-value 
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equal to 
n

 , n being  the number of comparisons. Thus, if 12 multiple comparisons are considered, 

each individual comparison is considered significant if p < 0.05

12

 = 0.0042.  

2.4. Equivalence Testing 

Hypothesis testing is used to examine difference between cohorts, and assemble evidence to reject the 

null hypothesis of data being drawn from the same underlying distribution (or any other H0). However, it 

cannot provide evidence for equivalence, especially for large sample sizes [111, 112]. Equivalence 

testing is used to assess the impact of these differences on clinical decision making, irrespective of the 

underlying statistical significance (p-value) [110, 115]. Equivalence testing somewhat reflects the power 

of a statistical difference. However, the equivalence range must be very precisely scientifically 

determined and motivated. 

Thus, it is important to note a difference can be statistically significantly different, but also equivalent, as 

the first is a statistical measure and the second is a measure of the clinical impact of the difference in 

the two distributions. Figure 2.11 presents a typical example showing equivalence and statistical 

significance between two distributions represented by their medians and 95% CI. 

 
Figure 2.11 – Statistical significance and clinical equivalence between two distributions. Two distributions can be 

statistically significantly different, but clinically equivalent. 
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2.5. Reporting Metrics/Statistics in Glycaemic Control 

Many statistics and metrics exist to assess GC performance, and all have advantages and 

disadvantages or limitations [99, 116-119], but have been shown insufficient and inconsistent [117]. This 

lack of standardisation creates disparities, complicating interpretation and comparison of clinical trials 

[99, 118, 120, 121].  

Table 2.1 presents the metrics mainly used in this thesis to assess and compare GC safety, 

performance, and workload. These metrics are based on most commonly used, and representative 

metrics found in the literature [99, 118]. It is important to note the list presented in Table 2.1 is not 

exhaustive, and other metrics may be used for easier comparison with other published studies or to 

show other specific outcomes where relevant. Both population and per-patient metrics are used as they 

are complementary. Per-patient metrics data is always reported as the median [IQR] of per-patient 

median. Importantly, BG is resampled hourly to allow fair comparison between protocols [87, 122]. 

Table 2.1 – Metrics used to compare GC safety, performance, and workload outcomes. 

Comparison Metrics Comments 

General 

Demographic data such as Number of 

patients, Age, Sex, Severity of injury, 

etc. 

 

Workload 

Hours of GC  

Total BG measurements  

Workload (measurements per day)  

Performance 

BG levels 
Normoglycaemic levels are associated 

with improved outcomes. 

%BG in target band (4.4-8.0 mmol/L) 
Assesses performance but also reflects 

protocol design efficacy. 

%BG in 4.4-6.5 mmol/L High % time in lower BG levels are 

associated with improved outcomes. %BG in 4.4-7.0 mmol/L 

Safety 

%BG in 8.0-10.0 mmol/L Moderate and severe hyperglycaemia 
are associated with morbidity and 

mortality. 
%BG > 10.0 mmol/L 

%BG < 4.4 mmol/L  

%BG < 4.0 mmol/L Moderate et severe hypoglycaemia are 

associated with severe complications 

and death. 

%BG < 2.2 mmol/L 

Number of patients < 2.2 mmol/L 

Others 

Insulin rates (U/h)  

Nutrition rates (g/h) %GF is preferred as it normalises 
comparison between patients. Nutrition rates (%GF) 



 

28 
 

2.6. Summary 

While p-values are being extensively used in scientific research, the lack of detailed methodology and 

motivations around it sometimes make the significance of the outcome results, and the conclusions 

questionable. Large p-value is not proof of no effect, and a small p-value is not proof of a large effect. It 

is thus important to provide a clear interpretation of outcome p-values, as well as the context in which 

this value was calculated. 

The statistical concepts briefly presented in this chapter will be used in this thesis. More specifically, 

data will be preferentially reported as median [IQR], and presented in CDFs where appropriate. 

Hypothesis testing will use either the Fisher exact test for categorical data, the non-parametric Mann-

Whitney U test to compare medians of distributions, the non-parametric Kolmogorov-Smirnov test to 

compare variability (as it compares distributions functions as a whole, not only medians or means), or 

using the 95% CI of the distribution calculated on bootstrapped samples. The significance level 

considered will always be α=0.05, unless a Bonferroni correction is necessary for multiple comparisons. 

Finally, the impact of a difference, regardless of its statistically significance, will be assessed using 

equivalence testing when appropriate.
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Chapter 3: STAR – A Personalised, Model-Based, and 

Risk-Based Dosing Approach for Glycaemic Control 

 

 

 

 

 

 

 

 

 

 

This chapter develops and details the Stochastic Targeted (STAR) GC framework and the use of virtual 

trials, tools that will be extensively used in this work. The STAR GC framework is a proven model-based 

and risk-based insulin and nutrition dosing approach accounting for both inter- and intra- patient 

variability [87, 95, 96, 123]. This GC framework protocol uses a mathematical model to identify patient-

specific metabolic state [93], and a stochastic model [124-127] to assess its potential variability in the 

next 1-3 hour treatment intervals. The risks associated with a given treatment can thus be assessed, 

and treatment adapted to optimise BG outcomes. Virtual trials are used to simulate GC protocols in-

silico. Such trials provide accurate prediction of protocol results, enabling comparison and the in-silico 

evolution of safety and performance for different GC protocols. 
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3.1. Introduction 

Chapter 1 presented the importance of personalising GC in critically ill patients. More specifically, there 

exists no universally accepted clinical best-practice for GC, and most ICUs titrate insulin based on ad-

hoc or fixed protocols lacking patient-specificity and relying heavily on clinical judgement [98]. Equally, 

there are no accepted consensus clinical goals or approaches to GC. 

Model-based GC methods offer unique advantages in directly quantifying patient metabolic status and 

variability, to modulate insulin and/or nutrition [93-96, 123]. Accurate metabolic models allow 

identification of patient-specific physiological parameters from real-time measurements, such as SI, a 

key parameter describing patient-specific metabolic condition [85, 93, 103]. Model-based GC thus allows 

greater patient specificity in treatment and can provide much greater consistency across patients, 

cohorts, and clinical practices [104]. Thus, the few model-based GC protocols available are able to 

provide tighter, less variable control than other methods, significantly improving clinical outcomes [41, 

43, 81, 85, 88, 95, 96, 104, 107, 109, 123]. 

Another main advantage of such personalised models is the possibility to design, develop, adapt, and 

validate GC algorithms in-silico [91, 99]. GC protocol design can thus be optimised using virtual 

simulations, avoiding confounding results of trial-and-error clinical protocol designs [99]. However, this 

in-silico design can only be undertaken providing validated, robust, and generalisable virtual trial 

schemes using virtual patients, which accurately reflect patient-specific metabolic status [91, 99, 128]. 

Few models provide validated capabilities [91]. 

The clinically proven STAR GC framework [87, 95] is an example of a successful, model-based, patient-

specific approach, targeting lower glycaemic ranges (Chapter 3). STAR uses a physiological model and 

a stochastic model to provide a tailored risk-based dosing approach of insulin and nutrition. STAR is the 

successor of the Specialised Relative Insulin Nutrition Table (SPRINT) [38, 81], originally developed in 

New Zealand, and has been designed using validated virtual trials[106, 129]. STAR is now the standard 

of care at the Christchurch Hospital of New Zealand [95, 96, 123], and the Kalman Pandy Hospital ICU, 

Gyula, Hungary [87]. 
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3.2. STAR Framework 

3.2.1. A Unique Approach 

Overall, STAR is a model-based, patient-specific GC framework [95, 123]. STAR uses a clinically 

validated physiological model [93] along with a stochastic model [124, 125] to provide risk-based dosing 

approach [95, 123]. Inter-patient variability is assessed by identifying model-based, patient-specific SI 

from patient data [130, 131]. The STAR stochastic model then predicts a distribution of likely future SI 

for 1-3 hourly intervals, directly quantifying the intra-patient variability of future SI evolution. STAR can 

thus adjust insulin and nutrition treatment choices to enable a pre-set, clinical risk of 5% of future 

corresponding BG below any clinically pre-set target band lower limit. 

STAR is thus unique in providing a risk-based dosing approach and modulating both insulin and 

nutrition, where no other known GC protocol, or other drug delivery protocol, does so. Nutrition is 

reduced if insulin alone is not sufficient to reduce excessive BG levels. Typically, highly resistant patients 

quickly reach insulin saturation effects on BG uptake [132, 133]. For those patients, nutrition must be 

reduced to lower BG to safe levels. Thus, nutrition can be temporarily reduced if insulin alone is not 

sufficient to safely control BG into the target band. STAR uses this capability for safe GC, as well as to 

maximise nutrition delivery to world leading levels [87, 134]. 

3.2.2. Insulin Sensitivity 

SI is a key parameter describing patient-specific metabolic condition. It characterises the effect of insulin 

on the glucose regulatory system, reflecting the ability of cells to uptake glucose. SI is the inverse of the 

more commonly used term insulin resistance. 

Higher SI indicates less insulin is required to lower BG levels due to higher insulin-mediated glucose 

uptake by the cells and tissues. In contrast, lower SI suggests increased insulin is required to provide 

similar effect on BG levels, since glucose uptake is inhibited by insulin resistance. Equally, higher SI 

allows more nutrition, and lower SI may require some nutrition restriction. 

As introduced in Chapter 1, critically ill patients suffer from increased insulin resistance from stress and 

inflammatory metabolic response to injury [5]. Over the first ~7 days after ICU admission, the metabolism 
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experiences different phases of critical illness [27]. A more acute phase, where insulin resistance is at 

the highest, followed by a recovery phase where insulin resistance progressively decreases. Thus, SI is 

very low after ICU admission and progressively increases back to normal after some time [82, 135]. SI 

thus varies over time and across patients depending on the severity of injury and rapidity of recovery, 

and has been shown treatment independent in the model used by STAR [94, 128]. 

STAR’s risk-based dosing approach uses this key parameter to provide safe control, as it directly 

influences GC outcomes [95, 96, 123]. Patient-specific SI is identified from a validated physiological 

model of the glucose-insulin pharmacokinetics [93]. Its validity in the context of this thesis is further 

explained later in Chapter 6. 

3.2.3. Physiological Model 

The physiological model used in STAR is the validated Intensive Control Insulin-Nutrion-Glucose 

(ICING) model [93]. This mathematical model describes the glucose-insulin pharmacokinetics, and has 

been extensively validated in SI testing and similar clinical studies [130, 136-139]. The glucose-insulin 

dynamics are represented by a three compartment model, accounting for the appearance of insulin and 

glucose in blood and interstitial fluid volumes. This compartment model is schematically represented in 

Figure 3.1, where each metabolic pathway characterises a specific glucose or insulin appearance or 

clearance. Appearance and clearance rates are represented by incoming and outgoing arrows, 

respectively. 

The glucose compartment (G) is influenced by insulin-mediated and non-insulin mediated glucose 

transfers. Insulin-mediated clearance transfer is determined by SI and occurs in the liver and in adipose 

and muscle tissues. Non-insulin mediated transfers include the absorption through exogenous inputs 

(enteral and parenteral nutrition), the EGP, the kidney clearance, and, the CNS uptake. 

There are two compartments modelling insulin exchange and transport. The first is plasma insulin (I) 

and the second is interstitial insulin (Q). Plasma insulin appearance can come from exogenous insulin, 

or endogenously secreted by the pancreas. Plasma insulin is cleared through the kidneys and the liver. 

There is a transportation from plasma to interstitial fluid, where insulin actively impacts insulin-mediated 

glucose uptake, or is degraded.  
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Figure 3.1 – Schematic representation of the glucose-insulin model, showing the physiological compartments and 

clearances, as well as the appearance of exogenous insulin and carbohydrate, and their kinetic pathways. 

 

Table 3.1 – Key variables of the Intensive Control Insulin-Nutrition-Glucose (ICING) metabolic glucose model (full 

table in Appendix I). 

Parameter Value Description 

𝑝𝐺  0.006 min-1 Non-insulin mediated glucose clearance 

𝛼𝐺 1/65 (0.015) l/mU Saturation of insulin-mediated glucose uptake 

𝐸𝐺𝑃 1.16 mmol/min Endogenous Glucose Production (hepatic) 

𝐶𝑁𝑆 0.3 mmol/min Glucose uptake by Central Nervous System 

𝑉𝐺 13.3 L Glucose distribution volume 

𝑛𝐾 0.0542 min-1 Kidney clearance of insulin 

𝑛𝐿 0.1578 min-1 Liver clearance of insulin 

𝛼𝐼 1.7x10-3 l/mU Saturation of hepatic insulin clearance 

𝑛𝐼 0.006 min-1 Insulin diffusion between plasma and interstitium 

𝑛𝐶 0.006 min-1 Cellular degradation of internalised insulin 

𝑥𝐿 0.67 Fractional first pass hepatic insulin clearance from portal 

vein 

𝑉𝐼 4.0 L Insulin distribution volume 

𝑢𝑒𝑥(𝑡) mU/min Exogenous insulin 

𝑢𝑒𝑛(𝐺) [16.7 - 266.7] mU/min Endogenous insulin 

The set of three ordinary differential equations models these insulin-glucose dynamics as follow: 

�̇� =  −𝒑𝑮. 𝑮(𝒕) − 𝑺𝑰. 𝑮(𝒕)
𝑸(𝒕)

𝟏 +  𝜶𝑮. 𝑸(𝒕)
+

𝑷(𝒕) + 𝑬𝑮𝑷 − 𝑪𝑵𝑺

𝑽𝑮

 (3.1) 

�̇� =  −𝒏𝑲. 𝑰(𝒕) − 𝒏𝑳

𝑰(𝒕)

𝟏 +  𝜶𝑰. 𝑰(𝒕)
− 𝒏𝑰(𝑰(𝒕) − 𝑸(𝒕)) +

𝒖𝒆𝒙(𝒕)

𝑽𝑰

+ (𝟏 − 𝒙𝑳)
𝒖𝒆𝒏(𝑮)

𝑽𝑰

 (3.2) 

�̇� =  𝒏𝑰(𝑰(𝒕) − 𝑸(𝒕)) − 𝒏𝑪

𝑸(𝒕)

𝟏 + 𝜶𝑮𝑸(𝒕)
 (3.3) 



 

36 

 

where G(t) is the BG concentration (mmol/L), I(t) and Q(t) are the plasma and interstitial insulin 

concentrations (mU/L), P(t) is the glucose appearance in plasma from enteral and parenteral dextrose 

intakes (mmol/min), and SI is the insulin sensitivity (L/mU/min). Other parameters are listed in Table 

3.1.and the full model details and physiological relevance are presented in the Appendix I.  

SI units (L/mU/min) are consistent with a rate parameter assessing the rate of insulin mediated glucose 

removal, where L/min is a rate of flow or uptake, and the mU-1 makes it dependent on current insulin 

concentration. When SI is multiplied by the average hourly glucose for the period over which SI is 

calculated, the units becomes consistent with those used in the gold-standard hyperinsulinemic, 

euglycaemic clamp assessment of SI [138, 140]. 

The only unknown parameter in Equations (3.1)-(3.3) is SI. All other parameters are known clinically or 

estimated from population data [97, 125, 141]. Therefore, SI can be identified hourly from clinical BG, 

insulin, and nutritional data using integral based fitting methods [130, 131]. 

3.2.4. Stochastic Model 

To account for intra-patient metabolic variability, and thus assess unexpected potential changes in 

metabolic response to insulin, a stochastic model predicting likely future 1-3 hourly changes in SI level 

(SIn+1, SIn+2, SIn+3) was introduced [124, 125]. These predictions are based on current identified patient-

specific metabolic condition (SIn). This stochastic model was built using a bi-variate kernel density 

estimation method on population data. The kernel density estimation method enables high resolution 

behaviour estimation of a specific parameter based upon its prior evolution or state, even where specific 

data points may be scarce [142]. Details on the development of this methodology and how to provide 

conditional probabilities based on local data densities are presented in Chapter 9. 

For each SIn value, the stochastic model thus provides a probability density function of likely future SI 

evolution, reflective of intra-patient variability. In the context of STAR, the 5th and 95th percentiles of 

these distributions are used to assess the risks associated with a given treatment [95, 125]. More 

specifically, greater metabolic variability translates to greater potential outcome glycaemic variability in 

response to insulin, and, thus, potential greater risk of hypoglycaemia. An example of the stochastic 

model is depicted in Figure 3.2. 
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Figure 3.2 – Risk-based dosing approach of the STAR framework. Current patient-specific identified SI is used to 

forecast the likely 5th-95th percentile range of future SI. This range is used to calculate the corresponding 5 th-95th 

percentile range of likely future BG outcome for a given insulin and nutrition inputs. 

3.2.5. STAR Risk-Based Dosing Approach 

The STAR treatment selection process uses 4 main steps to determine the optimal, personalised, 

combination of insulin and nutrition inputs to administer to patients. For STAR, it is set so the risk of BG 

< 4.4 mmol/L is limited to a maximum of 5%. These steps are graphically represented in Figure 3.3, and 

further detailed below. 

3.2.5.1. Step 1: Identify SI from clinical data 

The first step is to identify patient-specific SIn. The ICING model and integral-based methods are used 

using clinical data (BG measurement, exogenous insulin rates, and nutrition rates) to evaluate patient 

current SI level [93, 130]. This step accounts for inter-patient variability, as SI will be unique across 

patients and hours, based on specific patient response to treatment and patient-specific condition. 

Importantly, SI is considered constant hourly and treatment independent. For example, in Figure 3.4, 

SIn=2 is calculated based on BG measurements (top panel), insulin (second panel), and nutrition (third 

panel) rates administered between hours 1 and 2. 
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Figure 3.3 – STAR GC framework in 4 steps. Current SI is identified using the physiological model (top left). The 

stochastic model uses this value to predict future SI variability (top right). These predictions are used to calculate 

corresponding prediction of BG outcomes for a given treatment (bottom left). Treatment is adjusted to provide 

optimal control and minimise risks (bottom right). 
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Figure 3.4 – Example of SIn identification from clinical data. SI (bottom) is identified based on BG measurements 

(top), and insulin (second top) and nutrition (third top) rates over the identification period. 

3.2.5.2. Step 2: Prediction of future SI variability 

Given the current identified SIn level, the stochastic model provides probability distribution functions of 

future likely SIn+1, SIn+2, and SIn+3. The model is built from clinical data. More specifically, the 5th and 95th 

percentile prediction range is given by the stochastic model [124, 125]. These percentiles are directly 

used to optimise control, but, most importantly, to minimise the risk of hypoglycaemia in selecting the 

treatment. This step accounts for intra-patient variability, as it characterises the potential evolution of SI 

given its identified, patient-specific current value. 

As shown in Figure 3.5, SI variability is typically larger as the time interval (1, 2, and 3 hours) increases. 

This increase reflects the intuitive higher potential variability when considering longer treatment 

intervals, reflective of likely higher risk of hypoglycaemia. Hence, it innately captures the trade-off of 

interval length (time) and potential variability. 
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Figure 3.5 – Forward 1-3 hourly prediction of future SI variability. The 5th-95th percentile prediction ranges are 

determined by the stochastic model, based on the current identified SI value.  

3.2.5.3. Step 3: From predicted SI to predicted BG 

Based on the 5th and 95th percentile prediction range of future SI, a corresponding predicted BG outcome 

for any given combination of insulin and nutrition inputs can be calculated. This step uses the 

physiological model, but SI is now a known parameter with an expected range, and (future) BG is 

unknown. Figure 3.6 shows an example of the predicted 5th-95th percentile BG range (blue in top panel) 

based on the 5th-95th percentile range of predicted SI (dotted green bottom panel). This range was 

calculated for an insulin rate of 8U/h (second panel) and nutrition rate of 4 g/hr. As presented in Figure 

3.7, this process can be done for all different, clinically acceptable treatment choices, impacting the 

evolution of predicted BG outcomes. 

3.2.5.4. Step 4: Treatment Selection: Where the Magic Happens 

Given likely future evolutions of BG levels for all acceptable treatments, STAR uses the 5th-95th 

percentile range in future BG outcomes to select the intervention that best overlaps the clinically 

specified target band [95]. Treatments are considered acceptable if the 5th percentile of future BG levels 

is above the lower limit of the clinically set target band. Typically, this target band is 4.4-8.0 mmol/L, and 

STAR thus limits the risk of BG < 4.4 mmol/L to a maximum of 5%. As a result, the risk of BG < 4.0 

mmol/L is typically < 1%, with almost zero severe hypoglycaemic risk – providing the unique risk-based 

dosing approach. 
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Figure 3.6 – The 1h forward 5th-95th percentile prediction range of BG (blue, top panel) calculated for the 

corresponding 5th-95th percentile prediction range of SI (dashed green, bottom panel), and specific insulin (second 

panel) and nutrition (third panel) inputs. 

 

 
Figure 3.7 – 5th-95th percentile BG prediction ranges for different combinations of insulin and nutrition intervention.  
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In the overall example presented in this Section, the best 1-hourly treatment intervention (Figure 3.7) is 

the dotted blue line. This treatment is chosen as the associated 5th percentile predicted BG outcome is 

well within the target band, reflective of minimal risk of hypoglycaemia. Additionally, a lower nutrition 

rate (4.1g/h) is chosen compared to potential full maximum nutrition target rate (9.7g/h in this case), 

since the 95th percentile predicted BG is above the target band, thus reflective of potential 

hyperglycaemia. These choices can be modulated for different clinical practice cultures, of desired. 

In Figure 3.8, the clinical BG evolution of this patient, receiving the treatment selected above, is shown 

over the following 1-hour period. The real BG evolution trace (red, top panel) is within the predicted 

range (blue, top panel). The identified SI for that period is shown (bottom panel), and also within the 

predicted SI range. 

 
Figure 3.8 – Evolution of BG (top panel) given a specific insulin (second panel) and nutrition (third panel) inputs, 

and identification of the new SI level (bottom panel). Real BG (red) is well within the predicted range (blue). The 

new identified SI value (solid green) is also in the predicted range (dashed green). 
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While safety is the first priority, maximising nutrition to 100% of the patient-specific goal feed (GF) is the 

second [87, 134]. Nutrition can be decreased to a safe minimum value of 30% of GF [143] only if insulin 

is not sufficient to safely decrease BG outcomes within the target band. However, the nutrition rate can 

only be decreased by a maximum of 30% from one BG measurement to another to minimise over 

response to BG measurement errors. Insulin is limited to 6 U/h, with a potential additional 1-3 U/h of 

background continuous infusion for highly resistant patients [95]. This relatively low upper limit in 

comparison to other protocols has been set based on reported insulin-dependent receptor binding 

saturation [97, 132, 133]. When BG ≤ 3.0 mmol/L, insulin is stopped and a glucose bolus of 10 ml of 

50% glucose (5g of glucose) is administered to the patient, while the next BG measurement interval is 

1 hour. 

Clinicians are free to adapt treatment according to their clinical judgment, but these changes are 

recorded and accounted for in future treatment calculations. Insulin can be administered as continuous 

intravenous infusions or hourly boluses, showing STAR’s ability to adapt to local standards. Treatments 

are re-evaluated by the STAR controller at each BG measurement, where measurements are taken 

using either glucometers or blood gas analyser. STAR protocol treatments are calculated for 1, 2, and 

3-hour treatment intervals, where the 2 and 3-hour treatment options are offered depending on 

glycaemic stability within the targeted range, and safety from hypoglycaemia. Thus, BG measurements 

are taken 1-3 hourly. 

3.2.6. Safety and Efficacy of the STAR Framework 

Safety and performance analyses on STAR have shown its ability to provide safe and effective control 

for ICU patients in two hospitals from New Zealand and Hungary [87]. Over 250 patients (336 GC 

episodes) at the Christchurch Hospital, New Zealand, and 47 patients at the Gyula Hospital, Hungary, 

treated under STAR were analysed in this study. In each arm, the percentage time of BG in the target 

band (4.4-8.0 mmol/L) was > 80%, and the incidence of hypoglycaemia was very low, with < 2%BG 

below the lower limit of the target. Based on these encouraging single centre results, each hospital 

adopted STAR as the standard of care for GC. 

While STAR has shown promising results, it has only been implemented in single centre clinical trials, 

rather than expensive, complex to implement and compare, international multi-centre randomised 
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clinical trials (RCTs). The statistical power of the STAR results is thus often underestimated, although 

there are debates on whether international multi-centre RCTs are statistically more powerful, due to their 

potentially large variability and low compliance across ICU settings and practices [144-148]. This issue 

is further examined in Chapter 5. 

It is also important to remember there are some limitations in the GC controller arising directly from its 

design. STAR uses a physiological model, where some parameters have been approximated or 

identified from literature. For example, it is very complicated to assess the exact real-time evolution of 

EGP or insulin secretion rates. There thus might be some sources of error in the model, although the 

model has been validated and used extensively [87, 90, 91, 93, 94, 119, 149-151]. Additionally, the 

stochastic model is based on population data, and some specific behaviour in future variability might not 

be completely characterised. 

3.3. Virtual Trials and Virtual Patients 

Virtual trials are a powerful tool to compare glycaemic outcome, performance, and safety of different 

protocols simulated on the same set of virtual patients [91, 98, 99]. It can thus be used to analyse and 

compare how specific patients, characterised by selected key physiological parameters would react to 

different treatment approaches. The emergence of model-based solutions has led to the use of such in-

silico trials [98].  

More specifically, the mathematical model and GC protocol design can be tested, adapted, and validated 

using simulations of virtual trials on virtual patients. Protocols are thus not developed through trial-and-

error methods, but rather optimised prior clinical implementation [99]. This allows simulations to 

potentially identify undesired negative effects from protocol design. It thus reduces the costs associated 

with multiple pilot clinical trials, and potential avoidable risk [91]. 

It is important to note virtual patients and virtual trials simulations imply perfect clinical compliance to 

protocol, thus reflecting a zero-error case. Results will be biased in clinical practice if compliance to 

protocol is not fully respected, or if significant clinical errors arise due to protocol complexity [152]. They 

will also be inaccurate if the virtual patient model is not fully validated [91].  
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In the context of this thesis, virtual patients are characterised by their unique metabolic model-based SI 

profiles, identified from clinical data. The ICING model used is fully validated and clinically well used [81, 

93, 95, 99, 137, 149, 153-156]. For each patient, SI is identified hourly from clinical data. Importantly, 

patient-specific SI traces have been shown independent of the clinical inputs used to generate them 

[94], characterising thus patient metabolic state evolution over time [128]. Different treatment approach 

can thus be tested based on protocol specification, as shown in Figure 3.7. 

It is important to mention virtual trials of STAR automatically select the longest treatment intervals 

suggested and available. Thus, if only 1-hourly is suggested by STAR for safety reasons, virtual trials 

will select this treatment. However, if STAR assessment of risks results in allowing 2, or 3 hourly 

treatment intervals, than the longest available will be automatically selected. These trials are thus “blind” 

to any other potential factors, such as low BG levels, that could affect nurse treatment selection in clinical 

use. Additionally, the ICING model used enables to simulate a protocol using exogenous insulin infusion, 

insulin boluses, or both, based on protocol design or ICU practices. 

 

Figure 3.9 – Schematic representation of virtual patient generation and virtual trial simulation methodology. Virtual 

patients are characterised by their hourly identified SI from clinical data. Different protocol can then be tested on 

these patients to assess simulated BG outcomes in individual virtual patients and across a cohort. Figure taken 

from [128]. 
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Such trials are well-validated in their independence from the data used to create them and their accuracy 

[91, 94, 128], their ability to predict trial outcomes [96, 120, 129] and in clinical use to guide care in 

STAR [87, 95, 134]. These virtual trials have been used to assess and optimise STAR in both adult and 

neonatal ICUs [94, 95, 105, 128, 129, 149, 151, 154, 157, 158]. The overall schematic illustration of 

these in-silico trials using virtual patients is presented in Figure 3.9. 

3.4. Summary 

This chapter presented and detailed the proven STAR GC framework, as well as the use virtual trials 

and virtual patients. Both tools will be used in this work to respond to the main questions and objectives 

of this thesis, as presented in Chapter 1. The STAR model-based GC framework uses a physiological 

and stochastic model to provide a unique risk-based dosing approach. It has been shown safe and 

effective in different ICUs and practices. Virtual trials have proven effective in assessing and comparing 

the outcomes of different GC protocols on the same underlying patients or cohort of patients.



 

47 

 



 

48 

 

  



 

49 

 

Chapter 4: Cohorts, Patients, and Episodes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The retrospective analysis in this thesis are mainly using patient data from 3 different cohorts of patients, 

from 3 independent studies. These 3 cohorts are presented in this chapter, and have been previously 

published in [87]. 
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4.1. GC Patients vs. Episodes 

It is first important to note a patient can have multiple GC episodes, generally because: 

▪ Patients BG is stabilized, but then several hours later GC is started again due to dysglycaemia 

arising from any potential clinical reason, or 

▪ Patient are sent out if the ICU for clinical procedures (most commonly imaging or surgery), 

where GC is stopped and started again as they return (if necessary).  

4.2. SPRINT Cohort (Christchurch) 

This SPRINT protocol is the precursor of STAR, and provided safe, effective control for nearly all 

patients, averaging 16 measurements per day [38, 81, 87, 106]. SPRINT is a table-based protocol 

designed to adapt and optimise insulin and nutrition using BG assays and previous intervention. It was 

developed using the ICING physiological model, but does not explicitly identify SI. The BG target band 

in SPRINT BG is 4.0-6.1 mmol/L. A significant advantage of this data set is it contains a full set of clinical 

data of sufficient detail and quality for a wide range of further analyses. Many studies do not record (or 

report) detailed nutrition and/or insulin inputs, and so limit analyses by either disregarding nutrition in 

the first place, or by only reporting daily averages and effects. This data set included all time-valued 

changes in insulin and nutrition in 1-3 hour intervals, as well as all BG measures, thus allowing a much 

higher degree of resolution in the calculation of time-varying SI. 

In total, 371 patients of the SPRINT study [81, 94] are considered. These patients were treated in 

Christchurch Hospital ICU, New Zealand, from July 2005 to May 2007. SPRINT was implemented as 

standard practice, and de-identified data audit and analysis were approved by the New Zealand Health 

and Disability Ethics Committee Upper South Regional Ethics Committee B (Ref: URB/07/15/EXP).  

From this cohort, 292 (79%) patients with GC episodes longer than 10 hours and average nutrition < 

120%GF are used. In addition, episodes were split if a gap greater than 5 hours between two 

consecutives measurements was present, leading to a total 442 GC episodes. These criteria ensure the 

normal use of SPRINT and the exclusion of patient data with very short GC episodes, and thus low BG 

measurement numbers, which are likely less reflective of general metabolism dynamics [87]. 

Demographics summary is shown in Table 4.1. 
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Table 4.1 – Summary of SPRINT patient demographics. 

 
SPRINT 

Christchurch 

# episodes 442 

# patients 292 

# GC hours 39838 

% male 62.7 

Age (years) 63 [48, 73] 

APACHE II 19.0 [15.0:24.5] 

ICU Length of 

stay (days) 
6.2 [2.7,13.0] 

Results are given as median [IQR] where appropriate. 

4.3. STAR Cohorts (Christchurch and Gyula) 

Retrospective patient data included on STAR from 2 clinical ICUs are also used. The first cohort includes 

264 patients treated in Christchurch Hospital ICU, Christchurch, New Zealand, from June 2011 to May 

2015. The second cohort includes 47 patients treated in Kalman Pandy Hospital ICU, Gyula, Hungary, 

from December 2011 to May 2015. STAR in both countries were implemented as standard practice, and 

de-identified data audit and analysis were approved by the New Zealand Health and Disability Ethics 

Committee Upper South Regional Ethics Committee B (Ref: URB/07/15/EXP), and the local ethical 

codes of Hungary. 

Compared to the SPRINT patients, the data is sparser as STAR averages 12 measurements per day. 

However, BG, insulin, and nutrition rates recoding were automated based on clinical staff entries, and 

not gathered from patient bed sheets. Additionally, these patients’ lower measurement frequency 

compared to SPRINT is closer to most ICUs standards. 

These cohorts are totalling 330 and 47 GC episodes for STAR-Christchurch and STAR-Gyula, 

respectively. Similarly to the SPRINT cohort, only episodes longer than 10 hours and average nutrition 

< 120%GF are considered. Demographics results summary are presented in Table 4.2. 

STAR in these two different cohorts was implemented slightly differently. In Christchurch, insulin boluses 

are primarily used, and enteral nutrition is modulated. In contrast, in Gyula, insulin infusion is mainly 
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used, and parenteral nutrition is modulated. Thus, these two cohorts, in addition of being different 

ethnically, are representative of different GC management in the context of STAR. 

Table 4.2 –Demographics summary of STAR Christchurch and STAR Gyula cohorts. 

 STAR Christchurch STAR Gyula 

# episodes 330 47 

# patients 264 47 

# GC hours 22372 6268 

% male 65.5 61.7 

Age (years) 64 [53, 72] 66 [58, 71] 

APACHE II 21.0 [16.0:25.0] 32.0 [28.0:36.0] 

LOS - ICU (days) 5.7 [2.5,13.4] 14.0 [8.0,20.5] 

Results are given as median [IQR] where appropriate. 

4.4. Summary 

This chapter presented the retrospective cohorts used in analyses of this thesis. These cohorts reflect 

different population of patients, treated with different GC protocols proven to achieve highly effective 

GC. In addition, the quality of the data is an advantage to accurately identify patient-specific SI and 

create virtual patients (Chapter 3). 
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Chapter 5: Bad vs. Good Glycaemic Control  

 

 

 

 

 

 

 

 

 

The disparities in clinical results of tight GC, targeting lower BG targets independently associated with 

improved outcome, resulted in ongoing debate on the optimal target band. More specifically, while some 

studies have shown improved outcome providing safe control, others resulted in significant increased 

hypoglycaemic risk, associated with worse outcome. 

This chapter aims to understand and identify why some studies were successful in providing safe GC 

control and others were not. More specifically, it provides a first answer to the question: Is GC to lower 

ranges to blame for increased hypoglycaemia and poor results, or rather the control given? This goal is 

achieved by comparing clinical results and validated virtual trial results of two contradictory studies to 

assess the cause of their differences in outcome. 

This chapter presents results published in [159] and [160]. 
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5.1. Introduction 

Stress-induced hyperglycaemia is a common complication in ICU [31], associated with increased 

morbidity and mortality [5, 13]. GC to lower BG to safer ranges have associated with improved outcomes 

[35, 161, 162], but hard to achieve safely [46-48, 50, 89], increasing hypoglycaemia and glycaemic 

variability, both associated with worsen outcome [5, 10, 11, 13, 14, 32, 33, 54, 56, 58, 163]. Whether 

insulin therapy to provide GC is beneficial or harmful for critically ill patients has thus been widely 

debated over the last 20 years [60, 61, 63-68, 164-168]. More precisely, while GC is well accepted, the 

optimal BG target band is still unknown [121]. High time in normoglycaemic ranges is associated 

improved outcome [38, 76, 77, 79], but is harder to achieve safely due to metabolic variability [79, 85]. 

To date, the recommendations advocate moderate, rather than tight, BG targets for GC in ICU [70-73], 

reflecting the “first do no harm” or “uncertainty” principle [60]. However, these recommendations are 

heavily based on studies that failed to provide safe and effective control for all patients [75]. 

Thus, it is unclear why some studies were able to provide “good” or “bad” control. Understanding what 

makes GC hard to achieve safely could thus provide a first answer to this question: Is intensive insulin 

therapy (IIT) for tight GC to blame for increased hypoglycaemia and poor results, or is it the control 

given? 

5.2. The Bad vs The Good 

Chapter 1 presented the importance of model-based GC protocol, accounting for inter- and intra- patient 

variability. Effectively, automated GC protocols allow identification of patient-specific key physiological 

parameters reflecting patient metabolic state, such as SI [85], and thus the ability to adapt treatment 

accordingly. Compliance to protocol and measurement frequency also directly impact GC performance 

[169, 170], and are added key considerations, as they reduce controller performance. Thus, effective 

protocol must consider much more beyond metabolism to ensure best outcomes. 

In 2009, the Normoglycemia in Intensive Care Evaluation-Survival Using Glucose Algorithm 

Regulation (NICE-SUGAR) study results – a large, important multi-centre RCT comparing conventional 

and intensive GC impact on 90-day clinical outcomes – were presented and quickly became the gold 

standard in the field [46]. This study showed the important increased risk of severe hypoglycaemia and 
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mortality when using the lower target band compared to a higher glycaemic target with their protocol 

[32, 46]. However, the methods, results, and lack of reported statistics have been widely criticised [63, 

121, 164], making the conclusion of this study about 90 day mortality questionable. Overall, this study 

created a “valley of glycaemic despair” [64], where experts begged to “agree to disagree” [61], and the 

field has since languished. 

A decade has passed since the NICE-SUGAR study, and new studies have once again shown improved 

control and achieving clinical outcomes are becoming (potentially) possible using lower glycaemic 

targets [43, 87, 95, 108, 149, 151, 171, 172]. Unlike NICE-SUGAR, all these studies used computerised 

methods and achieved high time in the targeted band in a safe, effective manner. Unfortunately, their 

statistical power, size, and/or retrospective nature is criticised compared to large RCTs.  

Whether international multi-centre RCTs are statistically more powerful, despite their potentially large 

variability and low compliance across ICU settings and practices, is also hotly debated [144-148]. In 

particular, no clinical study can compare two or more protocols on the same patient, so there is no way 

to determine if poor RCT results are due to the protocol, compliance, or GC itself. Additionally, the lack 

of standardised reported metrics and statistics have been pointed out as a big problem in studies 

analysing GC outcomes, making them hard to compare fairly (Chapter 2) [99, 118]. 

Virtual trials can be used to test multiple protocols on the same cohort of virtual patients. These in-silico 

trials were further explained in Chapter 3. This analysis uses clinically validated virtual patients [91, 94, 

128] to simulate the NICE-SUGAR protocol intensive low target arm, and assesses its ability to achieve 

safe, effective control. Results are compared with the reported clinical data. Simulated glycaemic 

outcomes of this protocol are also compared with virtual trials of the proven, model-based and patient-

specific STAR GC framework [87, 95] using the same underlying virtual patients.  

Overall, this control performance analysis aims to determine whether GC has been the scapegoat of the 

NICE-SUGAR study, wrongly blamed for poor patient outcomes due instead to the ineffectiveness of 

GC design. 
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5.3. Methods 

5.3.1. Glycaemic Control Protocols 

5.3.1.1. STAR Protocol 

STAR has been fully described in Chapter 3, and is used in this analysis. STAR is a model-based GC 

framework used as the standard of care in adult ICU of Christchurch, New Zealand, and Gyula, Hungary 

since 2012 [87, 95, 123]. STAR provides safe, effective control for effectively all patients to lower 

glycaemic ranges (4.4-8.0 mmol/L), using a unique risk-based dosing approach [95, 125], modulating 

both insulin and enteral nutrition inputs. 

5.3.1.2. NICE-SUGAR Protocol 

The NICE-SUGAR study was an international multi-centre RCT comparing intensive and conventional 

glucose control [46]. The intensive control group target was 4.5-6.0 mmol/L, while the conventional 

group was 10.0 mmol/L or less [46]. Intravenous insulin infusion was used alongside glucose boluses, 

and caloric nutrition intake was carried out at clinician discretion and was not considered in the protocol, 

making it “CHO blind” [85, 86]. BG measurements were made using local ICU standards.  

The full protocol algorithm can be found online [173], and corresponds to a sliding-scale protocol using 

current and previous BG measurements, and current insulin dose to adapt treatment. By protocol 

design, measurements are required to be taken 1-hourly, and 2-hourly if BG is within target band and 

insulin infusion and caloric intake are stable. If the last 2 BG measurements are in band and no insulin 

is given, the measurement frequency is 4-hourly. Finally, 30-minute measurements are required if BG 

is too low (BG < 4.5 mmol/L). The workload is thus expected to be important as the measurement 

frequency is high: primarily 1-2-hourly. 

Although it may seem unreasonable, no maximum recommended insulin infusion rate information was 

found in the published study protocol. Insulin recommendations may be adapted at clinician discretion 

if necessary, but no specific guidelines are given. Insulin infusion is stopped and glucose boluses of 10 

ml and 20 ml of 50% glucose are given if BG drops below 3.5 mmol/L and 2.5 mmol/L, respectively. 

Equally, nutrition was left to local guidelines and practice, and was not specified by the protocol. 
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5.3.2. Virtual Trial Analysis 

Validated virtual trial using virtual patients (Chapter 3) is used to simulate different GC protocols and 

compared GC outcome from the same underlying cohort of patients [91, 94, 128]. In this analysis, 442 

virtual patient episodes are generated using retrospective clinical data from 292 patients of the SPRINT 

cohort presented in Chapter 4 [81, 94]. Three different protocols are simulated in this study: the intensive 

NICE-SUGAR protocol (NS-IIT); a 3-hourly measurement interval adapted version of the intensive 

NICE-SUGAR protocol (NS-IIT-3H); and STAR. 

A summary of these protocol design is presented in Table 5.1. While NS-IIT strictly implements the 

published protocol, NS-IIT-3H is developed to average 3-hourly measurements and limit insulin 

infusions to a maximum of 10 U/h. This modified NICE-SUGAR protocol was developed to try to match 

published clinical practice results and are also a better comparison in terms of workload to STAR. The 

NS-IIT-3H version also reflects a more manageable and realistic GC design, directly matching the 

reported clinical workload, which was much lower than the 1-2 hourly interval specified in its original 

protocol design. Overall, these three analyses enable a fair, more realistic comparison with both reported 

clinical results and STAR. More specifically, measurements for NS-IIT-3H were changed from 1 to 3-

hourly (for the same insulin treatment dose) if within 4.5-10.0 mmol/L, and maintained unchanged at 1-

hourly (or 0.5-hourly) for lower BG values as per original protocol. 

Table 5.1 – Summary of the NS-IIT, NS-IIT-3H, and STAR protocol designs compared in this analysis. 

 NS-IIT NS-IIT-3H STAR 

Type Table-based Table-based Model-based 

Target band 4.5-6.0 mmol/L 4.5-6.0 mmol/L 4.4-8.0mmol/L 

Measurement intervals 

0.5 hourly if low BG 
1-2 hourly if in band 

4-hourly if stable. 

0.5 hourly if low BG 

3-hourly otherwise 
1-3 hourly 

Insulin strategy No limit specified Max. 10 U/h 

Max 6U/h + 3U/h if 

persistent 

hyperglycaemia 

Nutrition strategy Clinical discretion Clinical discretion 

Modulation 

between 30 to 
100% GF 
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In the simulation of the intensive NICE-SUGAR protocol (NS-IIT), nutrition intake is increased daily, 

according to reported non-protein calorie achievements in the Appendix B of the original study [46]. 

However, nutrition type and composition are never reported in the study. Therefore, enteral nutrition is 

assumed to be low CHO (40% of non-protein calories were CHO, similar to Glucerna 1.0™), and 

parenteral (including maintenance fluids) are 70% of non-protein calories attributable to CHO. This low 

CHO enteral nutrition assumption is conservative and provides a best case for the NICE-SUGAR 

protocol, considering the higher CHO content typical of most enteral nutrition formulas would make GC 

more difficult, increasing glycaemia and patient variability. 

5.3.3. Safety, Performance, and Compliance Assessment 

Many statistics exist to assess GC performance, and all have advantages and disadvantages or 

limitations [99, 116-119]. These issues are further discussed in Chapter 2. However, in this analysis, 

performance and safety metrics are chosen based on the few BG statistics reported in the NICE-SUGAR 

study and more commonly used metrics in the literature. Thus, performance is assessed by the mean 

and SD of hourly resampled BG levels, percentage time of hourly resampled BG measurements within 

the different target bands (4.5-6.0 mmol/L for NICE-SUGAR and 4.4-8.0 mmol/L for STAR), as well as 

median, inter-quartile range and 5-95th percentile range of per-patient mean BG. Safety is evaluated by 

the number of patients and total %BG in severe hypoglycaemia (BG < 2.2 mmol/L). Mild hypoglycaemia 

is also reported for each protocol (%BG < 4.0 mmol/L). Finally, workload (average measurements per 

day), mean insulin rate and median glucose rate are reported, where major differences in workload 

compared to clinical results indicate non-compliance to the protocol. 

As the NICE-SUGAR study did not report full results, comparison of BG metrics with the simulations is 

more difficult. Hence, only the clinical mean (SD) BG is reported in the results comparison. Additionally, 

the time-weighted per-patient BG is derived from Figure 2 presented in the original study [46]. To ensure 

strong and robust comparison, and because the time-weighted per-patient BG is already an estimation 

of presented results, no additional estimation on per-patient BG metrics is made because there would 

be too much room for error. Such lack of standardised reporting metrics for GC in ICU has been 

addressed and reported previously [90, 99, 118], but unfortunately is still today too often an issue. 
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5.4. Results 

Virtual trial and clinically reported results for NS-IIT, NS-IIT-3H, and STAR are presented in Table 5.2. 

Per-protocol CDFs of hourly resampled BG and per-patient mean BG are shown in Figure 5.1. Per-

protocol median [IQR] evolution of hourly resampled BG overtime stratified in 6-hour blocks is also 

shown in Figure 5.2. Clinical results for the NICE-SUGAR study are not shown in Figure 5.2 and some 

parts of Table 5.2 because not enough data was reported to reconstruct or estimate BG outcome ranges. 

5.4.1. NS-IIT vs. STAR Virtual Trial Results 

STAR outperforms NS-IIT in safety and GC performance. Mean BG was similar (6.2±1.2 vs. 6.2±1.7 

mmol/L), and both inter- and intra- patient glycaemic variability were lower for STAR as reflected in the 

median [IQR] per-patient mean BG (6.2 [5.9, 6.6] vs. 6.2 [5.7, 7.1] mmol/L) and SD BG (1.4 [1.1, 1.8] 

vs. 1.1 [0.8, 1.4]). Figure 5.1 and Figure 5.2 also show STAR has consistently tighter and less variable 

BG outcomes compared to NS-IIT. STAR achieved 91% BG within 4.4-8.0 mmol/L (81% for the NS-IIT), 

and both protocols achieved similar 46% BG within 4.5-6.0 mmol/L. In terms of safety, BG < 4.0 mmol/L 

was only 1% mild hypoglycaemia and 0.02% in severe hypoglycaemia for STAR compared to 3% and 

0.04% for NS-IIT. In total, 5 patients (1%) had sever hypoglycaemic episodes with STAR and 7 (2%) 

with NS-IIT. Additionally, 55% of patients experienced mild hypoglycaemia (BG within 2.3-3.9 mmol/L) 

under the NS-IIT protocol compared to 34% for STAR. 

Considering compliance, workload was, as expected, much higher for NS-IIT (25.0 measurements per 

day) compared to STAR (12 measurements per day). Insulin rates were much higher for NS-IIT 

(154.6±209.2 U/d) compared to STAR (70.4±53.5 U/d). While this higher insulin rate could be explained 

by the higher median CHO intake (6.2 [5.1, 6.7] vs. 6.1 [2.1, 6.1] g/h), the absence of a maximum insulin 

limit also plays a role, using insulin in an ineffective and potentially dangerous manner, as seen in the 

higher hypoglycaemia reported. Finally, the 5-95th percentile range of per-patient mean BG indicates 

5% of patients were above 9.7 mmol/L under NS-IIT compared to 8.1 mmol/L with STAR.  
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Table 5.2 – Simulation results summary of the NS-IIT, NS-IIT-3H, and STAR protocols, and reported clinical 

values of the NICE-SUGAR study. 

 
NICE-SUGAR STAR 

Clinical NS-IIT NS-IIT-3H Simulation 

Average measurements per day ~9.4 ~25.0 ~10.2 ~12.0 

Mean insulin dose (SD) U/day 50.2 (38.1) 154.0 (209.2) 115.0 (121.7) 70.4* (53.5) 

Mean resampled BG (SD) [mmol/L] 6.4 (1.0) 6.2 (1.7) 6.4  (1.7) 6.2* (1.2) 

Median [IQR] per-patient mean BG [mmol/L] / 6.2 [5.7, 7.1] 6.4 [5.9, 7.3] 6.2† [5.9, 6.6] 

5-95th percentile per-patient mean BG [mmol/L] / [5.3, 9.7] [5.3, 9.6] [5.4, 8.1] 

Median [IQR] per-patient SD BG [mmol/L] / 1.4 [1.1, 1.8] 1.3 [1.0, 1.7] 1.1† [0.8, 1.4] 

5-95th percentile per-patient SD BG [mmol/L] / [0.8, 2.7] [0.6, 2.6] [0.6, 2.4] 

% BG in 4.5-6.0 [mmol/L] / 46 41 46‡ 

% BG in 4.4-8.0 [mmol/L] / 81 81 91‡ 

% BG < 4.0 [mmol/L] / 3 2.5 1‡ 

% BG < 2.2 [mmol/L] / 0.02 0.06 0.02‡ 

# patients with min(BG) within 2.3-3.9 mmol/L (%) 2237 (74) 243 (55) 210 (47) 149‡ (34) 

# patients with min(BG) <= 2.2 mmol/L (%) 207 (7) 7 (2) 20 (5) 5‡ (1) 

Median [IQR] glucose rate (g/h) / 6.2 [5.1, 6.7] 6.2 [5.1, 6.7] 6.1† [2.1, 6.1] 

Simulation BG data is resampled hourly. “/” is used if no data is available in the original study. Significance level 

(P<0.05) is indicated with “*” for Welch Test, “†” for the Wilcoxon rank sum test, and “‡” for the Fisher exact test, 

comparing STAR with NS-IIT-3H. SD is standard deviation. 

 

 

Figure 5.1 – Per-protocol cumulative distribution function of BG. Solid lines represent hourly resampled BG. Dotted 

lines represent per-patient mean BG. Clinical CDF is estimated from [46]. 
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Figure 5.2 – Per-protocol median [IQR] evolution of hourly resampled BG stratified in 6-hour blocks over the first 15 

days of control. Solid lines and dots indicate 6-hourly medians and shaded areas represent IQR. 

5.4.2. NS-IIT Clinical vs. Virtual Trial Results 

Reported clinical results of the NS-IIT study differ significantly from simulations. Although the mean 

resampled BG levels are similar (6.4±1.0 vs. 6.2±1.7 mmol/L), the number of patients experiencing 

severe and mild hypoglycaemia is larger clinically (6 vs 2% and 74 vs. 55%).  This difference could be 

explained by the large difference in workload (9.4 vs. 25.0 measurements per day), clearly showing a 

clinical lack of compliance to the original NS-IIT protocol, whose measurement rate was most likely not 

clinically feasible [81, 174, 175]. 

In addition, the mean insulin rate clinically was only 50.2±38.1 U/d, while exact per protocol virtual trial 

simulation results show much higher rates (154.0±209.2 U/d). Once again, this difference with clinically 

reported data is reflective of poor compliance to protocol, particularly as insulin levels commanded per 

protocol increased. Recommendations of excessive, ineffective amounts of insulin were probably 

lowered at clinician or nurse discretion for safety or out of fear of the risk of hypoglycaemia, but the 

degree of non-compliance is not clear nor reported in the original study [46], and may not have been 

recorded. 
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Another explanation could also be the underlying cohort in the original study was less resistant to insulin 

than the virtual cohort or were fed less than in simulations. Importantly, the virtual trial cohort used from 

Christchurch, New Zealand, is demographically and clinically similar to many of those in the NICE-

SUGAR trial in Australia, New Zealand, and Canada. Any or all of these factors may play a role. 

However, with such a large peak insulin dose, and very similar cohort, as well as other large differences, 

it would not be surprising to find compliance to such recommendations to be low [176-178]. 

5.4.3. NS-IIT-3H 

NS-IIT-3H was implemented to better match average reported clinical measurements and allow fair 

comparison with STAR based on workload, as clinically reported. With 10.2 measurements per day, NS-

IIT-3H better matched the 9.4 measurement per day reported clinically, better capturing reported 

workload. Results show 81% of NS-IIT-3H BG values within the STAR target band and 41% within the 

NS-IIT target band. The mean BG level was higher than STAR (6.4±1.7 vs. 6.2±1.2 mmol/L), but very 

close to reported values (6.4±1.0 mmol/L).  

Interestingly, the NS-IIT-3H per-patient mean BG CDF is very different from the estimated clinically 

reported results, the latter being closer to STAR (Figure 5.1). This result indicates the compliance to 

protocol is more than just increased measurement intervals. Figure 5.2 shows the NS-IIT-3H protocol 

design shifts the median [IQR] BG upwards, bringing the median BG closer to STAR, but the IQR is still 

much wider. 

A total of 20 patients (5%) experienced severe hypoglycaemia, slightly lower than the clinical study 

results (7%). Simulation showed a much lower percentage of patients experiencing mild hypoglycaemia 

compared to clinical study results (46% vs. 74%). Hence, NS-IIT-3H succeeded in representing overall 

per-patient performance to what was reported clinically, although insulin administration was still much 

higher (99.0±66.5 U/d vs. 50.2±38.1 U/d) despite a maximum of 10 U/h limitation. These results indicate 

workload compliance was a major factor in the difference to clinical results, and that insulin dosing was 

often limited clinically compared to protocol recommendations, perhaps to levels much lower than the 

still relatively high 10 U/h used here. 

 



 

65 

 

5.4.4. Results Summary 

Overall, STAR provided tighter control to an intermediate BG target, with less variability and higher 

safety (Figure 5.1 and Figure 5.2). This outcome was achieved for a higher number of patients. The 

comparison between simulation and clinical reported results of the NS-IIT has indicated very poor 

compliance to the protocol as defined, reflected in the average number of measurements per day (9.4 

vs. 25.0 measurements per day) and the high difference in average daily insulin administration 

(50.2±38.1 vs. 154.0±209.2 U/d), potentially increasing hypoglycaemic episodes. These results suggest 

a potentially significant bias in clinical outcome for the trial due to protocol non-compliance and (also) a 

less effective protocol leading to poor GC for many patients, rather than the impact of GC on patient 

outcome. These outcomes directly contradict the interpretation of this trial in the field, noting compliance 

was neither recorded nor analysed in the NICE-SUGAR study [32, 46]. 

5.5. Discussion 

5.5.1. Interpretation 

The increased risk of hypoglycaemia and mortality associated with IIT over conventional control in the 

international multi-centre NICE-SUGAR RCT [32, 46] has been used as a gold standard to make the 

case against GC to lower bands, despite significant contrary results and information [135]. However, the 

results and methodology are widely debated [65, 121], and the lack of key comparable BG metrics is a 

further hindrance [91, 99]. The results presented here, using validated virtual trial simulations of the 

protocol on highly validated virtual patients, highlight important disparities between the original NS-IIT 

protocol results and clinically reported values. Comparing the virtual trials and study clinical results 

indicate overall safe and effective control was not delivered to all patients, potentially affecting patient, 

and study, outcomes. This outcome alone may explain why the study failed to replicate previous early 

successes in this area [38]. 

Simulations of the NS-IIT protocol show good safety and performance which would likely yield good 

patient outcomes. However, the more clinical workload feasible NS-IIT-3H design, matching clinically 

reported workload, had significantly increased incidence of severe hypoglycaemia despite a 10U/h 

limitation of insulin infusion rate, but reduced risk of mild hypoglycaemia. The measurement frequency 

of the original design is clearly too high and likely not manageable by clinical staff [152, 174, 179]. 
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Hence, the negative results of NICE-SUGAR are likely a result not of GC itself, but of poor compliance 

to a protocol that is neither patient-specific nor clinically feasible.  

The clinically reported 9.4 average measurement per day clearly reflects poor compliance to a protocol 

demanding 24+ measurements per day per protocol, potentially leading to higher variability and risk of 

hypoglycaemia, as seen clinically. Furthermore, the excessive, and ineffective amount of insulin 

administration required by NS-IIT also likely led clinical staff to adapt treatment based on their 

experience and clinical judgment, as reflected in the enormous difference of mean insulin administration 

per day and the overall per-patient mean BG CDF (Figure 5.1). As the NICE-SUGAR study does not 

report compliance to protocol [32, 46], it is not possible to fully or accurately assess what actually 

happened clinically. 

In contrast, STAR virtual trial simulation results show higher performance can be achieved with 

moderate insulin administration. STAR consistently achieved a median 6.0 mmol/L BG in a tighter and 

less variable manner (Figure 5.1 and Figure 5.2). This median BG and IQR evolution over time, reflective 

of overall time in target band, is clearly within the accepted glycaemic ranges [60, 77]. STAR is a 

personalised model-based GC protocol, and compliance is very high [87]. More importantly, virtual trial 

results are near identical to clinical results [95, 96, 105], indicating very high compliance and good match 

between virtual and clinical patient cohorts.  

Poor safety from hypoglycaemia is the major outcome held against IIT and GC to lower target bands. In 

simulations, NS-IIT and NS-IIT-3H have higher incidence of severe and mild hypoglycaemia than STAR. 

Clinically, the number of severe hypoglycaemic events was higher, at 7% of patients. Additionally, the 

percentage of patients experiencing mild hypoglycaemia (BG within 2.3-3.9 mmol/L) was much higher 

clinically (74%) compared to simulations (55% for NS-IIT and 46% for NS-IIT-3H), while STAR once 

again showed the best results with only 34%. If, indeed, NS-IIT increased the risk of hypoglycaemia 

compared to the conventional group, it could have been avoided by using a safer, more patient-specific 

protocol design. In total, clinical reported results show an important and very large 81% of patients who 

had a minimum BG below the mild hypoglycaemic upper threshold (BG < 4.0 mmol/L). Virtual trial 

simulation results on the 442 virtual patients showed 57% of them would have experienced this level of 

hypoglycaemia for NS-IIT, 51% for the NS-IIT-3H, and only 35% for STAR. Overall, it suggests NS-IIT 
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may also not be safe, in which case, despite perfect compliance, it too would likely have failed to improve 

patient outcomes. 

The safety issue of the NS-IIT and NS-IIT-3H comes primarily from poor protocol design. While lacking 

patient-specificity, the original NICE-SUGAR algorithm does also not specify any insulin limits (to the 

knowledge of the authors), a critical safety concern. As a result, the NS-IIT insulin mean rate and SD 

are very large, especially for very insulin resistant patients for whom insulin effect quickly saturates and 

has limited to no impact, while the protocol recommends further increases in insulin doses. This issue, 

in turn, leads to control variability when patient state changes or patients become more insulin sensitive. 

However, this issue is somewhat addressed in NS-IIT-3H analysis with a specified 10 U/h maximum 

insulin rate limit to better match realistic control, where the mean (SD) insulin dose administered is 

already more pragmatic. These patients, the hardest patients to control, typically reflect the problem 

with highly resistant patients in ICU, where modulating (decreasing) caloric intake temporarily, as is 

done in STAR, effectively and safely reduces glycaemic levels in the target band, as shown in Table 

5.2. This approach is also validated in other studies on STAR [87, 134]. 

While hypoglycaemia is the main safety concern, severe hyperglycaemia is also associated with worse 

outcome and higher metabolic inflammation [180]. The 5-95th percentile range of per-patient mean BG 

suggests 5% of patients had a mean BG higher than 9.7 mmol/L for NS-IIT (9.6 mmol/L for NS-IIT-3H) 

compared to 8.1 mmol/L for STAR (Figure 5.1). Hence, 5% of patients had a mean BG above the severe 

hyperglycaemic limit for NS-IIT, despite targeting a much lower band, a clear control failure.  

Overall, this comparison of clinically reported values of the NICE-SUGAR study alongside validated 

virtual trial simulation results of the protocol, reflective of perfect protocol compliance with zero error, 

showed NICE-SUGAR failed to achieve the necessary safe and effective control for all patients in the 

IIT arm. Compliance to this protocol was very poor based on these results. Thus, the poor performance 

observed and its resultant reduced patient outcomes are most likely due to control protocol design and 

poor compliance. 
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5.5.2. Limitations 

Many assumptions had to be made to simulate the NS-IIT protocols due to lack of complete protocol 

and/or nutrition delivery, as well as incomplete data reporting in the study. Nutrition type and total CHO 

intake are missing in the original NICE-SUGAR study and were likely variable across centres and/or 

patients. The daily clinical nutrition delivery in the simulations were based on the reported daily enteral, 

parenteral, and maintenance rates indicated. Content was assumed to be low CHO, a conservative 

choice in this comparison, and its administration was set constant daily, representing a conservative 

approach to modelling the unreported caloric intake, making control likely easier and reducing patient 

variability in this study compared to reality. Equally, a lower CHO assumption also accounts for, or 

averages, clinical nutrition stoppages due to hyperglycaemia.  

Additionally, simulation results reflect the ideal case of full compliance to protocol. However, the NS-IIT-

3H was designed to represent a more realistic control in terms of nurse workload and allows to give 

results matching clinical burden, mean (SD) BG achieved, and percentage BG within the different 

glycaemic bands. Finally, the patients used in simulation are drawn from a different, but similar, ICU 

cohort than those in the NICE-SUGAR study. These patients could thus be different metabolically, which 

may affect the insulin recommendations in simulation. However, previous work has shown similar 

variability in underlying SI between different ICU cohorts, showing such simulation on virtual patients to 

give consistent BG outcomes across very different cohorts [128]. 

A further limitation is the lack of reported BG metrics in the original NICE-SUGAR study around each 

arm. The given estimated per-patient BG distribution and cohort mean (SD) BG values reported can 

give indications of the differences in BG between the different groups. However, they may not reflect 

the underlying protocol performance in that this choice and assumed normal distribution likely tightens 

BG distributions and does not reflect incidence of extreme BG values. It is also influenced by the length 

of stay (LOS) of the patients. Additionally, reporting insulin rates using mean (SD), based on what is 

reported in NICE-SUGAR, is not intuitive as it does not provide any precise details on insulin rates 

distribution. Thus, the large corresponding SD values in Table 5.2 may seem unreasonable, but typically 

reflect skewed (not normal) distributions [110], which would have been better characterised using the 
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median and IQR values. Hence, better metrics are needed and have been called for in working group 

statements [90, 91, 99, 118]. 

Reported BG metrics from the simulations are linearly resampled hourly to allow better representation 

of reality, but also fair comparison between protocols. In the original NICE-SUGAR study, time-weighted 

BG levels are reported, which have been used in Table 5.2. Hence, the comparison between clinical BG 

outcome from the NICE-SUGAR study and simulations is robust and the measurement frequency have 

minimal impact on the results here. 

5.5.3. Discussion Summary 

Many reasons could thus explain why NICE-SUGAR failed. First, NICE-SUGAR is a sliding-scale 

controller lacking patient-specificity, while the need of patient-specific solution accounting for inter- and 

intra- patient variability have been widely shown [85], even before the start of the NICE-SUGAR study 

[162]. The poor compliance to this protocol, which could potentially have been expected, also has major 

impact on the results, and reflects the impact of the large potential variability arising from multi-centre 

RCT designs with variable results across centres [43, 47, 89]. While statistical power is often improved 

by such trials [144, 145], it all relies on effective and generalizable protocol design, which was not the 

case here. Overall, while the validity of RCT outcome on the impact of different treatments on a specific 

measured key outcome, such as mortality, can be erroneous if the treatment itself failed to achieve what 

it was designed for, and consequently induces interfering external factors, such as hypoglycaemia. In 

addition, metabolic control, rather than insulin itself, has been related to beneficial effects [181], whereas 

the poor control provided by NICE-SUGAR may have had negative effect on outcome in the intensive 

arm. Altogether, these issues suggest the intensive arm glycaemic and clinical outcome of the NICE-

SUGAR study could have been biased simply by a poor GC protocol design, and thus the comparison 

with the conventional arm and the main conclusion are not valid. 

5.6. Summary 

Virtual trials results of the NICE-SUGAR and STAR protocols were compared to the reported NICE-

SUGAR study clinical values. Per-protocol, STAR showed safer and tighter control for nearly all patients. 

Compared to published results, virtual trial simulation results of the NICE-SUGAR protocol showed big 
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differences suggesting a clinical lack in compliance to protocol. This observed poor compliance could 

be the reason why the intensive GC IIT arm in this major study resulted in the reported increased 

hypoglycaemia and increased mortality. Thus, this study suggests a different interpretation of the NICE-

SUGAR results, where poor GC protocol design and added non-compliance should be accused for 

increased hypoglycaemia and mortality, rather than IIT and GC itself. 

GC protocols need to be both safe and effective for all patients before potential clinical benefits can be 

assessed. Poor control can result in higher hypoglycaemia, hyperglycaemia, and glycaemic variability, 

all associated with worse outcomes, increased LOS, workload, and mortality, as well as cost. The need 

for computerised, patient-specific solutions accounting for patient variability, and achieving high quality 

control such as STAR is thus of paramount importance in the field of GC and offers a rule for control 

systems engineering. 

While this study highlights the importance of the quality of GC protocols before assessing clinical 

outcome, it does not give a response on what target band should be used for GC in ICUs. However, it 

suggests that future studies, as local clinical implementation or large RCTs, aiming to respond to this 

question should ensure both safety and efficacy of GC protocol design before it can determine whether 

lower or higher BG levels are associated with beneficial clinical outcomes. This analysis thus 

emphasises protocol design as a key to provide safe, effective control for nearly all patients, but is it 

really possible to do so for all patients?
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Chapter 6: Safe and Effective GC for All 

 

 

 

 

 

 

 

 

Protocol design is essential to provide high quality GC outcomes. Key factors, such as patient-specificity 

and high compliance to protocol, are often underestimated, resulting in poor control. While this issue is 

important, one could wonder if the poor control provided to some patients was arose from severity of 

their condition and resulting prognosis for survival, rather than poor control. Specifically, perhaps those 

patients who die were just more complex and thus harder to control, thus linking glycaemic level and 

variability to outcome. 

This chapter aims to determine whether it is possible to provide equal control to all patients, regardless 

of their clinical severity and outcome (whether they survived or not). This goal is addressed by 

statistically comparing the level of difficulty to provide GC between survivors and non-survivors. More 

specifically, SI levels and variability are analysed, as they are markers of the difficulty of control. If both 

groups are equally controllable, they should thus receive equal quality of control, which in turn would 

indicate severity should not play a role in level of GC provided.  

This chapter presents results published in [135]. 
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6.1. Introduction 

The strong associations of BG level and/or variability with mortality [10, 54, 55, 57-59, 182, 183] have 

been used to make a case for GC. The association of moderate or severe hypoglycaemia with increased 

mortality [10, 11, 32, 163] similarly indicates improved control must be achieved safely, despite high 

inter- and intra- patient variability [58, 59, 82-85, 169].  

The analysis in Chapter 5, suggested the conclusions of the NICE-SUGAR RCT could be biased. It 

shows poor clinical compliance to protocol may have affected the results, and thus the associated 

increased risk of hypoglycaemia could be a consequence of protocol design, rather than GC itself [160]. 

Additionally, the NICE-SUGAR protocol’s lack of patient-specificity and inability to safely manage patient 

variability could also affect control performance and safety, where all these factors have been widely 

shown to be critical for success [10, 54, 55, 58, 85, 91, 99, 104, 183].  

Additionally, the association of high times in intermediate bands with reduced mortality [71, 76-80] 

suggests control quality must be consistent over time and most (or all) patients, which only a few studies 

considering outcome achieved [35, 36, 45, 81]. This overall case states outcomes are largely driven by 

the quality and consistency of GC.  

However, association is not causality. Another, equal, interpretation of these associations is that non-

survivors are harder to control, and thus they have the higher glycaemic levels and variability associated 

with mortality. Similarly, it may be patients who die are more variable and thus more likely, under insulin 

control, to experience moderate or severe hypoglycaemia as a result of their underlying metabolic 

variability. Such patients would also have less time in intermediate bands. The equivalent case states 

that survivors are less variable, and thus easier to control, resulting in the more normal, consistent 

glycaemia associated with improved outcomes. This overall case suggests glycaemia and outcomes 

are driven by patient condition irrespective of GC protocol, or even that ineffective GC causes harm [62]. 

Separating these two interpretations would clarify the debate, research and practice around GC. In the 

first case, do we need better control, including any new sensors and devices, to achieve safe, effective 

and consistent GC for all patients in any unit? Or, in the second case, are GC and its outcomes merely 

a reflection of underlying patient state, and thus perhaps less necessary to control beyond a modest 
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lowering? In summary, is patient glycaemia and outcome (predominantly) a function of the GC achieved 

or driven by patient condition?  

6.2. Aim and Research Question 

This analysis aims to separate these two interpretations by asking the question: are patients who die 

harder (metabolically) to control than patients who live? If they are harder to control, then it could be 

considered that patient condition drives glycaemia and outcome. If not, then the quality of control could 

have the greater influence. 

This question is addressed through a retrospective analysis of clinical data and metabolic level and 

variability using STAR [93, 94, 96, 123]. Lower metabolic level, captured as lower SI, indicates increased 

insulin is required to lower BG, which increases hypoglycaemic risk if there is variability. Greater 

metabolic variability, captured as greater hour-to-hour variation in SI, translates to greater outcome 

glycaemic variability in response to insulin.  Thus, both measures capture the level of difficulty in GC, 

where a constant level of SI could be readily titrated to an optimal insulin dose, but unpredictable patient 

variability can result in excessive hyper- and hypo- glycaemia and glycaemic variability. 

In short, do non-survivors have lower SI and/or greater hour-to-hour variability in SI, indicative of being 

harder to control compared to survivors? A positive answer would indicate the well-known associations 

between glycaemia and outcome are driven more predominantly by patient condition. If non-survivors 

were similarly difficult or easier to control than survivors, it would indicate the quality of GC achieved 

predominates in determining glycaemia and outcome. 
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Figure 6.1 – Cohort selection from original 371 SPRINT patients. The first comparison compares survivors and non-

survivors from Cohort 1, using as much data as possible, excluding very short stay patients. The second comparison 

uses Cohort 2 to assess the impact of competing risk due to patient dropout. 

6.3. Methods 

To answer the research question, metabolic state and variability is analysed using model-based SI. Key 

outcomes include: 

▪ Difference and/or equivalence of SI in survivors and non-survivors 

▪ Difference and/or equivalence of SI variability (%ΔSI) in survivors and non-survivors 
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Previous retrospective analysis showed SI of critically ill patients is lower and more variable during the 

first 24 hours of ICU stay, where SI was analysed in 6 hour blocks [82, 184]. However, differences 

between survivors and non-survivors or other clinical outcomes were not analysed. These outcomes 

are thus compared in 6-hour blocks across the first 72 hours of patient GC in the ICU. 

6.3.1. Patient cohort 

Retrospective clinical data from 292 patients from the SPRINT cohort presented in Chapter 4 is 

analysed. Figure 6.1 shows the inclusion criteria for study analysis. Of 443 GC episodes, 231 started 

within 12 hours of ICU admission and 145 underwent at least 24 hours of insulin therapy. This ensure 

there are only small differences between ICU admission and time on the SPRINT protocol and avoids 

any bias due to different time since ICU admission, given the evolution seen in [82, 83, 184] for the 

cohort as a whole. These patient episodes make up Cohort 1, with 119 (82%) survivors and 26 (18%) 

non-survivors. Demographics are shown in Table 6.1. 

Glycaemically, survivors and non-survivors have similar times in band. Cohort median BG is statistically 

different (5.8 vs 5.5 mmol/L, p<0.01), but this difference is within clinical equivalence (explained in 

Section 2.4) and thus considered not clinically significant. Maximum Sequential Organ Failure 

Assessment (SOFA) scores on Day 1, excluding Glasgow Coma Score [38], are higher for non-

survivors, as expected, and detailed breakdowns for specific co-morbidities show similar trends. All other 

demographics are similar except for an expected difference in Apache II score. 

To assess any impact of patient dropout, Cohort 2 considers only patients who underwent at least 72 

hours of GC (80 patient episodes). The first cohort assesses as much data as possible, excluding very 

short patients, while the second cohort assesses the impact of competing risk in the analysis of SI and 

mortality outcome due to patient dropout. Demographics are shown in Table 6.2, totalling 63 (79%) 

survivors and 17 (21%) non-survivors, and are similar to those of Cohort 1. 

6.3.2. Model-based Insulin Sensitivity 

Using the ICING physiological model presented in Chapter 3, integral-based fitting [131] is used to 

determine SI hourly from clinical BG, insulin and nutrition data. As a reminder, SI is a time-varying, 

treatment independent parameter characterising patient-specific metabolic response to insulin and 
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glucose [128]. Hence, it also reflects patient-specific general metabolic state. Consistent low SI (high 

insulin resistance) suggests significant stress and inflammatory state, which alleviates as the initial insult 

subsides [5, 7, 54, 82, 83]. 

SI level is determined hourly for each patient, and the forward SI variability (%ΔSI) is defined as the 

hour-to-hour percentage change in SI:  

1% 100 n n
n

n

SI SI
SI

SI

+ −
 =   (6.1) 

 

Table 6.1- Baseline data from Cohort 1 (145 SPRINT patients). 

 Cohort 1 Survivors Non-Survivors P 

N 145 119 (82%) 26 (18%) / 

Age (Yr) 67 [57, 75] 66 [57, 74] 73 [59, 78] 0.15 

Gender (M/F) 91/54 75/44 16/10 1.00 

APACHE II Score 20 [17, 26] 19 [16, 25] 22 [19, 31] <0.01 

First day SOFA score 
Cardiac 

Pulmonary 

Hepatic 

Renal 

Coagulation 

6 [4, 8] 
3 [1, 4] 

3 [2, 4] 

0 [0, 0] 

0 [0, 0] 

0 [0, 1] 

6 [4, 8] 
3 [1, 4] 

3 [2, 3] 

0 [0, 0] 

0 [0, 0] 

0 [0, 1] 

8 [6, 8] 
4 [1, 4] 

3 [2, 4] 

0 [0, 1] 

0 [0, 0] 

0 [0, 0] 

0.02 
 

 

 

 

 

ICU LOS (hrs) 113 [65, 212] 127 [65, 256] 108 [65, 154] 0.49 

SPRINT Duration 

(hrs) 
83 [44, 159] 81 [42, 168] 101.5 [55, 126] 0.93 

Diabetes T1/T2 

(%total) 
9 / 24 (33) 8 / 21 (29) 1 / 3 (4) 1.00 

Cohort BG mmol/L 5.7 [4.9, 6.7] 5.8 [5.0, 6.8] 5.5 [4.8, 6.4] <0.01* 

Per patient BG 

mmol/L 
5.7 [5.2, 6.2] 5.8 [5.2, 6.2] 5.3 [5.1, 5.9] 0.03 

Per patient % BG in 

4.4-8 mmol/L (% all 

BG) 

82.8 [71.9, 89.5] 
(79.3) 

82.1 [72.2, 89.3] 
(79.1) 

83.3 [70.4, 94.4] 
(80.0) 

0.71 

Per patient % BG in 

<4 mmol/L (% all BG) 
1.4 [0.0, 5.6] (3.4) 1.4 [0.0, 4.2] (3.0) 1.9 [0.0, 8.5] (5.0) 0.19 

Num. patients BG < 

2.2 mmol/L 
0 0 0 / 

BG measurements / 

day 
15.8 [14.5, 17.7] 15.8 [14.4, 18.0] 15.7 [14.8, 16.2] 0.80 

Per patient Median 

Insulin (U/hr) 
3 [2, 3] 3 [2, 3] 3 [2, 3] 0.34 

Per patient Median 

feed (g/hr) 
3.2 [1.9, 4.8] 3.3 [1.9, 4.5] 3.1 [2.0, 5.3] 0.58 

* indicates equivalence, as explained in Section 2.4. Data is given as median [IQR] unless otherwise indicated. P-

values were computed using Fisher exact and Wilcoxon rank-sum tests where appropriate. 
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Table 6.2 – Baseline data from Cohort 2 (80 SPRINT patients). 

 Cohort 2 Survivors Non-Survivors P 

N 80 63 17 / 

Age (Yr) 66 [54, 75] 65 [49, 74] 73 [57, 76] 0.50 

Gender (M/F) 51 / 29 41 / 22 10 / 7 0.78 

APACHE II Score 21 [17, 27] 21 [16, 27] 21 [17, 28] 0.60 

First day SOFA score 
Cardiac 

Pulmonary 

Hepatic 

Renal 

Coagulation 

7 [4, 8] 
3 [1, 4] 

3 [2, 4] 

0 [0, 0] 

0 [0, 0] 

0 [0, 1] 

6 [4, 8] 
3 [1, 4] 

3 [2, 4] 

0 [0, 0] 

0 [0, 0] 

0 [0, 1] 

8 [6, 8] 
4 [2, 4] 

4 [2, 4] 

0 [0, 1] 

0 [0, 0] 

0 [0, 1] 

0.11 
 

 

 

 

 

ICU LOS (hrs) 180 [136, 371] 214 [142, 405] 142 [108, 159] <0.01 

SPRINT Duration (hrs) 155 [109, 301] 161 [126, 332] 110 [102, 151] 0.01 

Diabetes T1/T2 (%total) 5 / 10 (15) 4 / 8 (12) 1 / 2 (3) 1.00 

Cohort BG mmol/L 5.7 [5.0, 6.7] 5.8 [5.1, 6.8] 5.6 [4.9, 6.5] <0.01* 

Per patient BG mmol/L 5.8 [5.3, 6.2] 5.9 [5.4, 6.2] 5.4 [5.2, 6.0] 0.11 

Per patient % BG in 4.4-

8 mmol/L (% all BG) 

84.7 [73.6, 91.7] 

(81.3) 

84.7 [74.0, 91.7] 

(81.5) 

83.3 [71.5, 94.8] 

(80.7) 
0.98 

Per patient % BG in <4 

mmol/L (% all BG) 
1.4 [0.0, 2.8] (2.5) 1.4 [0.0, 2.8] (2.0) 1.4 [0.0, 5.6] (4.2) 0.31 

Num. patients BG < 2.2 

mmol/L 
0 0 0 / 

BG measurements / day 15.1 [13.8, 16.3] 15.1 [13.4, 16.7] 15.4 [14.7, 15.9] 0.66 

Per patient Median 

Insulin (U/hr) 
3 [2, 3] 3 [3, 3] 3 [2, 3] 0.40 

Per patient Median feed 

(g/hr) 
3.3 [1.9, 4.8] 3.5 [1.9, 4.6] 2.8 [2.1, 5.6] 0.80 

* indicates equivalence, as explained in Section 6.3.3.2. Data is given as median [IQR] unless otherwise 

indicated. P-values were computed using the Fisher exact and Wilcoxon rank-sum tests where appropriate. 

While model-based SI is used to determine whether more or less insulin should be used to lower BG 

levels to a safe target range, its hour-to-hour percentage change (%ΔSI) is used to assess potential 

risks of metabolic variability within a 1-3hourly timeframe [95, 124, 125, 185]. This variability is what 

makes GC difficult to achieve safely [85]. For example, at a given insulin infusion rate, a sudden increase 

in SI could lead to unintended hypoglycaemia, and vice-versa. It is extremely important for a GC design 

to assess both inter- and intra- patient variability [85]. Hence, a difference in SI levels impacts control 

difficulty, and also shows a difference in metabolic response to injury. 

6.3.3. Analysis and Statistics 

This analysis compares the evolution of SI and %ΔSI in 6 hour blocks. The CDFs for each metric are 

created for survivors and non-survivors over each 6-hour block. These CDFs show the overall 

distribution, and are exactly defined as the integral of the probability density function capturing the 
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histogram of the data. Therefore, they clearly define the median and any percentile likelihood (y-axis) 

for any given SI or %ΔSI values (x-axis). 

6.3.3.1. Hypothesis Testing 

Hypothesis testing is used to examine differences, with p ≤ 0.05 used as a threshold for statistical 

significance. The Kolmogorov-Smirnov test is used to identify bias and shape difference in distributions 

of %ΔSI (Chapter 2). Although it is not certain if each family of comparisons is strictly independent (each 

6 hour block may depend on surrounding blocks), for completeness and to be conservative, a Bonferroni 

correction for multiple comparisons is used to generalise the results (Chapter 2). In both Cohorts 1 and 

2, there are 12 comparisons made bringing the significance level to p = 0.004 (= 0.05/12) [110]. 

Due to relatively large number of data points, bootstrapping, explained in Chapter 2, was used to 

examine the difference between median SI and median %ΔSI between survivor and non-survivor 

cohorts [110, 111]. For each 6-hour block, data is bootstrapped 1000 times with replacement to create 

resampled cohorts of similar size to the original male and female cohort sizes. The 95% CI of the 

difference in median SI and median %ΔSI can thus be determined. If this 95% CI does not cross zero, 

this difference can be considered statistically different (p≤0.05) [110]. Where this CI does not cross zero, 

differences in medians are statistically significant with p ≤ 0.05 [110]. A 99.6% CI, consistent with using 

p=0.004, is considered when considering Bonferroni correction for multiple comparisons.  

6.3.3.2. Equivalence Testing 

Equivalence testing, developed in Chapter 2, is used to assess the impact of these differences on clinical 

decision making, irrespective of the underlying statistical significance (p-value) [115]. An analysis was 

done to determine an equivalence interval for changes in SI, as reflected by clinical significance. This 

interval thus defines the range within which a difference of medians cannot be distinguished due the 

either measurement error and/or clinical significance. Clinical significance was defined as the change in 

SI required to exceed BG measurement error (SD ±9.4% [186]), or to cause a change in model-based 

insulin dose recommendations. These calculations can be found in Appendix II. In this case, the 

equivalence range due to measurement error was the narrowest across the range of clinical inputs 
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observed. This choice provides the narrowest range and thus the most conservative or stringent test of 

equivalence. 

The resulting equivalence range for %ΔSI is typically ≈12-15%, but is dependent on BG. Thus, any 

change in SI or %ΔSI within these ranges cannot be detected as different from a change due to 

measurement error, and are thus equivalent. Equivalence testing is independent of p-values and 

hypothesis testing.  

Equivalence is tested for SI and %ΔSI over each 6-hour interval. For SI, the bootstrapped percentage 

difference in median SI is compared to the equivalence range (Chapter 2). If the 95% CI for the 

bootstrapped percentage difference in SI medians is within the equivalence range, then equivalence in 

SI is accepted (⇔). For %ΔSI, the absolute difference in median %ΔSI is examined. If the 95% CI for 

the bootstrapped difference in median %ΔSI is within the equivalence range, then equivalence in %ΔSI 

is accepted (⇔). Conversely, in both cases, if the 95% CI is outside the equivalence range, equivalence 

is thus rejected (×). Finally, equivalence is tested for BG in Cohort 1 and Cohort 2 as a whole, using the 

reported equivalence range of ±9.4%, which is one SD of the relevant BG measurement error [186]. 

Equivalence testing in this last case determines whether the significant differences in median cohort BG 

in Table 6.1 and Table 6.2 are clinically significant or not. 

6.4. Results 

6.4.1. Insulin Sensitivity Levels 

Table 6.3 shows median SI and IQR for survivors and non-survivors in both Cohort 1 and Cohort 2 over 

the first 72 hours. The CDFs for SI over each 6 hour block for Cohort 1 are shown in Figure 6.2. Overall, 

SI level increases over time, matching [82], where non-survivors have higher SI than survivors. 

In Cohort 1, the difference between median SI levels is not statistically significant (95% CI crosses zero) 

for the first 48 hours, except for 6-11 and 30-35 hours. By day 3, the differences become significant, 

except for the 66-71 hour block. With the Bonferroni correction applied, only the 6-11 and 48-53 hour 

blocks remain statistically different. In every 6-hour block, non-survivors have higher SI than survivors. 

Figure 6.3 shows results of the equivalence test for each 6 hour block. At no time do the median and 
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95% CI for the percentage difference of SI medians in survivors and non-survivors fall within the 

equivalence range. Therefore, the median SI level is never equivalent in survivors and non-survivors, 

regardless of p-values assessing difference. 

Results are similar for Cohort 2. However, median SI is only statistically different only for hours 48-53 

after a Bonferroni correction. Survivors and non-survivors are never equivalent, and SI is always higher 

for non-survivors in Cohort 2, who all have LOS of 3 days or larger. 

Table 6.3 – SI level (L/mU/min) median [IQR] comparison between survivors and non-survivors using 6-hour 

blocks. 

Hours 

Cohort 1: 145 patients 

Survivors (𝑆𝐼𝑆) 

L/mu/min× 10−4 

Non-Survivors (𝑆𝐼𝑁𝑆) 

L/mu/min× 10−4 

Median 𝑆𝐼𝑆-𝑆𝐼𝑁𝑆 [95% CI] 

L/mu/min× 10−4 

D
a

y
 1

 0-5 1.39 [0.50, 2.54] 1.64 [0.63, 2.63] -0.25 [-0.60, 0.06] × 

6-11 1.94 [1.11, 3.35] 2.58 [1.42, 3.97] -0.63 [-1.04, -0.11]*+ × 

12-17 2.54 [1.42, 4.48] 3.39 [1.63, 4.79] -0.79 [-1.46, 0.22] × 

18-23 2.76 [1.57, 5.09] 3.22 [1.93, 5.16] -0.42 [-0.93, 0.14] × 

D
a

y
 2

 24-29 2.96 [1.65, 4.98] 3.30 [1.81, 4.85] -0.30 [-0.73, 0.13] × 

30-35 3.08 [1.83,  5.73] 4.34 [2.35, 7.21] -1.23 [-2.16, -0.20]* × 

36-41 3.13 [1.81, 5.44] 3.42 [2.23, 5.36] -0.29 [-1.01, 0.43] × 

42-47 3.22 [1.81, 5.47] 4.43 [2.48, 6.24] -0.25 [-0.94, 0.16] × 

D
a

y
 3

 48-53 3.28 [1.95, 5.36] 4.83 [3.13, 8.63] -1.57 [-2.36, -0.97]*+ × 

54-59 3.55 [2.03, 5.50] 4.65 [2.53, 7.27] -1.12 [-2.04, -0.40]* × 

60-65 3.39 [2.18, 5.18] 4.19 [2.71, 6.83] -0.81 [-1.59, -0.01]* × 

66-71 3.40 [2.43, 5.07] 3.86 [2.43, 8.30] -0.47 [-1.43, 0.16] × 

Hours 

Cohort 2: 80 patients 

Survivors (𝑆𝐼𝑆) 

L/mu/min× 10−4 

Non-Survivors (𝑆𝐼𝑁𝑆) 

L/mu/min× 10−4 

Median 𝑆𝐼𝑆-𝑆𝐼𝑁𝑆 [95% CI] 

L/mu/min× 10−4 

D
a

y
 1

 0-5 1.39 [0.43, 2.45] 1.38 [0.30, 2.54] -0.00 [-0.52, 0.57] × 

6-11 1.90 [0.92, 3.66] 2.22 [1.15, 3.62] -0.33 [-1.00, 0.02] × 

12-17 2.36 [1.37, 4.48] 2.46 [1.46, 4.50] -0.12 [-1.19, 0.61] × 

18-23 2.63 [1.53, 4.47] 2.94 [1.87, 4.50] -0.30 [-0.81, 0.14] × 

D
a

y
 2

 24-29 2.95 [1.53, 4.52] 3.19 [1.65, 4.82] -0.26 [-0.75, 0.22] × 

30-35 3.04 [1.88, 5.07] 3.56 [2.24, 6.85] -0.55 [-1.95, 0.12] × 

36-41 3.06 [1.79, 4.94] 3.15 [2.14, 5.04] -0.10 [-0.79, 0.51] × 

42-47 3.21 [1.80, 5.23] 3.41 [2.93, 5.27] -0.24 [-0.86, 0.22] × 

D
a

y
 3

 48-53 3.31 [1.98, 5.30] 4.59 [3.03, 8.20] -1.26 [-1.84, -0.41]*+ × 

54-59 3.59 [2.09, 5.50] 4.37 [2.43, 7.36] -0.87 [-1.81, -0.09]* × 

60-65 3.45 [2.18, 5.24] 3.94 [2.62, 6.53] -0.48 [-1.37, 0.25] × 

66-71 3.41 [2.43, 5.21] 3.68 [2.42, 7.56] -0.30 [-1.20, 0.24] × 

Hours where the medians are statistically different (95% CI on difference in medians does not cross zero) are 

marked with *. Equivalence is marked with ⇔ and non-equivalence with an ×. Differences remaining significant 

after a Bonferroni correction are marked with + (99.6% CI on difference in medians does not cross zero). 
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Figure 6.2 – Cohort 1 cumulative SI levels over 6-hour time intervals for the first 72 hours of glycaemic control. At 

any level of SI, the y-axis gives the percentage of SI values (decimal percentile) below this level. 
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Figure 6.3 – Equivalence testing on SI for each 6 hour block for Cohort 1 and Cohort 2. The solid blue lines give 

equivalence ranges for 9.4% BG error [186] and the blue dotted lines a smaller 7% error reported for the device 

used in highly controlled tests [187]. Equivalence is accepted (⇔ in Table 6.3) if the 95% CI (bars) of bootstrapped 

percent difference in median SI is within the equivalance range, and rejected otherwise (×). 

Figure 6.4 shows the evolution of median [IQR] SI and BG over time, between survivors and non-

survivors, for Cohort 1 and Cohort 2. In both cohorts, SI is higher for non-survivors, as reflected in Table 

6.3, and this difference is greater as control progresses. In terms of BG, survivors and non-survivors 

have similar levels for most hours. Equivalence testing on overall BG distributions between survivors 

and non-survivors shows the median and 95% CI of the percentage change in median BG are 5.3 [2.6, 

7.1] for Cohort 1 and 3.5 [0.9, 5.3] for Cohort 2, which is well within equivalence ranges of 7.0-9.4%. 

Thus, while the differences are statistically different, it confirms the differences in the median BG values 

in Table 6.1 and Table 6.2 are not clinically significant. It is important to note these two figures do not 

necessarily reflect SI hour-to-hour variability at a per-patient level. Two patients could have equal 

variability in a 6-hour period but at different hours, and thus appear different in SI level, which explains 

the need of a separate %ΔSI analysis assessing the hour-to-hour variability. 
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Figure 6.4 – Median [IQR] evolution of SI and BG over time for survivors (blue) and non-survivors (red) in Cohort 1 

(a) and Cohort 2 (b). 

6.4.2. Insulin Sensitivity Variability 

Results for %ΔSI are shown in Table 6.4 and Figure 6.5. Overall, SI variability decreases over time (IQR 

narrows) for both survivors and non-survivors, matching [82]. In both Cohort 1 and Cohort 2, %ΔSI is 

not significantly different (p ≥ 0.11 in 11/12 blocks), especially when a Bonferroni correction for multiple 

comparisons is made (p < 0.004 correction threshold). The 95% CI on median difference in %ΔSI (bias 

only) can only be considered significant for the 36-41 and 42-47 hour blocks in Cohort 1, and for the 18-
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23 and 24-29 hour blocks in Cohort 2 (bootstrapping, last column of Table 6.4), but these significant 

differences do not hold when a Bonferroni correction is made (99.6% CI). In all cases, these differences 

were not clinically significant. As shown in Figure 6.6, the median and 95% CI change in %ΔSI difference 

is always within the equivalence range for both Cohort 1 and 2. Therefore, SI variability assessed as 

%ΔSI in survivors and non-survivors is equivalent in every 6-hour block to 72 hours. 

6.4.3. Key Results 

In summary, the key results are: 

▪ SI level is not equivalent in any 6-hour block within the first 72 hours of GC, and is sometimes 

statistically different between survivors and non-survivors. 

▪ SI level is higher in non-survivors than survivors in every 6-hour block for the first 72 hours, and 

this difference becomes statistically significant as GC progresses. 

▪ SI variability is equivalent between survivors and non-survivors in any 6-hour block within the 

first 72 hours of GC. 

▪ Patient dropout has no impact on results as Cohort 2 has the same key outcomes. 

▪ Major results are consistent irrespective of whether a Bonferroni correction for multiple 

comparisons is applied. 

Thus, while survivors and non-survivors differ in their absolute SI, with non-survivors having higher SI, 

they are equivalent in their hour to hour variability (%ΔSI).  
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Table 6.4 – %ΔSI (%) median [IQR] comparison between survivors and non-survivors using 6-hour blocks. 

Hours  

Cohort 1: 145 patients 

Survivors (%∆𝑆𝐼𝑆) %  
Non-Survivors 

(%∆𝑆𝐼𝑁𝑆) % 

KS-Test 

p-value 
Median %∆𝑆𝐼𝑆-%∆𝑆𝐼𝑁𝑆  

[95% CI] % 

D
a

y
 1

 0-5 1.46 [-29.26, 54.74] 11.67 [-20.84, 56.41] 0.67 -8.12 [-16.22, 4.67] ⇔ 

6-11 7.37 [-14.66, 42.05] 9.47 [-11.45, 27.98] 0.53 -1.31 [-6.22, 5.74] ⇔ 

12-17 5.21 [-11.87, 30.89] 6.69 [-14.89, 42.15] 0.62 -0.98 [-9.46, 7.26] ⇔ 

18-23 3.24 [-16.02, 26.92] -0.63 [-12.21, 16.37] 0.12 3.72 [-1.99, 8.56] ⇔ 

D
a

y
 2

 24-29 2.79 [-13.36, 23.35] 5.37 [-9.42, 23.52] 0.30 -2.70 [-8.60, 3.29] ⇔ 

30-35 1.76 [-15.13, 23.46] 1.57 [-11.32, 24.75] 0.78 0.34 [-8.54, 6.75] ⇔ 

36-41 1.92 [-12.19, 16.87] -4.01 [-15.63, 11.26] 0.04 6.10 [0.35, 10.70]* ⇔ 

42-47 -0.10 [-12.71, 17.98] 5.46 [-10.91, 21.91] 0.14 -5.66 [-11.61, -0.43]* ⇔ 

D
a

y
 3

 48-53 1.57 [-10.74, 16.82] 3.41 [-7.30, 14.99] 0.30 -2.12 [-7.41, 1.77] ⇔ 

54-59 0.67 [-11.68, 15.80] -3.13 [-19.08, 11.65] 0.35 3.37 [-1.77, 8.20] ⇔ 

60-65 2.39 [-12.39, 17.03] 4.89 [-8.88, 21.88] 0.45 -2.50 [-9.06, 3.35] ⇔ 

66-71 1.26 [-9.80, 12.87] 3.78 [-8.82, 15.48] 0.35 -2.76 [-8.66, 2.80] ⇔ 

Hours  

Cohort 2: 80 patients 

Survivors (%∆𝑆𝐼𝑆) % 
Non-Survivors 

(%∆𝑆𝐼𝑁𝑆) % 

KS-Test 

p-value 

Median %∆𝑆𝐼𝑆-%∆𝑆𝐼𝑁𝑆 

[95% CI] % 

D
a

y
 1

 0-5 0 [-29.44, 43.57] 0.98 [-20.90, 57.81] 0.78 -0.98 [-16.02 5.93] ⇔ 

6-11 8.80 [-14.66, 48.55] 10.59 [-17.24, 39.20] 0.90 -2.17 [-11.46 6.83] ⇔ 

12-17 2.38 [-13.18, 29.19] 2.92 [-15.99, 38.92] 0.89 -0.02 [-11.00 9.19] ⇔ 

18-23 4.09 [-14.80, 26.14] -2.13 [-11.66, 15.29] 0.11 6.16 [0.10 12.10]* ⇔ 

D
a

y
 2

 24-29 1.32 [-13.48, 20.79] 10.39 [-8.97, 25.86] 0.02 -9.23 [-14.18 -1.38]* ⇔ 

30-35 0.13 [-15.56, 21.72] 3.08 [-13.33, 23.03] 0.89 -2.38 [-10.72  4.79] ⇔ 

36-41 2.54 [-12.13, 18.20] 0.40 [-11.95, 15.13] 0.39 2.95 [-1.86 9.51] ⇔ 

42-47 1.37 [-13.37, 22.76] 2.42 [-11.83, 14.68] 0.46 -1.02 [-7.15 5.68] ⇔ 

D
a

y
 3

 48-53 0.88 [-10.32, 16.63] 3.16 [-7.25, 14.62] 0.30 -2.37 [-7.73 1.79] ⇔ 

54-59 0.72 [-10.36, 14.28] -1.17 [-19.08, 12.68] 0.32 2.69 [-3.18 7.71] ⇔ 

60-65 2.58 [-10.54, 16.38] 4.04 [-9.03, 21.96] 0.39 -1.89 [-8.44 3.76] ⇔ 

66-71 1.26 [-9.74, 11.54] 3.72 [-9.06, 14.81] 0.40 -2.62 [-8.81 3.12] ⇔ 

Hours where the medians are statistically different (95% CI on difference in medians does not cross zero) are 

marked with *. Equivalence is marked with ⇔ and non-equivalence with an ×. Differences remaining significant 

after a Bonferroni correction are marked with + (99.6% CI on difference in medians does not cross zero). 
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Figure 6.5 – Cohort 1 cumulative hour-to-hour percentage changes in SI level over 6 hour time intervals for the first 

72 hours of glycaemic control. At any level of %ΔSI, the y-axis gives the percentage of %ΔSI values (decimal 

percentile) below this level. 
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Figure 6.6 – Equivalence testing on SI variability (%ΔSI) for each 6 hour block for Cohort 1 and Cohort 2. The solid 

lines give equivalance ranges for 9.4% BG error [186] and the dotted lines a smaller 7% error reported for the device 

used in highly controlled tests [187]. Equivalence is accepted (⇔ in Table 6.4) if the 95% CI (bars) of bootstrapped 

difference in median %ΔSI is within the equivalance range, and rejected otherwise (×). 

6.5. Discussion 

6.5.1. Primary Question 

Patient-specific SI and SI variability metrics are used to assess underlying controllability between 

survivors and non-survivors. Both statistical difference and equivalence were tested in comparing these 

cohorts. Statistical difference (p < 0.05) tests whether the data come from similar or different 

distributions. In contrast, equivalence tests whether these values are clinically or physiologically 

equivalent, regardless of p-value.  

SI was statistically different between survivors and non-survivors for 5 of 12 6-hour periods. However, 

cohorts were never clinically equivalent in SI for any period. Non-survivors had higher SI in every period, 

suggesting slightly lower insulin doses would be required to achieve normo-glycaemia, which is also 

seen in the clinical results in Table 6.1. Key results were the same for both cohorts examined. 
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SI variability (%ΔSI) was equivalent between survivors and non-survivors for every period, and only 

statistically different in 2 periods. Equivalent variability under the same GC protocol would be reflected 

in similar times in glycaemic bands and in glycaemic levels for both survivors and non-survivors, as seen 

in Table 6.1. The results were the same for both cohorts. Median BG was higher in survivors (5.5 vs 5.8 

mmol/L; p < 0.01 for both cohorts), but this difference is shown to be clinically equivalent in terms of 

measurement error and, in addition, would not change the clinical interventions. 

While SI level tends to determine the total insulin dose titrated, it is variability that determines the risks 

of insulin therapy and overall controllability. Overall, similar to higher SI for non-survivors and equivalent 

variability suggest survivors and non-survivors are equally controllable given an effective GC protocol. 

This outcome in turn suggests the association between glycaemia and outcome is thus predominated 

by the quality of GC achieved, and not underlying patient variability. This result is important and has 

significant important clinical implications for GC study design and practice. 

6.5.2. Validity of SI Metric 

The results rely on the validity of the model-based estimate of SI extensively used here to compare both 

cohorts. The reliability of the SI metric is determined by the underlying data and the ability of the model 

to capture key glucose-insulin dynamics. The ICING model used here is structurally very similar to the 

dynamic insulin sensitivity and secretion test model, for which the SI metric has correlated well with the 

gold standard euglycaemic clamp SI values [136, 137, 155, 156], as have other very similar models 

using SI metrics and pharmacodynamics used here [140]. The ICING model and its SI metric have been 

successfully and safely used to guide insulin therapy across different adult [87, 95, 96, 123] and neonatal 

[153, 157] intensive care settings and delivery methods. These clinical results suggest the model is able 

to capture and account for all major glucose-insulin dynamics, making the SI parameter, and its guiding 

of care via forward prediction, clinically useful.  

In addition, treatment independence of the SI parameter has been assessed using clinical data from 

independent, matched patient cohorts [94, 128]. In the first case, two cohorts and protocols (Glucontrol 

[47] and SPRINT [81]) from Liège, Belgium, and Christchurch, New Zealand, were simulated with both 

protocols, and their glycaemic level and variability compared to those obtained clinically. Consistency in 

simulation results across cohorts and high similarity in stochastic plots of SI variability further validate 
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the treatment and cohort independence of SI [86]. In the second case, this similarity and cross validation 

was repeated across three medical ICU cohorts, further validating these outcomes  [128]. Recent work 

suggests it is an underlying similarity in SI variability, independent of absolute SI level, driving GC 

outcomes [86, 94, 128]. This similarity thus also drove the observed consistency between clinical results 

using this model and SI metric for GC in two very different ICUs [87]. 

Moreover, SI has been shown to assess and reflect clinically expected changes in SI and metabolism 

for important intensive care interventions. The impact of glucocorticoids [26] and β-blockers [82] on SI 

level and %ΔSI was shown to be limited in the context of the SPRINT protocol. More specifically, insulin 

and nutrition inputs were not statistically different in this study between survivors and non-survivors 

(Table 6.1, p>0.34), where increasing insulin use would reflect increased insulin resistance (lower SI). 

These results thus suggest any glucocorticoids-mediated influence on SI does not have any net impact 

on the two groups, as there was such a difference in Pretty et al [26]. Additionally, the impact of 

exogenous nutrition and incretin effects, seen in changes in SI [188], the impact on SI from 

haemodialysis altering insulin clearance [189], and, finally, the insulin resistance observed on and off 

therapeutic hypothermia [190], were all assessed using hourly identified SI based on the same model. 

Each of these studies demonstrates the ability of SI and its changes to reflect clinically expected 

outcomes, and correlates with expectations for the given intervention.  

Other factors, such as insulin administration form (bolus vs. continuous dosing), have little impact on 

the hourly calculated SI value. In this study, both survivors and non-survivors were treated with boluses, 

eliminating any potential effect for this comparison. Glucose sensor errors could have a more 

measurable impact on SI calculation [170], but the same glucometers were used for all patients, similarly 

ameliorating this affect. Continuous Glucose Monitors (CGM) have delivered observations indicating 

greater apparent spontaneous variability in BG levels than seen with typical intermittent sampling. 

However, it is important to note a major part of this CGM-observed BG variability is not due to patient 

metabolism but directly related to sensor drift, changes in the in-situ environment of the sensor, patient 

position, and other factors [191-198]. Thus, what is captured by a CGM may be either real or an artefact, 

or some combination. However, differentiating these systemic errors from real BG variability is not 

currently possible without another reference measurement at a similar rate. As a result, the hourly 

determined SI values used here are appropriate, particularly to the measurement rate in the data, which 



 

92 

 

cannot capture any real glycaemic variability in the data that occurs and resolves between 

measurements. Hence, the overall approach used here is appropriate to the data and its sampling rate, 

and does captures very high levels of variability, as seen in Figure 6.5 with changes in SI up to 640%. 

Two example of SI profiles over time, indicating the actual variability possible, are shown in Appendix I. 

Glucose complexity has been associated with mortality [199, 200], but cannot be measured at the 

bedside in real-time like glycaemic levels, time in band, or variability. Equally, there is not the strong 

physiological evidence to support this association compared to the existing evidence for the other 

metrics considered. Finally, there are questions about its proper use in analysing continuous glucose 

data to create these associations [201, 202]. 

The presented results suggest non-survivors have higher SI, which at first appears counter-intuitive. 

However, it can be hypothesized some non-survivors may have had weaker inflammatory immune 

responses and/or weaker inflammatory counter regulatory response to insult. While literature commonly 

points to increased inflammatory markers in non-survivors (e.g. [203, 204]), there is evidence of 

instances where compromised immune response leads to increased mortality (e.g. [205-208]). These 

physiological responses (both inflammatory [30, 209-213] and counter-regulatory [5, 209, 214-216]) 

drive hyperglycaemia via the inflammatory marker induced actions that reduce the SI values analysed 

here. They are also two of three major drivers of hyperglycaemia, the third being high glucose itself. 

Hence, weakened responses in those who die would lead to slightly higher SI, and thus may be the 

cause of the slightly higher SI and slightly lower, clinically speaking, insulin use in this cohort. However, 

we do not have evidence to prove this hypothesis, but it would make a good hypothesis for a future 

study. 

In particular, SI is ≈20% higher on average for non-survivors, ranging from ~9-40% over the 6-hour time 

periods, which is at or within the level of change in SI required to induce, in SPRINT, a 1U/hour change 

in insulin dose, considering a median of 3U/hr (See Figure A2.5 of Appendix II). Thus, this difference 

changes few interventions, as seen in Table 6.1 (median [IQR] of 3 [2, 3] U/hr for both survivors and 

non-survivors), where feed is also similar. Finally, excluding dropouts in Cohort 2, the differences 

remain, but are much smaller (≈12%). Thus, while SI is higher for non-survivors and not equivalent to 

SI of survivors, based on the most conservative estimate (percentage change in SI to reach 9.4% BG 
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measurement error), this difference in SI does not have a significant clinical impact in terms of 

interventions, where a ~20-25% change in SI is required to change an intervention (See Figure A2.5 of 

Appendix II). 

One advantage of the model-based SI used here is it accounts for all insulin and nutrition inputs, and 

resulting changes in glycaemia, allowing the SI metric to reflect the underlying ability of the body to 

utilise insulin for glucose uptake. Using SI thus allows an objective numerical analysis to be carried out, 

and for results to generalise to other mixed-ICU populations. 

6.5.3. Advantages and Limitations 

A first potential limitation of this work is, as with all models, the ICING model has ranges for BG and 

nutrition-insulin interventions in which it is most accurate [217]. These ranges span what is typically 

observed in the Christchurch Hospital ICU, including BG within the 4 – 10 mmol/L range, and insulin 

and nutrition treatments within 0 – 10 U/hr and 20 – 120% of GF, respectively. If this analysis were to 

be repeated in ICUs or with protocols where treatments may commonly be given outside of these 

ranges, or where persistent hyper- and/or hypo- glycaemia were common, there would be greater 

potential for analytical error. However, in this case, the clinical data and inputs all fall within the ideal 

range for the ICING model.  

Another limitation is this analysis would be difficult to repeat with data from other, larger studies, for 

example, because of this lack of detail and/or temporal resolution of the GC data collected [99]. 

Additionally, this study is limited in its retrospective nature, and that it was performed on data from a 

single centre. However, the data covers a relatively large generalised patient cohort spanning several 

years of clinical practice, and is of high quality as explained in Chapter 4. Illness and injury can affect 

the inflammatory response, and thus the SI. The analyses cohorts were therefore selected on the basis 

of starting GC within the first 12 hours of ICU stay to reduce the effect of time-varying degrees of illness 

and injury on the time-varying analysis of SI.  
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6.6. Summary 

Using strong, robust statistical analysis the results of this study show equivalent metabolic variability 

between survivors and non-survivors and that non-survivors have higher SI. These results are based 

on a numerical, objective, model-based SI metric, which takes into consideration both nutrition-insulin 

inputs and metabolic outcomes. The underlying data cohort is derived from a mixed-medical ICU, and 

as previous work has shown consistency in variability across different cohorts, countries, and centres, 

it is likely that the results of this study are not specific to the original data set. Given SI variability is really 

what makes GC hard to achieve safely, these results suggest glycaemic outcomes and differences 

between survivors and non-survivors are thus more a function of the control provided, rather than 

underlying metabolic condition. This outcome has implications for future study and protocol design in 

this area.  

Once again, metabolic variability has been shown as playing a key role in the quality of GC outcomes. 

This analysis already gives some insights on the differences in SI levels and SI variability that may exist 

between patients. Specifically, while inter-patient variability (SI levels) cannot be considered equivalent, 

intra-patient variability (SI variability) appears so. Whether these differences (or similarities) hold across 

any sub-groups of patients could help further understand variability, and generalise these observations.
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Chapter 7: Understanding Variability 

 

 

 

 

 

 

 

GC in the ICU has been shown to be challenging due to inter- and intra- patient variability, often leading 

to increased risk of hypoglycaemia. Accounting for patient-specific metabolic variability is thus one of 

the keys to provide safe, effective control. Most importantly, hour-to-hour SI variability, reflective of intra-

patient variability, makes high GC performance difficult to achieve safely. In Chapter 6, survivors and 

non-survivors were shown equally hard, or easy, to control, given their intra-patient variability was 

equivalent, indicating quality of GC was the predominant factor in glycaemic and thus clinical outcomes, 

rather than 

This chapter aims to better understand inter- and intra- patient variability across different sub-groups of 

patients, and determine whether the conclusions of Chapter 6 are also true for other specific 

demographic characteristics. Specifically, recent work showed higher insulin resistance (lower SI) in 

preterm girls based on differences in insulin secretion [218-220]. This study aims to show whether a 

difference in inter- and intra- patient metabolic variability between sexes exists in adult ICU patients, 

and assesses the impact on GC and metabolic response to injury. Any significant difference would 

suggest GC design should consider sex differentiation to provide personalised care. 

This chapter presents results published in [221]. 
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7.1. Introduction 

Patient-specific solutions using key physiological parameters to tailor control for each patient 

individually, including risk assessment for GC, can improve control and patient outcomes [90, 91, 98]. 

Such controllers exist, and have successfully shown safe, effective control while targeting lower 

glycaemic ranges [43, 87, 107, 108], without sacrificing nutrition delivery or other care aspects [134]. 

In the previous Chapter, equivalence testing on SI levels and variability was analysed between survivors 

and non-survivors to understand whether these subgroups are more or less difficult to control [135]. The 

main outcome of this analysis showed non-survivors had higher SI levels compared to survivors, and 

this difference was not clinically equivalent. However, SI variability between these cohorts was always 

clinically equivalent. These results suggest GC outcome, and thus associated mortality, is function of 

protocol design, rather than patient condition. Thus, high levels of safety and performance should be 

able to be achieved in a mixed ICU cohort, regardless of the severity of injury or eventual outcome, 

which is critical to seeing potential benefits [38]. These outcomes also confirm the importance for a GC 

design to address metabolic variability correctly, which is really what makes safe, effective GC hard to 

achieve [85, 135]. 

While quality of GC should not be influenced by patient outcome, it is possible other metabolic 

differences could influence control if differences in patient-specific metabolic stress response existed. 

In particular, a previous study on neonatal ICU patients showed greater endogenous insulin secretion 

in girls, suggesting a higher insulin resistance [218-220]. The results suggest a difference exists between 

sexes in neonates. However, no analysis, to the authors knowledge, clearly analysed any sex related 

differences in the context of GC in adult ICU. 

Women have been clearly under-represented in clinical trials [222, 223]. In the 1980s-1990s, the lack 

of women included in trials was recognised [224], despite consuming 80% of pharmaceuticals in the US 

at that time [225, 226]. In particular, differences in how women metabolise or clear some drugs has led 

to significantly different and unintended concentrations, which should necessitate different dosing 

instructions [227]. However, their higher metabolic variability was seen as a potential outcome bias, and, 

in consequence, induced a male bias and preclinical and clinical research [228]. 
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In this chapter, retrospective data are used to analyse SI levels and variability between males and 

females, and to understand whether there exists a difference in these subgroups. Similar to the previous 

chapter [135], a significant difference or equivalence could help understand whether GC is different 

and/or more difficult between males and females. Equally, given the impact of metabolic stress response 

on metabolism, it could also show whether a difference exists between the sexes in metabolic response 

to injury, which is currently unknown. If so, it would provide guidance on whether GC should explicitly 

consider sex differentiation in protocol design or via personalised care. 

7.2. Methods 

Patient cohort and statistical analysis are similar to those developed in Chapter 6. From the SPRINT 

cohort (Chapter 4), only the 145 patients (39%) who started GC within 12 hours after ICU admission 

and received insulin for a minimum of 24 hours are used to avoid any bias due to different time since 

ICU admission. This specification ensures a similar starting time and progression from insult toward 

recovery for all patients, and thus eliminates a potential source of bias or error in results. In these 145 

patients, 91 (63%) are males and 54 (37%) are females, which is a typical breakdown in ICU cohorts. 

Demographic characteristics are summarised in Table 7.1. 

As in the previous analysis of Chapter 6, identified SI and its hour-to-hour percentage change (%ΔSI) is 

calculated for each hour. Because a statistically significant difference (p<0.05) can have minimal impact 

clinically and would be too small to affect decision making, equivalence testing (Chapter 2) is used [110-

112]. Equivalence testing assesses difference based on clinical significance and determines whether 

this difference in median SI and median %ΔSI is within a clinically set equivalence range [115]. 

While the raw data in the original cohort as presented are analysed first (91 males or 63% versus 54 

females or 37%), the analysis was repeated using bootstrap resampled sub-cohorts of the same size. 

This approach allows a fair comparison to ensure no bias results from the specific patients and 

proportions in the original cohort [110, 111]. New resampled male and female cohorts (N=50 each) were 

randomly created by choosing patients from the original cohorts with replacement. In these cohorts, 8 

patients (16%) were picked from patients with T2D so this factor was also balanced. This process was 

repeated 100 times, and hypothesis and equivalence testing on SI and %ΔSI were undertaken each 

time. The percent (%) of times the null hypothesis was rejected and equivalence accepted is calculated 
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for each 6-h block. This secondary analysis ensures no bias due to proportions or specific patient 

subsets, adding robustness to the overall results. Note, it does assume the patients in each group are 

representative of the range of behaviours, which can be further confirmed by consistency of results over 

the bootstrapped cases to assess any impact of outlying patients. 

Table 7.1 – Demographics summary of male and female cohorts from 145 SPRINT patients. 

 Males Females P value 

# patients 91 54  

Age 67 [57 77] 67 [58 74] 0.63a 

Mortality 18% 19% 1.0b 

APACHE II score 20 [16 27] 19.5 [17 26] 0.98a 

First day SOFA score 6 [4 8] 5.5 [4 8] 0.46a 

ICU LOS (h) 108 [67.2 188.4] 127.2 [64.8 213.6] 0.91a 

SPRINT duration (h) 83 [45.5 157.3] 86.5 [39 167] 0.81a 

T2DM (%) 13 (14%) 11 (20%) 0.4b 

Cohort BG (mmol/L) 5.6 [4.9 6.6] 5.9 [5.0 6.9] <0.01a* 

Per patient median BG (mmol/L) 5.65 [5.16 6.14] 5.99 [5.3 6.4] 0.06a 

% BG 4.4-8.0 mmol/L 83 [72 90] (68.2) 82 [67 89] (62.7) 0.3a 

% BG < 4.0 mmol/L 1.4 [0 5.5] (2.7) 1.4 [0 6.9] (3.1) 0.42a 

%BG < 2.2 mmol/L 0 [0 0] (0) 0 [0 0] (0) NA 

BG measurements/day 15.8 [14.4 17.5] 15.7 [14.5 18.2 0.47a 

Median insulin (U/h) 3 [2 3] 3 [2 3] 0.26a 

Median feed (g/h) 3.5 [2.1 5.5] 2.8 [1.8 3.9] <0.01a 

Median feed(%GF) 51 [30 80] 51 [30 75] 0.61a 

GF (g/h) 6.54 [6.54 7.41] 5.2 [5.2 5.7] <0.01a 

Statistical difference is shown using (a) the Wilcoxon rank-sum test or (b) Fisher exact test where appropriate. P-

values are not adjusted for multiple comparisons. Per-patient median [IQR] is given where appropriate. T2DM = 

Pre-diagnosed type 2 diabetes, GF = goal feed, and BG = blood glucose. * indicates clinical equivalence regardless 

of statistical significance. 

7.3. Results 

Overall SI CDFs for males and females are shown in Figure 7.1. Clearly, the female cohort is more 

resistant than men (lower SI levels). SI level comparison results between males and females for every 

6-h block are detailed in Table 7.2 and shown in Figure 7.2. SI levels increase over time in both cohorts, 

as expected [82, 83, 135]. The 95% CI of difference in median levels between male and female never 

crosses zero, suggesting the difference is statistically significant not only overall, but also for each 6-h 

block. Considering the Bonferroni correction, 60% (7/12) of the 6-h blocks remain significantly different. 
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Figure 7.1 – Overall cumulative SI levels (L/mU/min) between male and female cohorts. 

 

Table 7.2 – Median [IQR] SI levels comparison for the first 72 hours between male and female cohorts using 6-

hour blocks. 

Hours 
Male Cohort SI 

(×e-4) 

Female Cohort SI 

(×e-4) 
Median SIM-SIF [95%CI] (×e-4)  

Overall  

0-71 3.1 [1.7 5.5] 2.5 [1.5 4.0] 0.6 [0.5 0.8]a × 

Day 1  

0-5 1.5 [0.5 2.7] 1.3 [0.5 2.3] 0.2 [0.0 0.5] × 

6-11 2.2 [1.3 3.7] 1.8 [0.7 3.3] 0.4 [0.1 0.7] × 

12-17 3.1 [1.7 4.8] 2.2 [1.1 4.2] 0.9 [0.5 1.3]a × 

18-23 3.3 [1.8 5.9] 2.4 [1.5 3.9] 0.9 [0.5 1.2]a × 

Day 2  

24-29 3.3 [1.8 5.7] 2.8 [1.6 4.0] 0.5 [0.1 1.1] × 

30-35 3.7 [2.1 6.5] 2.7 [1.8 4.6] 1.0 [0.5 1.4]a × 

36-41 3.6 [2.0 6.0] 2.8 [1.7 4.3] 0.8 [0.2 1.4]a × 

42-47 3.6 [2.0 6.0] 2.9 [1.8 4.2] 0.7 [0.2 1.1]a × 

Day 3  

48-53 4.0 [2.2 6.8] 2.9 [1.9 4.4] 1.1 [0.6 1.6]a × 

54-59 4.4 [2.4 6.7] 3.2 [1.9 4.8] 1.1 [0.4 1.6]a × 

60-65 3.8 [2.3 6.0] 3.2 [2.1 4.6] 0.6 [0.1 1.0] × 

66-71 3.8 [2.5 5.7] 3.0 [2.4 4.7] 0.8 [0.4 1.2]a × 

Equivalence is indicated by ⇔, Non-equivalence is indicated by ×. Equivalence is a separate analysis to statistical 

difference. Hours where the medians are statistically different (95% CI does not cross zero) to P<0.05 are in bold. 
aDifference remaining significant after Bonferroni correction (p<0.004). 
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Figure 7.2 – Comparison of cumulative distribution of SI levels (L/mU/min) between male and female cohorts over 

6-hour time intervals for the first 72 hours of GC. 
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Figure 7.3 – Equivalence testing on SI for each 6-hour blocks. The blue lines give equivalence range for a typical 

9.4% BG measurement error. Equivalence is accepted if the 95% CI (bars) of bootstrapped percentage difference 

in median SI values is within the equivalence range, and rejected otherwise. 

The results of equivalence testing on SI are shown in Figure 7.3. The 95%CI percentage difference in 

medians between males and females is always outside the clinical equivalence range. Thus, SI levels 

differences between male and female are statistically different, and this difference are not clinically 

equivalent. 

Figure 7.4 shows male and female cohorts overall %ΔSI. %ΔSI comparison for each 6-h block is 

presented in Table 7.3 and shown in Figure 7.5. The 95% CI of bootstrapped percentage difference in 

median %ΔSI levels between male and female always crosses zero, except for one 6-h block (30-35 

hours). Male and female SI variability is thus not significantly different, especially if the Bonferroni 

correction is considered, resulting in no 6-h blocks statistically significantly different. 

Furthermore, the 95% CI difference of median %ΔSI between males and females is shown in Figure 7.6 

for each 6-h block in terms of equivalence. The difference is within the equivalence range for all 12 6-h 

blocks. Therefore, %ΔSI is not statistically significantly different for these cohorts and can also be 

considered equivalent.  
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Hypothesis and equivalence testing results for resampled (N=50) male and female sub-cohorts, with the 

same number of T2D patients (16%) match those of the raw, original cohort analysis. Differences in SI 

levels between sexes were typically significant (Figure 7.7a), and never equivalent (Figure 7.7b). 

Differences in %ΔSI were generally not significant (Figure 7.7c), and almost always within equivalence 

range (Figure 7.7d). These results confirm results from the overall population cohort analysed here. 

 
Figure 7.4 – Overall cumulative %ΔSI between male and female cohorts. 

Table 7.3 – Median [IQR] %ΔSI levels comparison between male and female cohorts using 6-hour blocks 

Hours Male cohort %ΔSI 
Female cohort 

%ΔSI 
Median %ΔSIM-%ΔSIF [95%CI]  

Overall  

0-71 2.2 [-17.8 21.6] 3.0 [-14.4 24.9] -0.9 [-2.7 1.0] ⇔ 

Day 1  

0-5 4.5 [-23.1 61.3] 1.6 [-34.5 51.1] 8.0 [-9.7 9.8] ⇔ 

6-11 7.2 [-12.7 38.7] 9.9 [-15.4 42.0] -2.8 [-9.7 4.0] ⇔ 

12-17 5.4 [-10.6 27.4] 4.5 [-16.3 37.6] 0.7 [-8.3 7.5] ⇔ 

18-23 2.9 [-15.5 24.2] 2.4 [-14.6 25.0] 0.8 [-4.7 7.1] ⇔ 

Day 2  

24-29 2.5 [-12.5 22.1] 4.7 [-13.0 24.9] -2.3 [-6.9 1.4] ⇔ 

30-35 0.2 [-15.6 23.7] 5.6 [-12.0 24.5] -5.8 [-11.0 -0.7] ⇔ 

36-41 1.2 [-11.4 16.2] 0.3 [-17.0 16.4] 1.1 [-3.4 6.5] ⇔ 

42-47 2.0 [-12.3 19.8] 0.6 [-11.9 18.2] 1.4 [-3.7 5.1] ⇔ 

Day 3  

48-53 2.7 [-8.6 16.3] 0.7 [-10.8 18.7] 1.6 [-2.8 5.4] ⇔ 

54-59 -0.8 [-15.0 13.1] 1.3 [-10.2 18.1] -2.3 [-5.8 1.9] ⇔ 

60-65 1.3 [-11.0 17.5] 4.5 [-10.0 19.6] -3.9 [-8.0 0.3] ⇔ 

66-71 1.9 [-9.6 13.6] 1.6 [-9.0 14.3] -0.6 [-5.3 3.4] ⇔ 

Equivalence is indicated by ⇔, Non-equivalence is indicated by ×. Equivalence is a separate analysis to statistical 

difference. Hours where the medians are statistically different (95% CI does not cross zero) to P<0.05 are in bold. 

No blocks were statistically significant after the Bonferroni correction (P<0.004). 
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Figure 7.5 – Comparison of cumulative distribution of %ΔSI (%) levels between male and female cohorts over 6-

hour time intervals for the first 72 hours of GC. 
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Figure 7.6 – Equivalence testing on insulin sensitivity variability (%ΔSI) for each 6-hour block. The blue lines give 

equivalence range for typical 9.4% BG measurement error. Equivalence is accepted if the 95% CI (bars) of 

bootstrapped difference in median %ΔSI values is within the equivalence range, and rejected otherwise. 

  

  

Figure 7.7 – Hypothesis and equivalence testing using 6-hour blocks from 100 resampled (N=50) male and female 

sub-cohorts from which 16% have T2DM. 
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7.4. Discussion 

In this analysis, the male and female cohorts are similar in all ways (Table 7.1). Age, diabetes, severity 

of injury (APACHE II and SOFA scores), LOS, GC outcomes, measurement frequency, and insulin 

administration are all not significantly different. Only the overall cohort BG levels and the per-patient 

median feed administration rates achieved are statistically different (Table 7.1). However, the former is 

well within equivalence range considering measurement error and impact on outcomes [76, 77, 79], and 

can thus be considered not statistically different from a clinical perspective. 

Thus, the only characteristic differentiating the two cohorts here is the consistently lower total grams of 

dextrose administered to the female cohort. However, this difference can arise from the typically lower 

caloric target for women based on lower body weight [81, 229], resulting in similar grams per kg. When 

nutrition is considered as the percent of the original target GF, which is consistent and based on frame 

size an body weight [81, 229], nutrition is not statistically different anymore (Table 7.1). Thus, overall, 

these two cohorts can be considered as having very similar demographic characteristics. 

The results of equivalence testing on SI suggest, in addition to being statistically different, male and 

female median SI levels are never equivalent, clinically. In particular, it shows one would expect different 

clinical insulin and/or nutrition administration to account for the non-equivalence. However, the %ΔSI 

analysis results suggest SI variability is not statistically different and is clinically equivalent. Two 

observations can be taken from this set of outcomes. First, equivalent SI variability suggests both 

cohorts should be able to benefit from the same quality of GC, as they are equally easy/hard to control. 

Second, women are more insulin resistant than men (Figure 7.1, Table 7.2). In this analysis, both cohorts 

benefit from same GC quality (Table 7.1). All else equal, this result suggests the metabolic stress 

response is higher or stronger for females than for males, thus explaining this higher observed model-

based insulin resistance.  

No weight information was available for this cohort, but GF is calculated using the ACCP 

recommendation of 2000 kcal/day [229], and personalised for each patient according to age, sex, and 

body frame size using a standardised scale for consistency [134]. These three factors cover energy 

demands based on weight, sex, and age, where the first covers demand based on mass, the second 

accounts for differences in metabolic requirement per unit body weight for women, and the third 
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accounts for decreasing demand as age rises. Personalised nutrition goals can thus vary between 1025 

and 2450 kcal/day over all patients. 

More specifically, as noted above, nutrition was similar in %GF delivered, but higher in grams per hour 

for men due to their larger frame size. Thus, in Table 7.1, GF (g/h) is higher for males, as expected, 

reflective of their typically higher body mass. However, males and females have similar %GF, 

suggesting overall caloric goals per body mass are very similar across cohort, given the similar age in 

both groups (Table 7.1). In addition, insulin delivery was not significantly different for both males and 

females.  

Hence, given similar %GF and total insulin administration in each group (Table 7.1), females received 

similar g/hr of nutrition per body weight and demand, but were given higher insulin per body mass. More 

explicitly, in this comparison, %GF is normalised to mass in (large) part, but insulin delivery is not. It 

thus confirms females require more insulin per unit of estimated body mass to remove similar amounts 

of glucose given per unit of estimated body mass, supporting the lower SI found for females in this 

analysis. 

The SI metric used in this context comes from a validated physiological model and has been widely 

shown to correlate well with gold standard measures [136-138]. All else equal, it can be hypothesised 

the difference in these model-based identified SI levels would come from two main parameters in the 

ICING physiological model: a higher EGP for women than estimated; and/or a lower estimated insulin 

secretion rate. In the first case, higher EGP would suggest a stronger stress response to injury, since 

severity are similar across the two cohorts (Apache II and SOFA scores, Table 7.1). In the second, the 

lower insulin secretion would also imply a greater suppression of insulin secretion due to stress response 

arising from the insult compared to men. A combination is also likely, and possible, given the impact of 

stress response on both issues [5, 7, 13, 23, 54, 230, 231]. 

Until early 1990s, clinical trials were mainly conducted on men [224, 225]. Outcomes were thus biased, 

based on male clinical research results, leading to drug dosage for females being typically derived from 

average male requirements [226]. Women have clearly been under-represented in clinical trials [223], 

and are still severely under-represented today [222]. While their higher metabolic variability or difference 
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in response to treatment was seen as a potential outcome bias [228], it has been more recently stated 

it should be considered as a critical factor impacting outcomes [224, 226]. More specifically, some drugs, 

beneficial for men, may sometimes significantly increase problems in women [232] and women can have 

significantly different metabolic or clearance rates for drugs resulting in very different concentrations for 

the same dosing protocol [227]. All these points support the importance of identifying potential sex-

related effects in clinical trials and care, similar to the differences shown in this study. 

In particular, many clinical trials, although including both men and women, often fail to account for 

potential differences in drug effectiveness or safety between men and women [227]. In the context of 

GC, protocols are often “one size fits all” solution, lacking the ability to account for significant inter- and 

intra- patient variability [90, 98], where insulin dosage is similar regardless of age, body mass, or sex. 

However, our result shows a clear difference between males and females for insulin requirements, due 

to the higher insulin resistance seen in females, which would require different dosing protocols and/or a 

personalised approach. Model-based approaches such as in STAR, or SPRINT, and their patient-

specific, risk-based approach is able to capture this variability [95], and thus, intrinsically, account for 

differences between patients, such as sex. 

Sex differences in insulin resistance, insulin secretion, glucose effectiveness or EGP have already been 

shown in specific populations [219, 233-238]. The results shown in these studies sometimes contradict, 

but tend to say women are more sensitive to insulin than men in healthy and outpatient scenarios. In 

critical care patients, only one study showed a difference, demonstrating, in opposition to the above 

studies, higher insulin secretion and thus greater resistance in preterm girls compared to preterm boys 

in the neonatal ICU [219, 220]. These NICU results would not necessarily be expected to extend to 

adults, but the results presented show the same bias in adult ICU cohorts, suggesting a different in 

metabolic stress response at these two extremes of age and development. 

It is important to note, many studies have analysed differences in mortality outcomes, treatment effort, 

or other factors between sexes in ICU patients. However, these studies often contradict. Some showed 

higher mortality in women [239-241], but others did not [242, 243]. The differences between sexes are 

thus still not completely understood in ICU, although present [244], showing the importance of assessing 

the related potential implications, as done in this study. 
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To the authors’ knowledge, there were no studies analysing EGP or insulin secretion between sexes in 

adult ICU populations, which could differ in many ways due to their acute metabolic conditions. This 

study thus appears to be the first study suggesting women could be more resistant to insulin compared 

to men in this cohort, and that this outcome could be due to their potential greater response to insult 

induced stress.  

Despite the relatively small cohort size considered, an advantage of this study is the quality of the data 

and its detailed nutrition and insulin input information. In addition, the cohort is smaller because ensuring 

consistent start of GC from ICU admission of <12 hours eliminate bias due to patients being considered 

at different point in the evolution of stress response. Hence, the smaller cohort, while still providing 

sizeable data, is a result of eliminating a potential bias in this time-based analysis. 

The observations made rely on the identification of the SI parameter using a mathematical model, where 

inaccuracies could lead to bias. However, the ICING model typically performs well in the clinical ranges 

observed here, suggesting low inaccuracy. Furthermore, it has been validated in extensive clinical use 

[81, 87, 93, 156, 245]. The validity of SI metric and its use in the context of this thesis is discussed in 

Chapter 6. 

This study does rely on retrospective data from a single centre study, which could limit the clinical impact 

of these results, though, in contrast, the data reflect a generalised cohort of patients across multiple 

years of clinical practice. In addition, the lack of reported demographic information, such as weight, and 

body mass index, are a limitation to consider the caloric goals per body mass similar across cohort in 

this analysis, which were only inferred in this study due to their use in setting GF rates. Finally, only sex 

and known diabetes mellitus have been considered in this analysis, while other confounders, such as 

ethnicity, could potentially influence the results. There might also be patients with unknown diabetes in 

the cohort, where measures of HbA1c could have helped to clearly identify these patients, but are not 

available here. 
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7.5. Summary 

This study compared identified SI and %ΔSI across male and female cohorts using hypothesis and 

equivalence testing. SI was shown statistically significantly lower for females and this difference is 

clinically not equivalent to males. However, %ΔSI between males and females was not statistically 

different, and clinically equivalent. These results strongly suggest females may have stronger metabolic 

stress response than men. These results also suggest higher insulin requirements for females, while 

equal safety and efficacy should be able to be achieved for both cohorts, as reflected in the equivalent 

variability. Future GC RCTs should thus also consider randomising and analysing male-female 

subgroups for differences in primary and secondary outcomes. 

These results thus suggest inter-patient variability is clinically different, but intra-patient variability is 

clinically equivalent. In turns, these results are similar to Chapter 6 comparing survivors and non-

survivors. Hence, it can be deduced inter-patient variability is likely always different while intra-patient 

variability is always equivalent. In a published retrospective analysis comparing different cohorts of 

patients from New Zealand and Belgium, intra-patient variability was found significantly different but not 

intra-patient variability [86], supporting once again these observations. However, further analysis 

comparing other different sub-groups based on other specific demographics should be undertaken to 

generalise this conclusion. 

Overall, Chapters 5-7 emphasise the importance to provide safe, effective control for (nearly) all 

patients, and highlight the key role of both inter- and intra- patient variability. Since the quality of control 

depends upon the ability to account for variability, the better this variability can be characterised, the 

likely better GC outcomes will be.
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Chapter 8: Characterising Variability – A First Approach 

to Improve Predictions of Intra-Patient Variability 

 

 

 

 

 

Over the previous chapters, inter- and intra- patient variability was shown to directly impact GC safety 

and efficacy. More specifically, inter-patient variability determines patient-specific need for higher or 

lower insulin doses to reach the target, while intra-patient variability reflects the risks associated with a 

given dose of insulin. Thus, while the former provides information of current patient-specific metabolic 

state to adjust treatment, the latter is what makes GC hard to achieve safely, as a relatively sudden 

change during a treatment interval could lead to hypoglycaemia. 

In Chapter 6 and Chapter 7, analysis of SI levels and variability showed inter-patient was not clinically 

equivalent when comparing sexes and clinical outcome, but intra-patient variability was equivalent. 

Hence, these results support the use of a population-based stochastic model in STAR. They also 

suggest this stochastic model, predicting intra-patient variability, to be critical for safety and GC success.  

The goal of this chapter is thus to determine if prediction of intra-patient variability can be improved and 

better characterised using more information on prior SI evolution. Doing so would enable more 

personalised control in the context of STAR, as these predictions are directly used to determine 

treatment and assess risks, using its unique risk-based dosing approach (Chapter 3). In essence, can 

intra-patient variability be made more patient-specific and less (full) cohort specific?  

This chapter presents results published in [246] and [126]. 
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8.1. Introduction 

STAR identifies patient-specific SI, characterising inter-patient variability, and predicts its future 

variability, characterising intra-patient variability [95, 96, 123, 149, 151]. While the identification of 

patient-specific SI levels is important to capture current patient metabolic state, a good prediction of its 

future variability is critical. Better forward prediction of SI allows better characterisation of future 

metabolic variability, thus improving patient-specific GC without compromising safety. In the context of 

STAR, improved, more patient-specific, prediction of future SI levels could have a significant impact on 

treatment selection, better mitigating hypoglycaemic risk (Chapter 3). 

The stochastic model currently used by STAR forecasts future SI (SIn+1) distributions based on the 

identified current SI value (SIn) [124, 125]. This 2D stochastic model was originally constructed using 

clinical data and kernel density methods [124, 125]. A Markov process is used, where outcome SIn+1 

only depends on input SIn [125], and the future SIn+1 distribution can be used to derive likely future BG 

distributions for a specific insulin and nutrition intervention [95, 96, 123, 149, 151]. 

More specifically, this chapter aims to determine if the prediction power of the existing 2D stochastic 

approach can be improved by also using the recent changes in SI, as well as its current level, as input 

parameters for forward prediction of outcome SIn+1. The new 3D stochastic model will now predict future 

SIn+1 based on current SIn and the percentage change in SI from SIn-1 to SIn. The old 2D the new 3D 

stochastic models are compared to assess the new model’s ability to tighten SI prediction ranges for 

tighter forward prediction of future BG. Narrower future SI prediction ranges enable more targeted insulin 

dosing for those patients who are more stable, and vice-versa for less stable patients. By better 

characterising variability, this analysis also assesses whether more stable patients have lower future 

metabolic variability. 

8.2. Methods 

8.2.1. Patients and Cohorts 

This study uses data from 3 clinical ICU data cohorts totalling 819 GC episodes (606 patients) and 

68629 hours of treatment [81, 87]. The SPRINT, STAR Christchurch, and STAR Gyula cohorts have 

been presented in Chapter 4.  
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Figure 8.1 – GC episodes selection from the original 606 patients (819 different GC episodes). 

From the original 819 episodes, only 681 episodes ≥ 10 hours and with initial BG ≥ 7 mmol/L are 

considered (Figure 8.1), corresponding to 59439 hours of control. These criteria ensure the exclusion 

of patient data with very short GC episodes, and thus low BG measurement numbers, or uncommonly 

low starting BG values, which are likely less reflective of general metabolism dynamics [87]. SI is 

identified hourly for each patient using integral-based fitting methods  [130, 131] and a total of 58539, 

57840, and 57141 data triplets (%ΔSIn, SIn, SIn+i) for i = 1, 2, and 3 hours forward predictions, 

respectively, are created. 

8.2.2. Analysis 

The existing 2D stochastic model uses the input SIn to determine the outcome distribution of SIn+1 [124, 

125]. This study builds a new 3D model to determine the outcome distribution of SIn+1 based on input of 

patient-specific current metabolic state, SIn, and SI variability to current time, %ΔSIn (Equation (6.1). 

Thus, more stable patients would have low or near zero %ΔSIn values. This choice thus further 

delineates sub-cohorts of patients by their metabolic variability at a given SIn level. 

The data triplets were binned with bin increment sizes of %ΔSI = ±10% and SIn = 0.5e-4, based on BG 

measurement error on SI (Appendix II) [135]. These bins are limited to a range of %ΔSI = [-100%, 200%] 

and the 1st-99th percentile range in identified SI ([1.0e-7, 2.1e-3] L/mU/min) values, bringing the total 

number of triplets considered to 97% of the original data triplets, as those few outside these ranges are 

excluded. 

The minimum number of data points required for adequate data density in each bin was arbitrarily 

defined to be 100 data triplets to ensure any distributions were not influenced by outliers. To improve 

data density and smooth model extremes, bins not meeting this criterion are summed together along 
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the %ΔSI axis at the same SIn level, allowing data triplets to influence neighbouring bins where there is 

insufficient data density. The summation process is described below, and an example is shown in Figure 

8.2. 

Starting from the bin centred at 0% and going down, and at the bin centred at 10% and going up: 

1. Check data density. 

a. If the number of data triplets is >=100, move to the next bin. 

b. If the number of triplets < 100 add the triplets from the ‘outer’ adjacent bin(s) until data 

density is reached. If summation of bins still results in a failure to reach the data density, 

stop here. 

2. Repeat step 1 until the model limits are reached. 

 
Figure 8.2 – Example of data density before and after merging bin process, where the joined lines show the bins 

merged to create the fined surface. 

The 5th, 50th, and 95th percentiles of SIn+1 are computed for each bin. These values define a non-

parametric 5th – 95th percentile distribution range and median likely outcome of future variation of SI 

values based on a specific current SIn level and the previous change %ΔSIn. They are interpolated 

linearly between bins to give a percentile surface.  

To compare this new 3D model to the previous 2D model, the percentage change in the 5th, 50th, and 

95th percentiles are analysed, as well as the percentage change in the 5th – 95th percentile prediction 
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range width used in STAR GC to select insulin and nutrition doses. This width effectively determines the 

outcome BG range for a given intervention. Hence, a narrower width allows better prediction 

performance.  

Hence, this analysis aims to identify regions of the model that are either conservative or have higher 

risk of hyper- and hypo- glycaemia. A narrowing of the 5th – 95th percentile range in the 3D model 

compared to the 2D model would allow the STAR controller to dose insulin more aggressively as 

outcome likelihoods are tighter. In contrast, wider 5th – 95th percentile range than in the 2D stochastic 

model indicates increased risks, when using the 2D model, and insulin is more conservatively dosed 

based on this new information. 

8.2.3. Validation 

A preliminary validation of the model is carried out by assessing its ability to predict SI in clinical data 

episodes longer than 24 hours. The two models are compared by evaluating the per-patient percentage 

of SI outcomes falling into the model-predicted 5th – 95th the 25th – 75th percentile ranges for each model. 

Ideally, all episodes have exactly 90% and 50% within these ranges indicating a cohort derived model 

that is also perfect for each patient episode. Overall, this metric gives a measure of the model’s ability 

to capture clinically observed patient-specific changes in SI [247], as well as quantifying the cohort-

derived model’s level of patient-specificity. The overall goal of this comparison is a more patient-specific 

stochastic model. 

To validate model consistency in a cohort different from which it was developed, cross validation 

simulations are used. A 3D model was built from SI traces from a randomly selected group of episodes 

comprising of 70% of all episodes, and tested on the remaining 30%. Per-patient percent time in the 25th 

– 50th and 5th – 95th percentile ranges are computed, as well as the ratio between the widths of the 5th – 

95th percentile prediction ranges for both models. This process is repeated 50 times using episodes with 

at least 24 hours of clinical GC data. Significant variability in results indicates a model based on too little 

data and/or dominated by selected patients or episodes. Consistent results indicate the model is built of 

enough data and/or is not skewed by outlying data. This analysis thus assesses model robustness to 

its underlying data. 
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8.3. Results 

8.3.1. Forward Prediction Performance of the 3D Model 

The number of data triplets (%ΔSIn, SIn, SIn+1) per bin is shown in Figure 8.3, before and after bin merging 

to improve data density. The triangular shape of binned data suggests greater variability at lower SI, 

where changes constitute a larger percentage change relative to absolute SI value. Yellow areas 

represent bins with enough data density (at least 100 data triplets) and thus the bins used to build the 

model. 

The new interpolated 3D model is shown in Figure 8.4 and compared to the original stochastic model 

(green) for the 5th (a) and 95th (b) percentiles. The previous 2D model forms a plane in the new 3D model 

space as it is constant across all %ΔSI. Where the new 3D model sits above the 95th percentile or below 

the 5th percentile planes indicates where the 2D model was too narrow and thus not conservative or 

safe enough. The reverse case of above the 5th and/or below the 95th percentile indicates the 2D model 

was over conservative and the 3D model 5th – 95th percentile prediction range is narrower. 

 
Figure 8.3 – Number of data triplets per bin before (a) and after (b) merging side bins along the y-axis. Bins in 

yellow reach minimum data density and will be used to build the 3D model. 
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Figure 8.4 – Comparison between the new 3D model (colour) and the original 2D model (green) for the 5th (a) and 

95th (b) percentiles. 

The percentage change in the 5th, 50th and 95th percentiles prediction of SIn+1 is shown in Figure 8.5. 

Two main regions can be identified: 

▪ A conservative region, mainly between %ΔSIn = ± 25%. The 5th percentile is higher than the 

previous 2D model, while the 95th is lower, regardless of SIn, describing thus a narrower 5th – 

95th percentile range in the forward prediction of SIn+1. This region represents 77.2% of the data 

triplets. 

▪ A non-conservative region outside %ΔSIn = ± 25%. The 5th percentile is lower and the 95th is 

higher, indicating higher resulting risks of hyper- and hypo- glycaemia than predicted by the 2D 

model.  

▪ Summarising Figure 8.5, the percentage change in the 5th – 95th percentile prediction range is 

shown in Figure 8.6. In the 2D model’s conservative region, a significant decrease of ~25-40% 

in this range is observed for the 3D model, suggesting the new model allows more aggressive 

insulin treatment than the previous model and thus provides improved information for dose 

selection. For the non-conservative region, increases in SI of up to 80% or more are observed, 
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allowing the model to more safely predict and cope with large changes in SI in regions of high 

metabolic variability (high %ΔSI). The reduced width green region contains 79.7% of the total 

data triplets, indicating a significant number of hours with over-conservative treatment selection. 

 
Figure 8.5 – Percentage change in the 5th (a), 50th (b), and 95th (c) percentiles between the original 2D and the new 

3D stochastic models. 

 
Figure 8.6 – Percentage change in the width of the 5th-95th percentile prediction range between the 3D and 2D 

models. Green and red areas suggest over and under conservative behaviour respectively within the 2D model. 



 

121 

 

8.3.2. Self-Validation 

The predictive power of the new model is tested on 587 episodes of minimum 24 hours. In total, 90.4% 

of SIn+1 predictions were within the 5th – 95th percentile prediction range, and 52.6% fell within the 25th – 

75th percentile range, which is very close to the expected values of 90% and 50%, respectively. The 5th 

– 95th percentile interval is more critical due to its use in dosing. The larger error in the 25th - 75th 

percentile interval versus the 5th – 95th percentile interval indicates a small mismatch in the distribution 

shapes across SIn. 

Figure 8.7 presents a histogram of per-patient percentage forward prediction in the 25th-75th and 5th-95th 

percentile bands, showing the accuracy at a per-patient level, rather than an overall cohort level. Table 

8.1 shows the corresponding per-patient median [IQR] percentage time in these bands. The per-patient 

median [IQR] percentage time in the 25th – 75th percentile prediction range is higher in the previous 2D 

model (60.3% [47.8%, 71.5%] vs. 51.2% [42.9%, 59.2%]), while the percentage time in the 5th – 95th 

percentile prediction range is similar (93.6% [85.7%, 97.3%] vs. 90.7% [84.4%, 94.6%]) between the 2D 

and 3D models. However, as seen in Figure 8.7, the per-patient distributions are tighter to the ideal 

values (50% and 90%) for the 3D model, reducing over-conservatism (and risk) per-patient. 

More importantly, there was a significant reduction in the width of the 5th-95th percentile ranges for each 

patient, with the 3D model reducing this width by median 28.9% [21.6%, 33.0%] per bin. These results 

suggest the new 3D model is able to account for changes in SI equally well in comparison to the 2D 

model, but with significantly narrowed prediction range for many hours of care. This outcome should 

allow safe application of more aggressive insulin treatments for more stable patients. An example 

comparison of the predictive power of the two models is shown in Figure 8.8. 

Table 8.1 – Per-patient predictive power comparison between old and new stochastic models. 

 2D Model 3D model 

Median per-patient % 

prediction within 25th-75th 

percentile range 

60.3% [47.8%, 71.5%] 51.2% [42.9%, 59.2%] 

Median per-patient % 

prediction within 5th-95th 

percentile range 

93.6% [85.7%, 97.3%] 90.7% [84.4%, 94.6%] 

Median per-patient % 

reduction in 5th-95th 

percentile range width 

28.9% [21.6%, 33.0%] 

Results are given as median [IQR]. 
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Figure 8.7 – Per-patient predictive power within the 25th-75th percentile prediction range (left) and within the 5th-95th 

percentile prediction range (right) of the new 3D (blue) and old 2D (red) models. 

 
Figure 8.8 – Excerpt from a patient showing fitted SI (blue) as well as 5th-95th percentile prediction range for the 

new 3D (green) and the old 2D (red) models. The new model predictive range is generally narrower than the old 

model. 
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Table 8.2 compares prediction outcomes for patients who had increased and decreased time in 

prediction ranges, respectively. A total of 101 episodes increased percentage time in the 5th – 95th 

percentile prediction range by ~5% (87.3% [80.0%, 92.7%] vs. 82.3% [71.8%, 88.9%] for the 2D and 3D 

models, respectively). Conversely, for the remaining 486 episodes, the new model shows slightly lower 

performance (91.1% [85.7%, 95.0%] vs. 94.6% [88.9%, 97.6%]).  However, the percentage time in range 

for these patients has been brought closer to the intended 90%, ensuring the 3D model treats patients 

more consistently across the cohort. 

Table 8.2 – Per-patient predictive power comparison between old and new stochastic models for two groups: 101 

patients whose % prediction increased with the new model and 486 patients whose % prediction decreased. 

 2D Model 3D model 

Median % prediction within 5th-95th percentile 

range for 101 patients who increased time in 

range. 

82.3% [71.8%, 88.9%] 87.3% [80.0%, 92.7%] 

Median % prediction within 5th-95th percentile 

range for 486 patients who decreased time in 

range. 

94.6% [88.9%, 97.6%] 
91.13% [85.7%, 

95.0%] 

Results are given as median [IQR]. 

8.3.3. Cross validation 

Cross-validation with 70% of the data used to build the model was carried out using patient episodes 24 

hours or longer, and results are shown in Table 8.3. Compared to the original 2D stochastic model, the 

new 3D model has consistent, 12% absolute lower median [IQR] percentage forward prediction in the 

25th-75th and 5th-95th percentiles ranges (3D: 51.8% [51.5%, 52.1%] vs. 2D: 63.1% [62.8%, 63.4%] and 

89.8% [89.6%, 90.0%] vs. 92.5% [92.4%, 92.6%]). Additionally, the 5th-95th percentile range width from 

2D to 3D model is reduced by median 30.8% [30.5%, 31.1%]. These results suggest both models 

generalise well to other ICU patients when developed from an independent, but similar cohort of 

patients, matching similar tests across cohorts [87]. 

Table 8.3 – Cross-validation per-patient results for old 2D and new 3D stochastic models, on all SI values from 

episodes of minimum 24 hours. Results are given as median [IQR]. 

 2D Model 3D model 

Median % prediction within 25th-75th percentile 

range 
63.1% [62.8%, 63.4%] 51.8% [51.5%, 52.1%] 

Median % prediction within 5th-95th percentile 

range 
92.6% [92.5%, 92.7%] 89.7% [89.6%, 90.0%] 

Median % reduction of the 5th-95th percentile 

range width from 2D to 3D model 
30.8% [30.5%, 31.1%] 

Results are given as median [IQR]. 
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8.4. Discussion 

8.4.1. Main results 

Forecasting changes in SI underpins the ability of STAR to respond in a patient-specific manner to 

potential future changes in patient GC requirements, resulting in safe and effective, risk-based GC. If 

the distributions of forecast likely SI changes are narrower, then control can be further improved, with 

tighter control in more stable patients, and better avoidance of hypoglycaemia in patients exhibiting high 

glycaemic variability. In this study, current probabilistic forecasting methods have been extended to 

include the change in SI (%ΔSI) as an input predictor for future SI alongside current SI. 

The previous 2D stochastic model is shown to be conservative for ~77% of the data, where the %ΔSIn 

is within ± 25% change. While conservatism results in wider prediction ranges in likely BG outcomes, 

thus further reducing the risk of hypoglycaemia, it also inhibits the controllers’ ability to reduce BG to the 

normal range using more aggressive control dosing. This issue particularly affects patients who tend to 

remain stable, but are mildly hyperglycaemic as a result. Hence, such conservatism, while safe, has a 

potentially negative clinical impact, as well. 

Compared to the 2D stochastic model, an over-conservative region equally implies an under-

conservative region. This under-conservative region means there are less stable patients, outside %ΔSI 

= ±25%, who have increased hypoglycaemic risk from relatively over-aggressive dosing, resulting from 

prediction bands that are too narrow. This trade off of conservatism is seen in Figure 8.5 and Figure 8.6, 

and offers unintended increased risk for these patients in using the 2D model.  

The new model utilises change, %ΔSI, as an additional model input to better predict a more patient-

specific future SIn+1, with narrowed prediction ranges for 77% of hours, and overall similar ability to meet 

the expected 90% of SI outcomes within the 5th-95th percentile prediction range.  The new model is thus 

more patient-specific, and better predicts likely BG outcomes. These results should translate into more 

aggressive insulin dosing where patients are more stable and SI outcomes are more certain, and less 

aggressive, lower insulin doses in patients who are more variable.  Greater patient-specificity also 

reduces risk for more variable patients. This model could thus lead to more personalised, tighter, and 
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less variable control for all patients, with greater safety from hypoglycaemia, and thus improved 

outcomes [78, 79]. 

Both the self-validation and the cross-validation tests have shown the predictive power of this new model 

to be more consistent, with closer to 90% of forward prediction of SI within the 5th-95th percentile range. 

These results align well with the expected 90% of SI outcomes falling within this prediction range. 

However, in comparison to the previous 2D model, the new 3D model achieves this performance with 

overall narrower and tighter prediction distributions for 77% of hours. A median reduction in the 5th-95th 

percentile prediction range width of approximately 30% was achieved with the 3D model, indicating the 

3D model is better able to predict future SI outcomes, and thus safely allowing significantly increased 

insulin dosing. 

The new 3D model thus treats patients more consistently across the patient cohort. Previously, with the 

2D model, some patients within the cohort had much more than 90% of their SI outcomes within the 5th 

– 95th percentile prediction range, and others much less (Figure 8.7). While greater conservatism is 

advantageous for avoiding extreme BG outcomes, it also implies an over conservatism and inability of 

the model to meet its design specifications (90% of SI within the 5th -95th percentile range). Equally, it 

prevents aggressive dosing and better control where it could be warranted for specific patients, and is 

thus less patient-specific than the new 3D model. Given the improved 5th - 95th percentile range 

performance of the new 3D model, it is clear it is better able to consider patients more consistently 

across the cohort with the added %ΔSI model input. 

Cross simulation tested the ability of the model to predict SI in patients not used to build the model. 

Cross validation results were very consistent and close to expected values from the whole-cohort 

analysis, suggesting the model would generalise well to ICU patients from different protocols and/or 

units. It also indicates the model is not dominated by smaller outlying subsets of patients. 

This result also reflects previous results where similar and consistent SI variability was seen across 3 

different ICU cohorts in 3 different countries [87, 128]. This previous analysis uses slightly different 

patient cohorts from those presented here, and includes an additional cohort not used here. Thus, these 
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results suggest the model generalises well to other ICU patients and cohorts, when the model is built 

from an independent, but overall similar cohorts of mixed medical ICU patients. 

8.4.2. Limitations 

One limitation of this analysis is the binning process, which creates a discretized 3D space, where 

percentile surfaces were linearly interpolated between bins. Kernel-density methods, used to build the 

previous 2D stochastic model [125], could also be applied to generate smoother prediction percentile 

surfaces with respect to data density. However, this approach introduces assumptions around the shape 

of data density distributions and the effect of surrounding data on percentile surfaces. In this analysis, 

bin sizes were chosen to balance increased resolution against sufficient data density, as well as to first 

prove the concept.  

The bin width of 10% in %ΔSI was chosen based on a previous analysis, which assessed the impact of 

BG measurement error on SI [135]. Given over 68,000 hours of patient data are used to build the new 

3D model, the percentile surfaces of the full model are likely to be sufficiently reflective of SI dynamics, 

as data density was typically sufficient across typical areas of interest. Thus, limitations due to data size 

and density are likely to be minimal. 

A further possible limitation of the model is that ~7% of data points fell outside the model range, having 

been discarded as outliers in regions of insufficient data density. These unusually large changes in SI 

or extremely high SI levels are thus not included in the model, and may reflect inaccuracies in data 

recording or patient-specific deviations from model-dynamics. It is also possible these points highlight 

times of extreme glycaemic change or measurement error, where the best clinical practice could be to 

discontinue insulin for an hour and come back and re-measure. In essence, for these outlying, potentially 

unexplained events, discontinuing insulin for a short period is a safe course of action. Within the STAR 

framework, the clinical usage would be to utilise the original proven 2D model, using the safest and most 

conservative intervention [87, 95, 128]. Hence, points falling in this range could be used to warn of 

outlying events that might not otherwise be noted, and be used to take no or more conservative action. 

Overall, the new 3D model shows similar predictive performance and much tighter predictive bound 

when compared to the previous model. Cross-validation shows the new predictive model, constructed 
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from bin sizes likely reflective of SI dynamics, to accurately predict SI for data not used to develop the 

model. These improvements in prediction should translate to tighter GC, without compromising safety 

from hypoglycaemia. 

8.5. Summary 

SI plays a major role in any model-based GC protocol and SI forecasting is particularly important for 

managing dynamic ICU patients. It thus plays a leading role in the model-based STAR protocol. In 

particular, it enables a patient-specific approach to achieve better control and the use of forward 

stochastic prediction models enables safety and performance to be explicitly balanced in determining 

optimal insulin dosing.  

This analysis has shown the positive impact of identifying prior change in a proven model-based SI 

metric on the prediction of likely future SI distribution ranges. A new 3D model was developed, achieving 

similar predictive power as the previous model, while significantly reducing the width of the 5th-95th 

percentile prediction range for more than 77% of the hours of data. This outcome ensures that over 

three-quarters of patient hours will be treated less over-conservatively. Equally, it also ensures the 

remaining quarter of patient hours are not treated aggressively (under-conservatively), and thus 

improves safety. Both outcomes will improve the performance, safety and patient specificity of GC, and 

thus patient outcomes. 

The analysis in this chapter showed forward predictions were significantly improved when using the new 

3D model. However, the methodology used here suffer from low resolution. More robust methods should 

thus be used to generalise these observations to a larger domain, and potentially, assess the impact of 

this new model on GC outcomes. 
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Chapter 9: Characterising Variability – Development and 

In-Silico Validation of a 3D kernel density stochastic 

model 

 

 

 

 

 

 

 

 

The quality of GC resides in the ability to adapt treatment to time-varying patient-specific needs, which 

is a function of the level of difficulty of control [85, 98, 135]. This control difficulty mainly captured by SI 

variability [85, 135], where variability extremes can lead to hyper- or hypo- glycaemia for a given insulin 

and nutrition intervention, both associated with increased morbidity and mortality. 

In the previous chapter, usage of prior temporal information of SI evolution (%ΔSI) demonstrated 

improved, more personalised accuracy in predicting future intra-patient SI variability [126]. However, the 

methodology had an important limitation in lacking model resolution and definition. In response, this 

chapter develops a new 3D stochastic model, using robust kernel density methods. It is then validated 

using virtual trials.  

This chapter presents results published in [248], [249], and [127]. 
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9.1. Introduction 

Control difficulty is defined by SI variability [135], both physiologically and in model-based control, where 

variability extremes can lead to hyper- or hypo- glycaemia for a given insulin and nutrition intervention. 

The accurate prediction of future SI evolution is thus a key element for the quality of GC. The current 

stochastic models [124, 125] have been shown potentially over-conservative in the Chapter 8 due to 

large prediction bands [126]. Wide prediction bands can limit insulin dosing, resulting in lower insulin 

doses to avoid stochastically forecasted hypoglycaemic risk. 

While encouraging, the method presented in Chapter 8 [126] lacks model resolution and definition, 

making comparison with the current 2D stochastic model used in STAR hard. This chapter thus aims to 

develop a new 3D stochastic model using a multivariate kernel density estimation method, similar to the 

one used for the current 2D stochastic model [125], accounting for prior knowledge of SI evolution. In 

contrast to the previous analysis [126], SIn-1 and SIn are used to determine likely future SIn+1, instead of 

SIn and %ΔSIn. However, %ΔSIn is still intrinsically captured by SIn-1 and SIn, as a magnitude change 

instead of percentage change. Overall, the added input compared to the 2D stochastic model can 

provide higher patient-specificity, allowing more accurate insulin dosage for the patient, while the kernel 

density approach can provide smoother prediction intervals across the range of model inputs (SIn-1, SIn). 

As already explained in Chapter 8, a wider future prediction range for SI would suggest higher potential 

variability, thus lower insulin rates will likely be recommended. In contrast, tighter prediction bands would 

suggest lower variability and thus, potentially higher insulin recommendation. In addition, this study 

assesses the impact of this new 3D stochastic model on GC performance, using validated virtual trial 

simulations [94, 128] (Chapter 3). 

9.2. Methods 

To account for patient-specific metabolic variability, and thus assess unexpected potential changes in 

metabolic response to insulin, [125] introduced a probabilistic model predicting likely future 1-3 hourly 

change in SI level (SIn+1, SIn+2, SIn+3). These predictions are only based on current identified patient 

metabolic condition (SIn). This stochastic model was built using a two-dimensional kernel density 

estimation method on population data, and led to the emergence of the first successful risk-based dosing 
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approach for GC [95, 96]. The kernel density estimation method enables high resolution behaviour 

estimation of a specific parameter based upon its prior evolution or state, even where specific data 

points may be scarce [142, 250, 251]. 

This study extends the originally used bi-variate kernel estimation method to tri-variate. The predictions 

of future SIn+1, SIn+2, and SIn+3 are thus determined using two inputs (SIn-1, SIn) to potentially increase 

patient-specific variability forecasting, which could also result in better overall safety and performance 

for STAR GC decision making. In particular, this choice of data triplets (SIn-1, SIn) → SIn+1,2,3, adds patient 

specificity to the SIn → SIn+1,2,3 2D model by making these distributions a function of more prior states. 

This difference thus includes a greater part of the patient-specific evolution, and thus will further 

characterise patients, creating greater personalisation in the GC predictions based on thus enhanced 

stochastic model. It thus assumes there will be measurable differences in the predicted SIn+1,2,3 

distributions by this added data, compared to those from the 2D model. Importantly, the 3D approach 

significantly increases the data requirements for model generation, resulting in the use of a much larger 

data set size (~60000 hours) compared to previous studies [125], which is uniquely available as a result 

of regular use of STAR in multiple centres. 

9.2.1. From Data Density to Condition Probability 

SI in this study can be considered a second order finite Markov chain, where the current state depends 

only on its two prior states. Therefore, the conditional probability distribution of the future SIn+1 is a 

function of SIn and SIn-1 states which can be expressed: 
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where the right-hand expression is derived from the general product rule. Kernel-density methods are 

used to estimate the joint probability 
1 1( , , )n n nP SI SI SI+ −

 and 
1( , )n nP SI SI −

 using tri- and bi- variate 

Gaussian kernel density estimator functions [142]. Therefore, the conditional probability of SIn+1 taking 

a specific value can be calculated using the identified SIn and SIn-1 values, such that: 
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where 𝐾ℎ(𝑢) denotes the Gaussian kernel density function 
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variance h, constructed using the available N data points [250, 251]. To optimize the approximation of 

data behaviour, the variance h, or scale factor, is determined using the Silverman’s general rule of thumb 

(ROT) [142, 250], weighted according to local data density and defined:   
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Where σ is the SD of the data, m is the number of data point within a radius 

1

7N
−

 after orthonormalisation 

of the data [125], and R is the radius from the origin encompassing Z*N data points (0 ≤ Z ≤ 1).  

This rule assumes data has an underlying normal distribution [250]. Non-negativity is ensured by 

normalizing each Gaussian function to the positive defined domain such that for each 
1( , )n nSI y SI x−= =  

pair, there exists an estimated conditional probability function 
1 1( | , )n n nP SI z SI y SI x+ −= = =  where 

( )1 1| , 1n n nP SI z SI y SI x dz+ −= = = =  is satisfied [142]. Normalization is achieved by dividing each kernel 

density function , , ( )x y zK u  by the area under each gaussian curve between zero and infinity: 

0 0 0
( ) , ( ) , ( )x x y y z zp K u dx p K u dy p K u dz

  

= = =    (9.4) 

This forces x, y, and z to be ≥ 0, thus ensuring physiological validity of SI values. An example of the 

resulting uni-, bi-, and tri- variate Gaussian kernel density estimation for 10 data triplets is shown in 

Figure 9.1. 
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Figure 9.1 – Uni-, bi-, and tri- variate kernel density estimation for 10 data triplets. Dashed green lines show 

Gaussian distributions around each data point, where the standard deviation is a function of local data density. 

9.2.2. Patients and Cohorts 

The cohort used in this study is similar to the one used in the previous Chapter 8. In total 681 patient 

episodes ≥ 10 hours and with initial BG ≥ 7 mmol/L are considered, corresponding to 59439 hours of 

control. This data set is much larger than the compared to the one used for the 2D stochastic model 

[125], and ensures high data density for the method presented. SI is identified hourly for each patient 

using integral-based fitting method and a total of 58539, 57840, and 57141 data triplets (SIn-1, SIn, SIn+i) 

for i = 1, 2, and 3 hours forward, respectively, are created. 

9.2.3. Validation and Comparison Analysis 

The 2D and 3D stochastic models are built and compared using five-fold cross-validation, where the 

resulting training (80%) and testing (20%) sets are believed to be statistically representative of the 

general dataset, minimizing bias and variance in the validation [252]. Patients are thus randomly divided 
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into 5 equally sized groups, models are built using 80% of patient episodes (4/5 groups), and the other 

20% of patients (1/5 groups) are used for validation. As Silverman’s ROT for multivariate kernel density 

estimation assumes data has a Gaussian distribution [250], and SI has a log-normal distribution, the 

logarithmic domain is chosen here to build the model. 

The 25th-75th and 5th-95th percentile ranges are computed for both models. Tighter prediction ranges for 

future SIn+i would suggest likely lower future variability. In this case, the future potential variation in SI 

being smaller, STAR can provide insulin with less risk and greater certainty, and thus potentially more 

aggressively (higher insulin rates) with equal safety. On the other hand, wider prediction bands would 

suggest higher future variability and, thus, more conservative dosing of insulin is necessary to avoid 

hypoglycaemia. Forward predictive power and model accuracy are compared using the percentage of 

accurate predictions within these two ranges. The expected accuracies are 50% and 90%, respectively, 

where greater conformation of an independent cohort to these expected outcomes, both overall and 

per-patient, would indicate the 3D methods more accurately capture SI dynamics to predict future SI. 

Finally, to assess clinical impact, validated virtual trials on virtual patients are simulated to assess the 

new model’s ability to control patients. Such virtual trials enable comparison of glycaemic outcomes 

from different GC designs, on the same underlying patients. In summary, virtual patients are 

characterized by their identified patient-specific SI traces generated from clinical data, and can be used 

to test a range of new protocols or technologies [91, 98]. They are well-validated in their independence 

from the data used to create them and their accuracy [94, 128], their ability to predict trial outcomes [96, 

105, 129] and in clinical use to guide care in STAR [87, 95]. The underlying model is also well-validated 

in SI testing and similar clinical studies [130, 136, 137, 156]. These virtual trials have been validated in 

previous studies [94, 128], and are used here to simulate STAR using either the 2D (STAR-2D) or 3D 

(STAR-3D) stochastic model.  

Unlike most GC protocols, STAR has the ability to modulate both insulin and nutrition inputs. Enteral 

nutrition can be lowered if the maximum allowed insulin is not sufficient to decrease BG levels, often 

occurring for very resistant patients with low SI and saturation of insulin dosing effects. In STAR, insulin 

is administered as boluses up to a maximum of 6U/hr, with an additional 3U/hr continuous infusion for 

highly resistant patients. Enteral nutrition administration can be modulated between 30-100% of the total 
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calorific GF if necessary. The original 100% GF for a patient is computed according to the standard 25 

kcal/kg/day target [229] adapted based on age and sex. Further details are in [87, 134]. 

Safety and performance, administered insulin, and nutrition delivery are compared from these 

simulations. BG is resampled hourly, to allow fair comparison across the different measurement 

intervals. Safety is assessed by the %BG in mild (%BG ≤ 4.4 mmol/L) and severe (%BG ≤ 2.2 mmol/L) 

hypoglycaemia, and in hyperglycaemia (%BG > 8.0 mmol/L and %BG > 10.0 mmol/L). Performance is 

assessed by the %BG in the target band (4.4-8.0 mmol/L) and the median [IQR] BG levels achieved. 

Nutrition is reported as the percentage GF (%GF) achieved per-patient. In addition, workload is also 

compared, as the number of BG measurement per day, where a higher value indicates increased 

workload [174, 175]. 

9.3. Results 

9.3.1. Forward Predictive Power Comparison Between the 2D and 3D Stochastic 

Models 

A representation of the kernel density estimation is shown in Figure 9.2. The left panel shows the kernel 

density surface using the normal data, whereas the right panel shows the kernel density surface when 

data is transformed into the log-normal space to meet the normal distribution assumption under 

Silverman’s ROT [250]. Clearly, log-normal data provides increased data density for higher SI ranges, 

where the raw data is sparser. Hence, this approach, taken for the first time here, potentially improves 

safety by better characterising SI potential variability for higher SI ranges, where the risk of experiencing 

hypoglycaemia due to insulin dosing is greater. 

Cross-validation results of the forward predictive power for both models are summarised in Table 9.1. 

Additionally, the resulting 5th and 95th percentile predictions for each model are shown in Figure 9.3. 

Both the 2D and 3D models have close to 50% (~53% vs ~51%) and 90% (~91% vs. ~90%) predictions 

in the 25th-75th and 5th-95th percentile ranges respectively. However, the prediction ranges are 

generally narrower (~70% of hours) in the case of the 3D model. An example of the evolution of SI for 

a patient and the 2D and 3D predictions ranges for a specific virtual patient is shown in Figure 9.4. In 

addition, the median [IQR] percentage predictions in the 25th-75th and 5th-95th percentile prediction 
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ranges are closer to the expected 50% and 90% for the 3D model, suggesting the 2D model is too 

conservative for most patients.  

To characterise the difference in prediction ranges from both models, the percentage change in the 5th-

95th percentile range widths are computed for every prediction and the median [IQR] of percentage 

change is reported in Table 9.1. The high prediction performances are achieved with significantly 15.5-

24.4% tighter 5th-95th percentile prediction range 69.9-73.8% of the time, and 14.8-22% wider 

otherwise. The median [IQR] 3D/2D prediction width ratios as a function of the hour-to-hour percentage 

change in of SI (%ΔSI) are shown in Figure 9.5, where clearly, prediction bands are typically tighter 

when %ΔSI is within ±20%. Overall, the new model thus better captures patient-specific differences from 

this more optimal model. 

 
Figure 9.2 – Graphical representation of kernel density estimation using raw data (left) or logarithmic transformed 

data (right). 

 
Figure 9.3 – Comparison between the 5th (left) and 95th (right) percentile predictions of likely future SI for the 2D 

(green) and the 3D (orange) models. The 2D model is constant across SIn-1 whereas the 3D model varies. 
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Table 9.1 – Five-fold cross-validation results summary of cohort forward predictive power and prediction range 

comparison between the 2D and 3D stochastic models. 

  1-hourly 2-hourly 3-hourly 

 Total predictions 58539 57840 57141 

2D model 

% predictions in 25th-

75th 
55.9 53.4 52.6 

% predictions in 5th-95th 91.4 91.0 91.0 

3D model 

% predictions in 25th-

75th 
52.6 51.3 51.0 

% predictions in 5th-95th 90.5 90.2 90.2 

3D vs. 2D 

model 

% of tighter predictions 

using 3D model 
73.8 72.8 69.9 

% reduction in 5th-95th 

prediction width 
24.4 [17.7 29.4] 17.9 [10.9 20.9] 15.5 [10.8 19.2] 

% of wider predictions 

using 3D model 
26.2 27.2 30.1 

% increase in 5th-95th 

prediction width 
22.0 [7.5 49.1] 16.4 [7.7 32.0] 14.8 [6.8 28.2] 

Data is given as median [IQR] where appropriate. 

 

 
Figure 9.4 – Excerpt of SI evolution (black) and corresponding 2D (blue) and 3D (red) forward prediction ranges for 

a specific virtual patient. The 3D model prediction ranges are generally narrower. 
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Figure 9.5 – Median [IQR] ratio between the 3D and 2D models 5th-95th percentile prediction width as a function of 

the hour-to-hour percentage change in SI (%ΔSI). The cumulative distribution function of %ΔSI is also shown in the 

blue dashed line. 

9.3.2. Virtual Trials Results 

Virtual trial results of STAR using the two different stochastic models are summarised in Table 9.2. 

Overall, both versions of STAR provided similar performance in terms of median BG [IQR] (6.3 [5.7, 7.0] 

vs. 6.2 [5.6, 6.9] mmol/L) and percentage time in the 4.4-8.0 mmol/L target band (88%). However, the 

overall %BG measurements shifted toward lower BG ranges using STAR-3D, with significantly higher 

%BG within 4.4-6.5 mmol/L and 4.4-7.0 mmol/L (61% vs. 56% and 75% vs. 72%, p<0.01 using χ² 

statistical test on proportions of measurements). In terms of safety, both models excel similarly with only 

~2% BG < 4.4 mmol/L, ~1% BG < 4.0 mmol/L, and 0.03% BG < 2.2 mmol/L, despite STAR-3D 

administering higher median insulin (3.0 [1.5, 5.0] vs. 2.5 [1.5, 4.5] U/h). Slightly lower, but similar, %BG 

in 8-10 mmol/L (mild hyperglycaemia) for STAR-3D is also observed (7% vs. 8%). Finally, STAR-3D 

provided higher GF (97 [36, 100] vs. 95 [40, 100] %GF]). 
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Table 9.2 – Virtual trial results summary for STAR-2D and STAR-3D. 

 STAR – 2D STAR – 3D 

Number of patients 681 681 

Hours of control (h) 59073 59071 

Total BG measurements 31248 31858 

Workload (measurements per day) 12.7 12.9 

Median [IQR] BG (mmol/L) 6.3 [5.7 7.0] 6.2 [5.6 6.9] 

% BG in 4.4-6.5 mmol/L 56 61 

% BG in 4.4-7.0 mmol/L 72 75 

% BG in 4.4-8.0 mmol/L 88 88 

% BG in 8.0-10.0 mmol/L 8 7 

% BG > 10.0 mmol/L 3 3 

% BG < 4.4 mmol/L 2.0 2.3 

% BG < 4.0 mmol/L 0.9 1.0 

% BG < 2.2 mmol/L 0.03 0.03 

# patients < 2.2 mmol/L 11 (1.6%) 11 (1.6%) 

Median [IQR] insulin rate (U/h) 2.5 [1.5 4.5] 3.0 [1.5 5.0] 

Median [IQR] dextrose rate (%GF) 95 [40 100] 97 [36 100] 

Data is given as median [IQR] where appropriate. 

9.4. Discussion 

The comparison between the 2D and 3D model clearly shows the new model’s accuracy to predict future 

SI, with overall 15.5-24.4% tighter prediction range for more than 69.9-73.8% of the hours (Table 9.1). 

Typically, the prediction range is tighter when %ΔSI is within ±20% (Figure 9.5). On the contrary, the 

prediction range is wider when the variation is larger than ±20%. This key outcome thus suggests 

previous patient-specific metabolic variability has a direct impact on future SI forecasting.  

More specifically, this 3D model shows stable patients, with low previous variation in SI, tend to remain 

stable, whereas more variable patients are more likely to have bigger future metabolic variations, clearly 

shown in Figure 9.3 and 7. Hence, the 2D stochastic model is over-conservative in terms of insulin 

intervention for most patients. The 3D approach allows STAR to select more aggressive insulin dosing 

more than 69.9% of the time, while ensuring safety, using the proven risk-based dosing approach. 

Therefore, the resulting greater patient-specificity implies better GC with lower glycaemic variability, and 

improved glycaemic outcomes. 

The predictive power and tighter prediction ranges presented in this chapter are similar to those in 

Chapter 8 [126]. However, in Chapter 8, bins were used to balance data density, clearly impacting model 

resolution. Kernel density methods enable higher, continuous, resolution in this case. In addition, there 

was a clear lack of model definition where 10% of data were outside the stochastic model range with 
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the previous method, while this new stochastic model covers the global variable state space. In addition, 

while this method is more robust, it also better manages outliers and does not completely discard them. 

Transforming data into the logarithm space enables to naturally account less for these outliers, based 

on the local density, while still providing a smooth, realistic transition to these values. This new 3D 

stochastic model will thus be conservative in these unlikely events. Finally, this analysis also enables to 

extend the 3D model to 2- and 3- hourly forward prediction, where the Chapter 8 only presented a first 

approach based on 1-hourly forward prediction. 

Virtual trial results comparing STAR using the 2D and the 3D stochastic models confirmed these 

observations showing higher percentage time in normo-glycaemic ranges, with 5% (absolute) more time 

spent in the 4.4-6.5 mmol/L range, for similar incidence of mild hypoglycaemia (BG < 4.4 mmol/L). 

Additionally, the 3D model resulted in more aggressive insulin dosing and higher feed rates for a similar 

intervention workload. Higher caloric intake is associated with improved outcomes [134, 143, 253, 254]. 

These outcomes confirm the 3D stochastic model, using prior information in SI variability, achieves 

effective control for all patients using more aggressive insulin dosing without compromising safety. 

Hence, STAR-3D offers a more patient-specific control, better accounting for either stable or very 

variable patients, potentially resulting in improved patient outcomes. 

More importantly, the slightly lower median BG using STAR-3D (6.3 [5.7, 7.0] vs. 6.2 [5.6, 6.9]) was 

achieved with significantly higher time (61% vs. 56%, p<0.01 using χ² statistical test on proportions of 

measurements) in the 4.4-6.5 mmol/L band and in the 4.4-7.0 mmol/L band (75% vs. 72%, p<0.01 using 

χ² statistical test on proportions of measurements). While the low values for these p-values could be 

influenced by the large dataset size [111, 112], this difference is also clinically significant since larger 

values in these ranges have been associated with improved outcomes and higher odds of living [76, 77, 

79].  

Additionally, there was a consistent, high, 88 %BG in target band (4.4-8.0 mmol/L). High percentage 

time in these ranges have all been associated with improved clinical outcomes in multiple independent 

studies [76-79]. These results, together with the minimal cohort risk of hypoglycaemia (<2%) and severe 

hyperglycaemia (<0.03%), prove the STAR framework design to be adapted for GC in critical care, to 
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provide safe, effective control for all patients, and show GC to lower target ranges to be possible without 

compromising safety. 

It is also important to note specific safety benefits of this new model are hard to highlight. First, because 

hypoglycaemia is extremely infrequent in STAR, unlike many other protocols failing to achieve safe 

control [46, 47, 49, 50, 52, 255]. Hence, the few hours where the 3D model enables a gain in reducing 

potentially very harmful hypoglycaemia due to highly variable SI are hard to see in the results, and 

overwhelmed in the overall high effectiveness of STAR. Thus, we examine improved performance more 

deeply, which is also beneficial for patients with equivalent safety.  

 
Figure 9.6 – Prediction range ratios CDFs when identified SI is within predicted ranges (blue) or outside (red). 

To further illustrate this issue, the following CDFs of the ratio between the 5th-95th percentile range widths 

of each model when the subsequent SI value is within the predicted range and when the prediction is 

outside this range is shown in Figure 9.6. When SI is within the predicted range (~90% of hours, Table 

9.1), the 3D model prediction band is tighter >75% of the time. However, when the subsequent SI value 

is outside the predicted range (~10% of the time), the 3D model is already >55% of the time wider than 

the 2D model. This result suggests when the subsequent SI value is outside the range, the 3D model is 
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generally more conservative (with a wider interval predicted) despite SI being outside predicted range. 

However, when the subsequent SI is within the predicted range, it is far narrower. Thus, the 3D model 

is overall safer. 

While the difference in the two models shown in Table 9.1 is quite important, and the virtual trials showed 

higher performance (Table 9.2) at equal safety, a greater difference in glycaemic outcomes might have 

been expected. First, this difference shows how the STAR framework is consistent and manages to 

control patients in a safe manner. Second, the difference in SI prediction ranges between these models 

may not be big enough to change the discretized insulin interventions in STAR, as the controller is 

limited to 0.5 U/h increments. More specifically, in [135], an analysis suggests a change below 12-15% 

in SI levels can be considered clinically equivalent, limiting some impact on GC recommendations. 

STAR treatment selection relies in putting the 5th percentile of predicted BG outcome on the lower target 

band limit. Hence, it mainly uses the 95th percentile of predicted SI. Looking deeper at the 95th percentile 

difference between the 2D and 3D model, there is median reduction of ~6%. This difference may not be 

enough to significantly change the administration rate of insulin, leading to more similar glycaemic 

outcomes than would be obtained if insulin delivery rates were analogue to a smaller resolution, which 

would be less clinically feasible in workload and potential error [152]. 

As reflected in these results, using more information to better predict how likely patient-specific 

metabolic conditions will change seems a good approach to improve control in the STAR framework. 

More specifically, using more prior identified SI values also reduces the impact of direct measurement 

errors or identification errors for future prediction [170]. While one could think to extend this method to 

more dimensions, the danger would be to over fit the data and/or suffer from low data density, resulting 

in undesired behaviour for higher computational costs. 

However, other parameters could be useful to improve both predictions and GC outcomes. In [256, 257], 

BG data is used as an entry with current SI level to forecast metabolic variability. In doing so, not only it 

potentially can improve control safety and efficacy, but it also allows to identify specific behaviour in the 

data, reflected by the resulting estimated distributions. In particular, [256, 257] observed typical 

underestimation of SI changes at lower BG values and vice-versa. Hence, more work could be done to 
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identify possible critical factors or parameters allowing to further improve prediction of important changes 

in metabolic variability and SI. 

The bi-variate kernel density estimation method requires much fewer total data to create an effective 

model for use in clinical practice compared to the tri-variate model presented. However, the 3D 

stochastic model demonstrated better performance and equivalent safety in this study due to the much 

higher number of data triplets (~60,000 vs. ~20,000) available from the larger population data set used 

in this study than in creating the 2D stochastic model [124, 125]. In addition, the equivalence across the 

virtual trial five-fold cross validation results suggest the stochastic models were created on enough data 

to be robust and the data used was representative of a general ICU population. 

The interpretation of these results has some limitations. Virtual trials represent realistic glycaemic 

outcomes in perfect implementation conditions, fully compliant to the protocol [152]. Glycaemic 

outcomes will likely differ at least somewhat in a real clinical environment. However, these virtual trials 

have been validated and shown to well capture the overall potential glycaemic outcomes [94, 128]. In 

addition, compliance to STAR is very high in regular clinical use [87, 258]. 

9.5. Summary 

Tri-variate kernel density estimation methods are used here to build a new 3D stochastic model 

forecasting likely future changes in SI based on its prior 2 states. This 3D stochastic model shows 

similar, high, forward predictive power compared to the previous 2D version, but achieved with 15-25% 

tighter prediction ranges more than 70% of the time. This suggests the 3D stochastic model better 

predicts future SI dynamics and thus offers greater personalisation of care than the prior 2D model.  

Virtual trials using this model showed similar GC safety and better performance based on higher time in 

the normoglycaemic intermediate ranges (4.4-6.5 mmol/L and 4.4-7.0 mmol/L), resulting in slightly lower 

median BG levels for similar workload. These improvements are due to greater personalisation of care, 

and were achieved by using higher insulin rates and slightly higher nutrition rates in cases where 

possible and as enabled by the tighter prediction ranges offered in over 70% of interventions. These 

results suggest the implementation of this new 3D stochastic model within the STAR framework could 

potentially improve patient clinical outcomes resulting from improved GC. 
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Chapter 10: Clinical Trial of STAR-3D Stochastic Model 

 

 

 

 

 

 

 

 

 

 

 

 

Virtual trials results using the new 3D stochastic model in STAR have shown potential clinical benefits 

[126, 127]. More specifically, higher performance can be achieved without increasing the risk of 

hypoglycaemia or increasing workload, resulting from more accurate prediction of intra-patient 

variability. This new STAR-3D model was tested in a pilot trial as the clinical standard of care. This 

chapter presents and compares clinical trial results of STAR using the 3D stochastic model to prior 

STAR-2D results, as implemented in the Christchurch Hospital ICU, New Zealand. 
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10.1. Introduction 

The previous chapters have shown personalised GC solutions in ICUs are essential for GC safety and 

efficacy. More specifically, directly quantifying and accounting for inter- and intra- patient variability has 

been identified as of primary importance for GC protocol designs. STAR is a model-based GC 

framework identifying patient-specific SI [130, 131] and forecasting future metabolic variability, enabling 

a unique risk-based dosing approach directly accounting for both inter- and intra- patient variability [95, 

96, 123]. STAR is fully computerized, adjustable to different ICU practices, and has shown positive, near 

identical results in multiple centres, which no other GC protocol has done to date [87]. 

A 3D stochastic model was developed Chapter 8 and Chapter 9 to enable greater personalisation and 

precision [126, 127]. This new model added a second input parameter (SIn-1) to the 2D stochastic model 

input (SIn), to better predict future SIn+i variability based on (SIn-1, SIn). Compared to the 2D stochastic 

model, prediction accuracy was modestly improved, but it also provided significantly tighter prediction 

ranges, enabling greater precision. Virtual trial results comparing STAR with both stochastic models 

showed similar safety and improved performance while providing more insulin and nutrition, compared 

to the 2D stochastic model [127]. Overall, these results justify the use of this model in clinical practice 

to improve patient care and outcomes. 

This 3D stochastic model used in STAR (STAR-3D) has been implemented at Christchurch Hospital, 

New Zealand, to validate the results. The STAR-3D protocol is implemented as a new standard of care 

alongside a technology upgrade, due to clinical confidence in the STAR protocol, for a pilot trial. The 

clinical results to date are analysed and compared to previous published results of STAR using the 2D 

stochastic model (STAR-2D) in the same ICU [87]. 

10.2. Methods 

10.2.1. STAR-3D Glycaemic Control Framework 

The STAR framework has been developed in Chapter 3. In its original version, STAR predicts potential 

future metabolic variability based on the identified, patient-specific, current SIn level, using a 2D 

stochastic model [124, 125]. The 3D stochastic model now uses also SIn-1 providing additional temporal 

information for more accurate predictions of SIn+1 [126, 127]. One of the main advantages of this new 
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stochastic model is it better characterises intra-patient variability, and, thus, better captures the 

behaviour of this variability and adapts predictions accordingly. In essence, greater personalisation 

offers the opportunity for greater precision in care. 

The new 3D stochastic model showed stable patients tend to remain stable, with less future potential 

variability, while more variable patients are subjected to higher potential variability. STAR uses the 5th-

95th prediction of future evolution of SI, to adapt insulin and treatment so the corresponding 5th-95th 

prediction of BG levels overlaps the clinically set target band [95, 96, 123]. Thus, more accurate 

prediction of this SI range can directly improve and add precision to STAR GC control outcomes. The 

full methodology and advantages of this new approach are presented in Chapter 3. 

STAR is fully computerised and has been adapted to use the 3D stochastic model. This process did not 

require ani significant changes to the original STAR protocol, minimising/mitigating potential software 

errors. This software change enables clinical testing and use as a standard of care in Christchurch, New 

Zealand, which already employs STAR (2D) as a standard of care. 

The starting criterion for this trial is 2 consecutive BG measurements > 8.0 mmol/L or clinical choice. 

BG assays are made using standard glucometers (Accu-Check® Inform II, Roche, Switzerland). Insulin 

is administered as boluses through an intravenous catheter, with increments of a maximum +2 U/h 

between consecutive measurements, and limited to a maximum size of 6U/h. For very insulin-resistant 

patients, an additional background insulin infusion rate of 3 U/h can be administered. 

In STAR, both insulin and nutrition are modulated. Enteral nutrition can thus be adjusted treatment to 

treatment by maximum 30% of the original 100% GF rate, going no lower than 30% of the original GF. 

The original GF rate is derived from a daily base rate of 25 kcal/kg/day nutritional intake [229], and 

adapted for STAR GC based on age, sex, and frame size/weight [134]. The target band is 4.4-8.0 

mmol/L, and STAR is stopped if the patient BG is stabilised for 6 hours (BG in target band and insulin ≤ 

2 U/h). Nurses are free to choose between the suggested 1-3 hour interval treatments, and to adapt 

rates according to their clinical judgment, if desired. The protocol is implemented on Android operated 

system tablets at the patient bedside. All of these criteria and approach are unchanged from using 

STAR-2D. 
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STAR is currently the standard of care in the Christchurch Hospital ICU, New Zealand.  Hence, 

implementing this new version was a simple change of practice and did not require additional approval 

from the local ethics committee for the change or to audit results, based on prior approval for STAR-2D 

from the New Zealand Upper South Island Regional Ethics Committee. 

10.2.2. Patients and Cohort 

This analysis uses clinical data from 181 patients and 273 GC episodes included in STAR using the 3D 

stochastic model (STAR-3D) between April 2019 and January 2020. From these 273 episodes, 48 (18%) 

episodes were longer than 10 hours, 21 (8%) had average nutrition rates higher than 120% GF, and 4 

(1%) targeting a range other than the clinically specified 4.4-8.0 mmol/L (Figure 10.1), leaning to 200 

(73%) of episodes remaining for the analysis. These criteria cover the normal , per protocol use of STAR, 

and ensure a fair comparison with retrospective clinical data of 264 patients under the original version 

of STAR (STAR-2D), presented in Chapter 4, with the same conditions. Demographics of the resulting 

patient cohort is presented in Table 10.1, where STAR-3D and STAR-3D patients are similar in age, 

sex, severity of injury, and operative patients. 

 
Figure 10.1 – GC episode selection from the original 181 patients (200 episodes) included in the STAR-3D clinical 

trial. 

Table 10.1 – Demographics summary of patients included in the STAR-3D and STAR-2D clinical trials. 

 STAR-2D STAR-3D P values 

# episodes 330 200 / 

# patients 264 146 / 

# control hours 22372 12189 / 

Percent male 66 71 0.27a 

Age (years) 65 [55, 73] 65 [52, 72] 0.50b 

APACHE 2 21 [16 25] 20 [15 26] 0.98b 

APACHE 2 RoD 33 [15 51] / / 

APACHE 3 73 [56 94] 75 [56 103] 0.23b 

APACHE 3 RoD 26 [11 50] 23 [9 57] 0.75b 

% Operative 43 39 0.47a 

Data is given as median [IQR] where appropriate. Statistical testing using aFisher exact test, or bWilcoxon rank 

sum test. 



 

149 

 

10.2.3. Clinical Results Comparison Analysis 

Clinical trial results of STAR-3D and STAR-2D results are compared. Safety, efficacy, BG achieved, 

insulin and nutrition rates, and workload are compared. BG is resampled hourly to allow fair comparison 

between protocols [87, 122]. Safety is compared using the percentage BG outside the target band (%BG 

< 4.4 mmol/L and %BG > 8.0 mmol/L), as well as the percentage BG and the number of patients below 

the severe hypoglycaemic threshold (%BG < 2.2mmol/L). Performance is analysed using the 

percentage BG in the 4.4-8.0 mmol/L target band and median [IQR] BG levels achieved. 

Per-episode insulin (U/h) and nutrition rates (%GF) are also compared, and workload is assessed using 

average measurements per day. Additionally, the percentage BG in 4.4-6.5 mmol/L and 4.4-7.0 mmol/L 

are compared for each protocol to indicate tightness to lower-normal range. High percentage time in 

these bands are associated with improved outcomes in ICU patients [38, 76, 77, 79]. Results are 

examined at both cohort and per-patient/episode levels. 

Due to the relatively large data sample sizes, bootstrapping methods are used to determine if the null 

hypothesis of samples being drawn from distributions of equal medians can be rejected or not, at a 

statistical significance of α=0.05 (Chapter 2). The 95% CI of difference in bootstrapped medians is 

computed. Distributions are considered significantly different (p<0.05) if the 95%CI does not include the 

null hypothesis. The Fisher Exact test is used for proportion data, at the same significance level (α=0.05). 

As per protocol design and virtual trial results presented in Chapter 9, similar time in target band is 

expected, with a shift in BG levels toward lower ranges (4.4-6.5 mmol/L and 4.4-7.0 mmol/L). 

Additionally, higher nutrition and insulin rates are expected, with similar workload if starting glucose is 

similar. The main outcome of the study is to evaluate the impact on overall GC outcome using STAR-

3D compared to STAR-2D. 

Importantly, if one cohort has significantly higher starting BG than the other, the performance will be 

affected as it will typically take more time to reach the target. In addition, during this longer time, nutrition 

rates are potentially further reduced, also source of bias in the comparison. To avoid bias comparing on 

clinical results for cohorts with different starting BG, a secondary analysis calculates safety and 
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performance once the target band is reached. This analysis fairly captures each protocols’ ability to 

safely and effectively control BG. 

10.2.4. Virtual Trial Comparison Analysis 

Another main advantage of virtual trials in the context of this thesis, is the ability to directly create virtual 

patients from clinical patients, and simulate the protocol to see the difference with clinical GC outcomes 

under full compliance and ideal conditions. Such simulations are possible because model-based SI is 

treatment independent (Chapter 3) [91, 94, 128]. Therefore, patient-specific SI evolution characterises 

patient metabolic evolution, regardless of the treatment received (ie: the identified SI trace evolution for 

a patient would have been identical under any other GC protocol). 

SI is thus identified hourly [130, 131] from each clinical patient data to create virtual patients. Virtual 

trials using the STAR-3D (STAR-3D-VT) protocol are simulated, and results compared to STAR-3D 

clinical GC outcome. Large differences in glucose results would indicate reduced protocol compliance. 

Similar statistics and hypothesis testing as for the clinical results analysis are used to compare results. 

10.2.5. Compliance Analysis 

Nurse compliance to protocol is also analysed. Analysing compliance to protocol enables to identify and 

assess the potential impact of clinical staff deviations from original recommendations on GC outcomes. 

It also allows to determine whether protocol design is feasible. Hence, maximum treatment intervals 

suggested by STAR for each treatment is computed, as well as the number of time nurses picked the 

longest available treatment interval. Additionally, the percentage time clinical staff changed overrode 

original recommendation is recorded. Changes are considered as deviations from original protocol if 

they are made within 15 minutes after treatment selection and confirmation.  

10.3. Results 

10.3.1. Clinical Results 

Cohort clinical GC outcome results for both cohorts are presented in Table 10.2. Performance is high in 

both cohorts, but STAR-3D has slightly lower time in the 4.4-8.0 mmol/L target band (78%) compared 

to STAR-2D (83%). Additionally, time in lower intermediate bands is also slightly lower for STAR-3D 
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(43% in 4.4-6.5 mmol/L and 60% in 4.4-7.0 mmol/L) compared to STAR-2D (44% and 62%, 

respectively). Finally, cohort median BG levels achieved in STAR-3D are slightly higher (6.7 [6.0 7.7] 

mmol/L) than STAR-2D (6.6 [6.0 7.4] mmol/L), but clinically similar (Chapter 2). The CDFs of resampled 

BG levels are shown in Figure 10.2, where the main difference is greater incidence of higher BG levels. 

Importantly, starting BG is higher under STAR-3D (10.5 [8.8 12.8] mmol/L) compared to STAR-2D (9.7 

[8.4 11.5] mmol/L). Hyperglycaemia is higher in STAR-3D (8%) than STAR-2D (4%). However, 

hypoglycaemia was reduced with less %BG below target band on STAR-3D (0.9%) compared to STAR-

2D (1.4%), and no patients with BG < 2.2 mmol/L (0%) versus 3 patients for STAR-2D (1%) 

These cohort outcomes were achieved with slightly workload for STAR-3D compared to STAR-2D (13.8 

vs. 12.9 measurements per day), significantly higher insulin rates (4.0 [2.0 6.0] U/h vs. 2.5 [1.0 4.5]U/h, 

p<0.05), and significantly higher nutrition rates (98 [80 100] %GF vs. 92 [71 100] %GF, p<0.05). At a 

cohort perspective, both protocols achieved similar high quality of control, with STAR-3D being safer 

regarding hypoglycaemic risk, and providing more nutrition than STAR-2D. However, STAR-3D required 

1 extra measurement per day, perhaps due to the longer time to reach the target range due to higher 

starting BG. 

Table 10.2 – Cohort clinical results summary for STAR-3D and STAR-2D. 

 STAR-2D STAR-3D P-value 

Number of episodes 330 200 / 

Hours of control (h) 22372 12189 / 

Starting BG (mmol/L) 9.7 [8.4 11.5] 10.5 [8.8 12.8] <0.05 

Total BG measurements 12030 6980 / 

Workload (measurements per day) 12.9 13.7 / 

BG (mmol/L) 6.6 [6.0 7.4] 6.7 [6.0 7.7] <0.05* 

% BG in 4.4-6.5 mmol/L (%) 44 43 / 

% BG in 4.4-7.0 mmol/L (%) 62 60 / 

% BG in 4.4-8.0 mmol/L (%) 83 78 / 

% BG in 8.0-10.0 mmol/L (%) 11 13 / 

% BG > 10.0 mmol/L (%) 4 8 / 

% BG < 4.4 mmol/L (%) 1.4 0.9 / 

% BG < 4.0 mmol/L (%) 0.5 0.3 / 

% BG < 2.2 mmol/L (%) 0 0 / 

Insulin rates (U/h) 2.5 [1.0 4.5] 4.0 [2.0 6.0] <0.05 

Total hours not fed (%) 10 18 / 

Dextrose rates excluding not fed hours 

(%GF) 
92 [71 100] 98 [80 100] <0.05 

Data is given as median [IQR] where appropriate. Statistical testing using 95% CI bootstrapped BG medians 

difference. (*) indicates 95% CI bootstrapped BG medians difference is clinically equivalent. 
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Figure 10.2 – Resampled BG cumulative distribution functions for STAR-2D (red) and STAR-3D (blue). 

Table 10.3 presents per-episode clinical GC outcome results for both cohorts. Overall, high performance 

and safety was achieved, per-episode, similarly for both cohort (p>0.05). Only severe hyperglycaemia 

is significantly higher in STAR-3D compared to STAR-2D (4 [0 14] vs. 2 [0 6] %BG>10.0 mmol/L, 

p<0.05). Similar median BG are achieved in both cohorts. Per-episode 5th-95th, 25th-75th, and median 

BG achieved are presented in Figure 10.3, clearly showing similar median (Table 10.3), but clearly 

higher 95th percentile BG in STAR-3D. 

Table 10.3 – Per-episode clinical results summary for STAR-3D and STAR-2D. 

 STAR-2D STAR-3D P-value 

Number of episodes 330 200 / 

Episode length (days) 1.8 [0.9 3.6] 1.7 [0.8 3.5] NS 

BG measure/day per patient 13.6 [11.5 16.2] 13.9 [11.6 16.7] NS 

Starting BG (mmol/L) 9.7 [8.4 11.5] 10.5 [8.8 12.8] <0.05a 

Median BG (mmol/L) 6.5 [6.1 7.0] 6.6 [6.2 7.2] NS 

% BG in 4.4-6.5 mmol/L (%) 46 [27 61] 45 [29 61] NS 

% BG in 4.4-7.0 mmol/L (%) 65 [46 75] 63 [41 78] NS 

% BG in 4.4-8.0 mmol/L (%) 85 [73 93] 81 [65 92] <0.05a 

% BG in 8.0-10.0 mmol/L (%) 9 [4 17] 10 [5 18] NS 

% BG > 10.0 mmol/L (%) 2 [0 6] 4 [0 14] <0.05a 

% BG < 4.4 mmol/L (%) 0.0 [0.0 1.7] 0.0 [0.0 0.0] NS 

% BG < 4.0 mmol/L (%) 0.0 [0.0 0.0] 0.0 [0.0 0.0] NS 

% BG < 2.2 mmol/L (%) 0.0 [0.0 0.0] 0.0 [0.0 0.0] NS 

# patients < 2.2 mmol/L (%) 3 0 0.25b 

Insulin rate (U/h) 2.5 [1.0 3.5] 3.5 [2.5 5.0] <0.05a 

# episodes with nutrition (%) 81 75 0.12b 

Dextrose rate excluding not fed (%GF) 88 [63 100] 97 [80 100] <0.05a 

Data is given as median [IQR] where appropriate. Statistical testing using (a) 95% CI bootstrapped BG medians 

difference, or (b)Fisher Exact test. NS = not statistically significant. 
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Figure 10.3 - Per-episode median BG as well as the 25th-75th and 5th-95th percentile ranges for STAR-2D (top) and 

STAR-3D (bottom). 

Initial BG levels are significantly higher for STAR-3D than STAR-2D (10.5 [8.8 12.8] vs. 9.7 [8.4 11.5] 

mmol/L, p<0.05), as shown in Figure 10.4 (top panel). For example, a starting BG of 10.0 mmol/L is the 

~40th percentile for STAR-3D in Figure 10.4, but ~60th percentile for STAR 2D. Thus, more patients start 

at relatively higher BG levels, impacting performance and workload. The bottom panel in Figure 10.4 

shows STAR-3D (blue) provided significantly improved control (p<0.05) relative to higher initial BG (shift 

to the left) compared to STAR-2D (red). For example, the likelihood of a 25% reduction (BG/Initial BG = 

0.75%) in BG levels is 50% for STAR-2D, and 63% for STAR-3D, a significant relative difference. 
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Figure 10.4 – Per-episode initial BG (top) and cohort BG / initial BG ratio (bottom). 

Importantly, median [IQR] episode length is similar between STAR-3D and STAR-2D (1.7 [0.8 3.5] vs. 

1.8 [0.9 3.6] days, p>0.05), as well as the median [IQR] workload (13.9 [11.6 16.7] vs. 13.6 [11.5 16.2] 

measures per day). Finally, STAR-3D provides significantly higher insulin (3.5 [2.5 5.0] vs. 2.5 [1.0 3.5] 

U/h, p<0.05) and nutrition (97 [80 100] vs. 88 [63 100] %GF, p<0.05) rates than STAR-2D, showing the 

potential for more aggressive insulin dosing enabled by the 3D stochastic model. 

Thus, per-episode, STAR-3D achieved similar safety and efficacy GC outcomes, with higher insulin and 

nutrition rates, and higher starting BG. The significantly higher initial BG in STAR-3D most likely explains 

the higher %BG above target, the slightly reduced time in band, and the slightly higher workload, but 

these points are further analysed in Section 10.3.2. 
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10.3.2. Clinical Results Once Target Band Reached 

Cohort and per-episode clinical GC outcome results for both cohorts are presented in Table 10.4 and 

Table 10.5. From all episodes, 328 (99.4%) for STAR-2D and 199 (99.5%) for STAR-3D reach the target 

band. STAR-3D episodes needed more time to reach the target (4 [2 7] h) compared to STAR-2D (3 [2 

5] h), representative of higher starting BG in Table 10.4. At a cohort perspective, BG levels achieved 

are still clinically equivalent. Most importantly, the overall performance of STAR-3D is now much closer 

to STAR-2D than previously. Severe hyperglycaemia in STAR-3D (3%) is now also closer to STAR-2D 

(2%), and much lower compared to raw clinical results (8% and 4%, respectively). Incidence of 

hypoglycaemia did not change. Insulin and nutrition rates are still significantly higher in STAR-3D,  

At a per-episode level, median BG remains clinically equivalent, and workload, despite not being 

statistically different (13.3 [11.0 16.0] vs. 13.1 [11.1 15.2] measures per day for STAR-3D and STAR-

2D, respectively), is decreased compared to clinical raw data (13.9 [11.6 16.7] vs. 13.6 [11.5 16.2]), 

explained by discarding hours before entering BG target. Performance achieved by both protocols is 

now much closer (Figure 10.5), with no statistical difference in any intermediate ranges. In addition, per-

episode median percentage BG in severe hyperglycaemia is also no longer significant, with minimal 

incidence. The only significant difference remaining, at a per-episode level, is the higher insulin and 

nutrition rates achieved. 

Table 10.4 – Cohort clinical results summary for STAR-3D and STAR-2D once in target band. 

 STAR-2D STAR-3D P-value 

Number of episodes 328 (99.4%) 199 (99.5) / 

Starting BG (mmol/L) 9.7 [8.4 11.5] 10.5 [8.8 12.8] <0.05 

Time to target (h) 3 [2 5] 4 [2 7] >0.05 

Hours of control (h) 21484 11298 / 

BG (mmol/L) 6.6 [5.9 7.3] 6.6 [5.9 7.4] <0.05* 

% BG in 4.4-6.5 mmol/L (%) 46 47 / 

% BG in 4.4-7.0 mmol/L (%) 65 65 / 

% BG in 4.4-8.0 mmol/L (%) 87 85 / 

% BG in 8.0-10.0 mmol/L (%) 10 11 / 

% BG > 10.0 mmol/L (%) 2 3 / 

% BG < 4.4 mmol/L (%) 1.4 1.0 / 

% BG < 4.0 mmol/L (%) 0.6 0.3 / 

% BG < 2.2 mmol/L (%) 0 0 / 

Insulin rates (U/h) 2.5 [1.0 4.0] 3.5 [1.5 6.0] <0.05 

Total hours not fed (%) 13 22 / 

Dextrose rates excluding not fed hours 

(%GF) 
92 [74 100] 99 [80 100] <0.05 

Data is given as median [IQR] where appropriate. Statistical testing using 95% CI bootstrapped BG medians 

difference. (*) indicates 95% CI bootstrapped BG medians difference is clinically equivalent. 
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Table 10.5 – Per-episode clinical results summary for STAR-3D and STAR-2D once in target band. 

  STAR-2D STAR-3D P-value 

Number of episodes 228 199 / 

Episode length (days) 1.7 [0.8 3.4] 1.5 [0.6 3.1] NS 

 BG measure/day per patient 13.1 [11.1 15.2] 13.3 [11.0 16.0] NS 

Median BG (mmol/L)  6.5 [6.1 6.9] 6.4 [6.0 6.9] NS 

 % BG in 4.4-6.5 mmol/L (%) 50 [31 65] 52 [35 70] NS 

% BG in 4.4-7.0 mmol/L (%)  71 [54 82] 71 [52 86] NS 

% BG in 4.4-8.0 mmol/L (%) 92 [82 100] 95 [82 100] NS 

% BG in 8.0-10.0 mmol/L (%)  4 [0 12] 3 [0 14] NS 

% BG > 10.0 mmol/L (%)  0 [0 0] 0 [0 0] NS 

% BG < 4.4 mmol/L (%) 0 [0 1.9] 0 [0 0] NS 

% BG < 4.0 mmol/L (%) 0 [0 0] 0 [0 0] NS 

% BG < 2.2 mmol/L (%) 0 [0 0] 0 [0 0] NS 

# patients < 2.2 mmol/L (%) 0 0 1.0b 

Insulin rate (U/h)  2.0 [1.0 3.0] 2.5 [1.5 4.0] NS 

# episodes with nutrition (%) 73 74 0.23b 

Dextrose rate excluding not fed (%GF) 88 [65 100] 95 [75 100] <0.05a 

Data is given as median [IQR] where appropriate. Statistical testing using (a) 95% CI bootstrapped BG medians 

difference, or (b)Fisher Exact test. NS = not statistically significant. 

 

 
Figure 10.5 – CDFs comparison of the per-episode median %BG in target band for both protocols. 
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10.3.3. Virtual Trials Results 

To compare and assess how STAR-3D would have performed in ideal conditions (full compliance to 

protocol), virtual trial of STAR-3D (STAR-3D-VT) are simulated on virtual patients, created based on 

clinical data from 200 GC episodes of the STAR-3D clinical trial. STAR-3D-VT reflect perfect compliance 

and minimal workload by selecting the greatest measurement interval offered. The results are compared 

to clinical results of STAR-3D in Table 10.6 and Table 10.7. Virtual trial overall cohort results of STAR-

3D-VT show higher performance and similar safety than the clinical results of STAR-3D (Table 10.6). 

More specifically, while the %BG in target bands are similar (82% vs. 78% for STAR-3D-VT and STAR-

3D, respectively), there is a clear shift to lower ranges with 52 %BG in the 4.4-6.5 mmol/L range 

achieved in virtual trials compared to 43% clinically. Lower median BG levels are thus achieved in virtual 

trials (6.4 [5.8 7.4] mmol/L) compared to clinical results (6.7 [6.0 7.7] mmol/L), but this difference is 

clinically equivalent. Insulin is significantly lower (p<0.05) clinically (4.0 [2.0 6.0] U/h) compared to 

simulations (5.0 [3.0 6.0] U/h), while nutrition is higher (100 [70 100] %GF for STAR-3D-VT vs. 98 [80 

100] for STAR-3D, p<0.05). 

Table 10.6 – STAR-3D-VT cohort results of 200 STAR-3D virtual patients compared to STAR-3D clinical data. 

 STAR-3D-VT STAR-3D P-value 

Number of patients 146 146 / 

Number of episodes 200 200 / 

Hours of control (h) 12201 12189 / 

Total BG measurements 7279 6980 / 

Workload (measurements 

per day) 
14.3 13.7 / 

Median [IQR] BG (mmol/L) 6.4 [5.8 7.4] 6.7 [6.0 7.7] <0.05* 

% BG in 4.4-6.5 mmol/L 52 43 / 

% BG in 4.4-7.0 mmol/L 67 60 / 

% BG in 4.4-8.0 mmol/L 82 78 / 

% BG in 8.0-10.0 mmol/L 10 13 / 

% BG > 10.0 mmol/L 7 8 / 

% BG < 4.4 mmol/L 0.9 0.9 / 

% BG < 4.0 mmol/L 0.4 0.3 / 

% BG < 2.2 mmol/L 0 0 / 

Insulin rate (U/h) 5.0 [3.0 6.0] 4.0 [2.0 6.0] <0.05 

Dextrose rate (%GF) 100 [70 100] 98 [80 100] <0.05 

Data is given as median [IQR] where appropriate. Statistical testing using 95% CI bootstrapped BG medians 

difference. (*) indicates 95% CI bootstrapped BG medians difference is clinically equivalent. 
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Table 10.7 – STAR-3D-VT per-patient results of 200 STAR-3D virtual patients compared to STAR-3D clinical data. 

 STAR-3D-VT STAR-3D P-value 

Number of patients 146 146 / 

Number of episodes 200 200 / 

Episode length (days) 1.8 [0.8 3.5] 1.7 [0.8 3.5] NS 

BG measure/day per patient 14.4 [11.5 20.7] 13.9 [11.6 16.7] NS 

Initial BG (mmol/L) 10.5 [8.8 12.8] 10.5 [8.8 12.8] NS 

Median BG (mmol/L) 6.3 [5.9 6.9] 6.6 [6.2 7.2] <0.05a* 

% BG in 4.4-6.5 mmol/L 56 [35 72] 45 [29 61] <0.05a 

% BG in 4.4-7.0 mmol/L 72 [51 84] 63 [41 78] <0.05a 

% BG in 4.4-8.0 mmol/L 85 [69 94] 81 [65 92] <0.05a 

% BG in 8.0-10.0 mmol/L 7 [3 16] 10 [5 18] <0.05a 

% BG > 10.0 mmol/L 2 [0 12] 4 [0 14] NS 

% BG < 4.4 mmol/L 0 [0 0.6] 0.0 [0.0 0.0] NS 

% BG < 4.0 mmol/L 0 [0 0] 0.0 [0.0 0.0] NS 

% BG < 2.2 mmol/L 0 [0 0] 0.0 [0.0 0.0] NS 

# patients < 2.2 mmol/L 0 0 1.00b 

Insulin rate (U/h) 4.5 [3.0 6.0] 3.5 [2.5 5.0] <0.05a 

Dextrose rate for those fed 

(%GF) 
95 [75 100] 97 [80 100] NS 

Data is given as median [IQR] where appropriate. Statistical testing using (a) 95% CI bootstrapped BG medians 

difference, or (b)Fisher Exact test. (*) indicates 95% CI bootstrapped BG medians difference is clinically 

equivalent. NS = not statistically significant. 

Per-episode, STAR-3D-VT provides significantly higher performance in all intermediate ranges (p<0.05), 

for similar safety, and clinically equivalent per-episode median BG levels (Table 10.7). While nutrition 

rates are similar, insulin rates are significantly higher (p<0.05) in simulations (4.5 [3.0 6.0] U/h) compared 

to clinically (3.5 [2.5 5.0] U/h). More importantly, workload was slightly higher, but similar, between 

STAR-3D-VT (14.4 [11.5 20.7] measures per day) and STAR-3D (13.9 [11.6 16.7] measures per day). 

10.3.4. Compliance to Protocol 

A protocol compliance analysis of STAR-3D was done to determine how often nurses chose the longest 

treatment interval suggested, and how often nurse changed the recommendations (Table 10.8). The 

longest treatment intervals of 1, 2, and 3 hours suggested by STAR-3D were 55%, 12%, and 33% of 

recommendations, respectively. Additionally, nursing staff selected the longest treatment interval option 

96% of the time. Nurse compliance to protocol was extremely high, with only 7% insulin and 4% nutrition 

deviations from original recommendations. The CDFs of the difference in insulin and nutrition rates is 

shown in Figure 10.6, where ~80% differences in insulin rate are ±3U/h, and ~80% differences in 

nutrition rate are ± 5%GF. 
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Table 10.8 - Compliance analysis results for STAR-3D. 

 STAR-3D 

Median [IQR] max treatment interval 

available (mean) 
1 [1 3] (1.8) 

% max interval chosen  96 

% insulin intervention unchanged 97 

% nutrition intervention unchanged 96 

 
Figure 10.6 – Cumulative distribution functions of insulin (left) and nutrition (right) deviation from original 

recommendations. The difference in insulin rate is the sum of both bolus and background infusion deviations, 

explaining the potential difference of 0 U/h. 

10.4. Discussion 

Clinically, STAR-3D provided high, similar, GC safety and performance, especially in intermediate lower 

ranges compared to STAR-2D. High percentage time in those ranges, associated with improved 

outcomes [38, 76, 77]. The incidence of hyperglycaemia was higher in STAR-3D, explained by the 

higher initial starting BG levels (Table 10.3 and Figure 10.4). Hypoglycaemia was lower in STAR-3D, 

with no incidence of severe hypoglycaemia compare to STAR-2D, where severe hypoglycaemia is 

associated with increased morbidity and death [10, 32, 50].  

In addition, the left panel in Figure 10.4 presents the ratio of BG levels over initial episode BG level, 

showing a clear shift to the left for STAR-3D. Given the higher initial BG seen in the right panel of the 

same Figure, it implies that in clinical practice, with the same starting BG levels, STAR-3D would likely 

have shown tighter or higher performance than STAR-2D.  
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To capture this gap and avoid the influence of higher starting BG, an analysis only calculating outcome 

results once the target band was achieved. Results showed STAR-3D, once the target band reached, 

provides safer and more effective control than STAR-2D, while achieving significantly higher nutrition 

rates. Thus, STAR-3D is able to achieve tighter control, with significantly higher feed rates, which can 

significantly improve patient outcome. The higher insulin and nutrition rates achieved compared to 

STAR-2D show the ability of STAR-3D to better personalise control according to patient-specific needs. 

Nutrition intake is safely optimised using more insulin. These outcomes are achieved with similar 

workload per-episode (Table 10.3 and Table 10.5). 

Clinical staff compliance to protocol was extremely high. Not only was the longest treatment interval was 

chosen 96% of the time, but only 7% of insulin and 4% of nutrition recommendations were overridden. 

This result reflects high nursing compliance to protocol and thus good protocol design [152, 160, 174, 

179]. It also suggests non-compliance had minimal impact on GC outcomes, and control was thus 

minimally influenced by nursing clinical judgment, where large negative (and positive) deviations in 

Figure 10.6 likely reflect STAR being turned off (restarted) to take patients to surgical or imaging 

procedures. 

Comparing virtual trials results and clinical results of STAR-3D, there was improved performance in the 

STAR-3D-VT (Table 10.6 and Table 10.7). The resulting lower median BG achieved is associated with 

improved outcomes in ICU patients [38, 76, 77]. However, virtual trials represent ideal conditions with 

full protocol compliance. The reported significant lower insulin used clinically (p<0.05) could be a 

consequence of the less punctual timing of BG measurements. Equally, it may reflect impact of clinical 

judgment, and over-conservative approach fearing hypoglycaemia. More specifically, the 3D stochastic 

model provides tighter forward prediction ranges (more than 70% of the time, as presented in Chapter 

9 [126, 127]), leading to more aggressive dosing of insulin compared to STAR-2D, as seen in Table 

10.2 - Table 10.5.  

As explained in Chapter 9, the net benefit from STAR-3D may be hard to capture clinically. If there is a 

clear increased insulin and nutrition rates, the BG levels achieved, the performance, and even safety 

are very similar here. However, the overall shift in BG seen and lower incidence of hypoglycaemia 

reflects the 3D stochastic model’s ability to better predict intra-patient variability. The change from 1% 
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of patient of severe hypoglycaemia to 0% with STAR-3D over 200 episodes is especially important, even 

if it is not yet statistically significant, given the impact of severe hypoglycaemia on mortality [10, 11, 32, 

33, 163]. Thus, the STAR’s risk-based dosing approach is more personalised and tailored to patient 

metabolic evolution. 

The 3D stochastic model better predicts extremes in SI variability, especially for more variable patients 

[126, 127]. Additionally, it also better accounts for measurement errors, as it is indirectly accounted for 

when building the model. STAR-3D is thus likely more robust to this error, and likely provide safer control 

due to improved prediction of variability. However, more patients should be included to analyse results 

on a broader cohort, and determine whether this new 3D stochastic model brings significant 

improvements on a larger cohort of patients. 

This analysis presents intermediate results this ongoing STAR-3D clinical trial. GC statistics were thus 

easily available and comparable, but additional work should be undertaken to access more detailed 

demographic data, such as severity of injury, length of ICU stay, mortality, etc. This would determine 

whether both cohorts are comparable demographically, although they come from the same ICU here, a 

factor potentially impacting GC outcome.  

10.5. Summary 

In this analysis, clinical trial results of the STAR-3D protocol, using the new 3D stochastic model 

developed in Chapter 9, were compared to retrospective clinical data from the original version of STAR-

2D. STAR-3D provided similar, high, quality of control while reducing the incidence of hypoglycaemia, 

despite using significantly higher insulin rate, and significantly increasing nutrition delivery compared to 

STAR-2D. 

The use of a 3D stochastic model enables improved, personalised, prediction of metabolic variability, 

and thus improves GC outcome in the context of STAR. The results suggest the continuation of this trial, 

and further investigation to clearly determine and compare the clinical benefits associated with this new 

stochastic model.
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Chapter 11: STAR-Liège Clinical Trial 

 

 

 

 

 

 

 

 

 

This chapter presents clinical results of the ongoing STAR-Liège clinical trial at the University Hospital 

of Liège, Belgium. The STAR-Liège aims to assess safety and performance of STAR in a general ICU 

environment different to that in which it was developed, and compare results to local standards. This 

trial is used to further validate the generalisability of the STAR GC framework across different ICUs and 

practices. 

Unique to this trial, it includes patients on a STAR Insulin-Only version (STAR-IO), leaving nutrition at 

clinician discretion. These results are compared to full STAR modulating both insulin and nutrition inputs, 

providing a first ever clinical quantification of the impact of modulating nutrition. This study thus also 

analyses the impact of modulating nutrition on GC outcomes, in the context of the proven STAR GC 

framework. 

This chapter presents results partially published in [259], [154], and [260]. 
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11.1. Introduction 

As previously stated, GC to reduce BG levels to safer concentrations has shown improved outcomes, 

reducing organ failure, clinical burden, and costs [35-37, 171]. However, other studies failed to replicate 

these results [8, 48-50, 65, 66, 261], showing increased glycaemic variability and higher risk of 

hypoglycaemia, independently associated with severe complications and death [10, 11, 14, 32, 33, 55, 

58]. To date, the optimal target band for GC is still being debated (Chapter 1) [60-62, 262].  

Over the years, some critical factors have been identified for good protocol design, including safety, 

performance, compliance to protocol, and repeatability across units [86, 87, 91, 135, 152, 160]. 

However, few clinical settings, if any, evaluate and quantify these factors directly before implementation 

of a GC protocol in a clinical trial or as a standard of care. Safe, effective control must be achieved for 

all patients before potentially assessing its impact on clinical outcomes [64, 135]. Using a GC protocol 

design not providing all of these critical aspects can bias study results and conclusions [135]. 

STAR has shown positive results in two ICUs from New Zealand and Hungary, providing safe control 

for nearly all patients [87], where it is now the standard of care for GC. While all these independent 

before-after single centre trials suggest STAR is a successful, adaptable solution, the significance of 

each single study is underestimated versus the body of work as a whole. Results of STAR are thus not 

considered by reference studies updating GC guidelines in ICUs [70, 72]. 

The STAR-Liège clinical trial was implemented in the University Hospital of Liège, Belgium, to show 

STAR’s ability to adapt to another local ICU’s standards and practices. It is important to note there are 

many differences in the protocol design of this study with prior pilot trials of STAR in Belgium [149, 151]. 

First, the target band used here is lower (4.4-8.0mmol/L) compared to >6.9 mmol/L in previous studies, 

and nutrition was left at clinician discretion in one part of this study. Additionally, clinical staff for this 

clinical trial use STAR directly, without technical support. Results are thus more representative of the 

full usage of STAR by nurses, potential handling errors, and impact on ICU practices and nurse 

compliance. 

 



 

165 

 

STAR is not the only successful model-based protocol [43, 81, 108], but it is the only GC protocol also 

modulating nutrition for increased quality of control, while optimising CHO intake [263], a significant point 

of difference from these protocols, and most, if not all, published clinical protocols. This analysis thus 

also quantifies, for the first time, the impact of modulating nutrition in addition to insulin on GC outcomes, 

in the context of the proven STAR GC framework (Chapter 3), by analysing two separate arms of this 

clinical trial. 

This chapter thus presents and compares safety, performance, and compliance clinical trial results of 

STAR and a modified, insulin-only version of STAR (STAR-IO), leaving nutrition at clinician discretion. 

The University Hospital of Liège Ethics Committee approved this trial (#B707201733994) and the use 

of the data presented. 

11.2. Methods 

11.2.1. STAR-Liège Clinical Trial Design 

The STAR-Liège clinical trial was designed to include two arms of 20 patients each. In the first arm 

(STAR-IO), only insulin is modulated, and nutrition, while known, is left at clinical discretion. In the 

second, the full version of STAR is used, modulating both insulin and nutrition inputs (Table 11.1). 

Informed consent is collected from all patients, which can be freely withdrawn at any time during the 

trial. 

STAR is fully computerised and deployed on Android™ operating system tablets, and easily adjusts to 

local ICU practices. Nurses enter BG, insulin, and nutrition data directly in the tablet. STAR then 

operates using the patient data to compute a new personalised treatment, using the unique risk-based 

dosing approach explained in Chapter 3 [95, 96, 123].  

ICU patients are included in the study if they have an intra-venous (IV) catheter, are enterally fed, have 

a survival prognosis of minimum 72h, and are in the need of insulin therapy (two consecutive BG 

measurements > 8.0 mmol/L). The STAR target band is the normoglycaemic range of 4.4-8.0 mmol/L. 

Insulin is continuously administered through intra-venous catheter, with a maximum insulin rate of 9U/h. 

Increments of a maximum +2U/h are allowed in the infusion rate between successive interventions. 
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Nutrition, in the full STAR version, can be temporarily decreased down to a minimum of 30% of the 

original clinically set 100% GF. Typically, nutrition is reduced if insulin alone is not sufficient to decrease 

persistent elevated BG levels. Nutrition can only be reduced by a maximum 30% between consecutive 

measurements. In STAR-IO, nutrition is known to STAR, but the rate is left at clinician discretion. In the 

case of hypoglycaemia (BG<3.0 mmol/L), a dextrose bolus (20ml of 30% glucose) is administered 

intravenously while insulin is stopped. A new BG measurement will be needed within one hour. 

STAR stopping criteria are BG levels stable (in target band) for 6 hours at low insulin rates (≤2U/h), or 

after 72 hours of control. If a patient still requires GC at 72h, they revert to standard practice GC. BG 

measurements are taken 1-3 hourly based on STAR recommendations and nursing choice [95, 96, 123]. 

All assays are measured using a blood gas analyser (GEM Premier 5000™, Instrumentation Laboratory, 

USA). 

11.2.2. Standard Protocol 

Clinical trial results are compared to retrospective data from the local standard GC protocol (SP, Table 

11.1). The SP is a table-based protocol targeting 5.6-8.3 mmol/L. BG measurements are typically taken 

4-hourly when 5.6 mmol/L < BG < 10.0 mmol/L, and 1-hourly otherwise. There is no specified maximum 

insulin infusion rate. Starting criteria requires one BG > 10.0 mmol/L, which is much higher compared 

to STAR. BG measurements are made using glucometers or a blood gas analyser. In the case of 

nutrition stoppage, insulin is automatically stopped. Otherwise, insulin administration is stopped only 

when BG is below 3.3 mmol/L, and a 20ml of 30% glucose bolus is administered for severe 

hypoglycaemia (BG < 2.2 mmol/L). The full SP design is described in [264, 265]. 

Table 11.1 - Summary of the STAR, STAR-IO, and SP protocol designs compared in this analysis. 

 STAR STAR-IO SP 

Type Model-based Model-based Table-based 

Target band 4.4-8.0 mmol/L 4.4-8.0 mmol/L 5.6-8.3 mmol/L 

Measurement intervals 1-3 hourly 1-3 hourly 1 or 4 hourly 

Insulin strategy Max 9U/h Max 9U/h 
Not specified but 

~15U/h clinically 

Nutrition strategy 
Modulation between 

30-100% GF 
Clinical discretion Clinical discretion 
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11.2.3. Protocol Comparison and Analysis 

To date, 15 patients were included under STAR-IO and 14 patients under the full STAR protocol. Results 

from 20 retrospective patients under SP published in [128, 264, 265] are used for comparison. Basic 

demographics are presented in Table 11.2. 

Table 11.2- Demographic characteristics of patients included in STAR and STAR-IO, and retrospective SP 

patients. 

 STAR STAR-IO SP 

# patients 14 15 20 

# control hours 690 803 5006 

% Male 64 73 45 

Age (years) 72 [61, 75] 72 [66, 78] 66 [52 72] 

Data given as median [IQR] as appropriate. 

Safety, performance, nutrition, workload, and compliance are compared. Safety is assessed by the 

percentage BG in mild and severe hypoglycaemia (BG ≤ 4.0 mmol/L and BG ≤ 2.2 mmol/L, respectively), 

and in severe hyperglycaemia (BG > 10.0 mmol/L). Performance is evaluated by the percentage BG in 

target band (4.4-8.0 mmol/L or 5.6-8.3 mmol/L), and per-patient median BG achieved. Workload 

considers the number of measurements per day, both for the cohort and per-patient. Nutrition 

comparisons are made using the per-patient dextrose rates achieved in g/h and in percentage of the 

original GF. BG measurements are resampled hourly to allow fair comparison of the data, using linear 

interpolation [122, 266]. 

For the compliance analysis, similarly to Chapter 10, the percentage of insulin and nutrition interventions 

unchanged from the original protocol recommendations are assessed. Only changes in insulin or 

nutrition rates occurring within 15 minutes after treatment selection are considered as a deviation from 

the original recommendation, where later changes are assumed due to clinical needs. The size of these 

deviations from protocol prescribed administration rates are also reported. Deviations from nutrition 

administration are analysed only for STAR, as nutrition for STAR-IO (and SP) was left to clinical 

discretion. 
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11.3. Results 

11.3.1. STAR vs. STAR-IO 

Whole cohort and per-patient clinical results for STAR and STAR-IO are presented in Table 11.3 and 

Table 11.4. Resampled BG, insulin, and nutrition CDFs are shown in Figure 11.1. Similar BG levels (6.7 

[6.1, 7.5] mmol/L for STAR and 6.6 [5.9 7.6] for STAR-IO) are achieved by both protocols, but with 

overall tighter BG levels for STAR (Figure 11.1). Time in target band (4.4-8.0 mmol/L) is higher for STAR 

(83%) than STAR-IO (78%).  

Safety was high and similar across both protocols, although STAR was safer, with only 0.4% moderate 

hypoglycaemia (BG < 4.0 mmol/L) compared to STAR-IO (0.7%). No patients in any arms experienced 

severe hypoglycaemia. On the other extreme, severe hyperglycaemia (BG > 10.0 mmol/L) is 

significantly lower for STAR (4%), compared to STAR-IO (9%), but mild hyperglycaemia (BG in 8.0-10.0 

mmol/L) are similar (13% for STAR and 12% for STAR-IO). 

Slightly higher insulin rates were administered for STAR (3.5 [2.4, 4.9] U/h) compared to STAR-IO (3.1 

[1.5, 5.7] U/h), while dextrose rate was higher for STAR-IO (7.8 [5.1, 8.5] g/h) compared to STAR (6.9 

[5.4, 8.3] g/h). However, this difference becomes smaller when considering nutrition based on %GF, 

calculated based on g/hr of nutrition per body weight and energy demand (Chapter 7), where STAR 

achieved more consistent cohort feeding rates compared to STAR-IO (98 [67, 109] %GF for STAR vs. 

93 [53, 103] %GF for STAR-IO). 

Per-patient, median GC episode length is lower for STAR (2.0 [0.8 3.0] days) than STAR-IO (2.3 [1.2 

2.9] days), but workload is significantly higher in STAR-IO (15.9 [12.6 18.3] measures per day) than 

STAR (13.8 [10.9 14.5]) likely due to the greater incidence of BG > 10.0 mmol/L. Median BG levels 

achieved are similar (6.5 [6.3 6.9] mmol/L for STAR and 6.5 [6.2 6.8] for STAR-IO], but tighter in STAR 

(Figure 11.2). High, consistent, per-patient performance is similarly achieved in both cohorts for all BG 

intermediate ranges (Table 11.4). However, there is significantly higher incidence of hyperglycaemia in 

STAR-IO (7 [0 13] median %BG > 10.0 mmol/L) compared to STAR (0 [0 7] %BG >10.0 mmol/L), but 

also higher initial BG levels for STAR-IO (10.1 [9.3 12.8] mmol/L) compared to STAR (9.1 [8.9 11.1] 

mmol/L). Safety is similarly excellent in both protocols, with very near to zero hypoglycaemia for all 
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patients. Finally, these GC outcomes are achieved with slightly higher per-patient median insulin rates 

for STAR (3.5 [2.5 4.5] U/h) compared to STAR-IO (3.0 [2.0 4.5] U/h), and consistently higher, and closer 

to the 100% patient-specific energy expenditure, nutrition rates for STAR (95 [83 105] %GF) than STAR-

IO (93 [54 122] %GF). 

 
Figure 11.1 – BG, insulin, and nutrition cumulative distribution functions for STAR and STAR-IO. 
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Figure 11.2 - Per-patient median BG as well as the 25th-75th and 5th-95th percentile ranges for STAR-2D (top) and 

STAR-3D (bottom). 

Table 11.3 – Clinical cohort results for STAR, STAR-IO, and SP. 

 STAR STAR-IO SP 

# Patients 14 15 20 

Total hours 690 803 5006 

Total BG measurements 391 518 1391 

Workload (BG measures/day) 13.6 15.5 7 

Median BG (mmol/L) 6.7 [6.1, 7.5] 6.6 [5.9, 7.6] 7.7 [6.5, 8.9] 

% BG in 4.4-6.5 mmol/L 42 43 / 

% BG in 4.4-8.0 mmol/L 83 78 55 

% BG in 5.6-8.3 mmol/L 78 67 54 

% BG in 8.0-10.0 mmol/L 13 12 31 

% BG > 10.0 mmol/L 4 9 12 

% BG < 4.4 mmol/L 0.7 1.5 1.3 

% BG < 4.0 mmol/L 0.4 0.7 0.5 

% BG < 2.2 mmol/L 0 0 0 

# Patients < 2.2 mmol/L 0 0 0 

Insulin rate (U/h) 3.5 [2.4 4.9] 3.1 [1.5 5.7] 2.5 [2.0 3.0] 

Dextrose rate for hours fed (%GF) 98 [67 109] 93 [53 103] / 

Dextrose rate (g/h) 6.9 [5.4 8.3] 7.8 [5.1 8.5] 9.7 [8.8 11.7] 
Data given as median [IQR] as appropriate. 
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Table 11.4 – Per-patient clinical results for STAR, STAR-IO and SP. 

 STAR STAR-IO SP 

Number of patients 14 15 20 

Episode length (days) 2.0 [0.8 3.0] 2.3 [1.2 2.9] 8.2 [4.9 12.4] 

Workload (BG measures/day) 13.8 [10.9 14.5] 15.9 [12.6 18.3] / 

Initial BG (mmol/L) 9.1 [8.9 11.1] 10.1 [9.3 12.8] 8.5 [7.3 9.9] 

Median BG (mmol/L) 6.5 [6.3 6.9] 6.5 [6.2 6.8] 7.8 [7.3 8.2] 

% BG in 4.4-6.5 mmol/L 48 [33 58] 45 [38 55] / 

% BG in 4.4-8.0 mmol/L 88 [64 89] 75 [71 88] / 

% BG in 5.6-8.3 mmol/L 81 [63 86] 65 [57 72] / 

% BG in 8.0-10.0 mmol/L  11 [5 18] 11 [6 18] / 

% BG > 10.0 mmol/L 0 [0 7] 7 [0 13] / 

% BG < 4.4 mmol/L 0.0 [0.0 1.1] 0.0 [0.0 3.2] / 

% BG < 4.0 mmol/L 0.0 [0.0 0.0] 0.0 [0.0 1.6] / 

% BG < 2.2 mmol/L 0.0 [0.0 0.0] 0.0 [0.0 0.0] / 

# patients < 2.2 mmol/L 0 0 0 

Insulin rate (U/h) 3.5 [2.5 4.5] 3.0 [2.0 4.5] 2.7 [2.0 3.0] 

Dextrose rate for those fed (%GF) 95 [83 105] 93 [54 122] / 

Dextrose rate (g/h) 6.7 [6.3 8.2] 7.8 [6.2 8.4] 9.8 [8.6 11.5] 
Data given as median [IQR] as appropriate. 

11.3.2. STAR and STAR-IO vs. SP 

Available data from retrospective analysis of patients under the SP [264, 265] are also presented in 

Table 11.3 and Table 11.4 for comparison with STAR. Clearly, STAR and STAR-IO provide significantly 

higher performance than SP, much higher %BG in both the STAR target band (>78%BG in 4.4-8.0 

mmol/L for STAR and STAR-IO vs. 55% for SP) and the SP target band (>67% vs. 54% BG in 5.6-8.3 

mmol/L, respectively). Accordingly, the median BG achieved in SP is higher (7.7 [6.5, 8.9] mmol/L). 

Moderate hyperglycaemia (BG in 8.0-10.0 mmol/L) is significantly higher for SP (31%) compared to 

STAR and STAR-IO (<13%), as well as severe hyperglycaemia (12% BG >10.0 mmol/L for SP vs <9% 

for STAR and STAR-IO). Importantly, these lower performing results are achieved despite lower per-

patient initial BG (8.5 [7.3 9.9] mmol/L). 

More importantly, safety is similar (~0.5% <4.4 mmol/L) for all protocols, despite STAR and STAR-IO 

targeting lower BG ranges. This level of safety is achieved with lower insulin rates (2.5 [2.0 3.0] U/hr) 

and higher nutrition rates (9.7 [8.8 11.7] g/hr) for SP compared to STAR (3.5 [2.4 4.9] U/h and 6.9 [5.4 

8.3] g/hr) and STAR-IO (3.1 [1.5 5.7] U/h and 7.8 [5.1 8.5] g/h). Finally, workload is much lower in SP (7 

measurements per day) compare to STAR and STAR-IO (~14-15 measurements per day), as expected 

from protocol design (4-hourly for SP vs. 1-3 hourly for STAR). 
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11.3.3. Compliance Analysis 

Results from the compliance analysis are presented in Table 11.5. Compliance to protocol was high in 

both STAR and STAR-IO. Clinical staff overrode insulin administration rates in only 13% of all treatments 

(49/373 overrides) for STAR, and 8% (42/503 overrides) for STAR-IO. As shown in Figure 11.3, from 

those deviations, 60% were reduced by nurses in STAR compared to 50% in STAR-IO. In STAR, 

nutrition rate recommendations were only changed 13% (48/373 overrides) of the time. Under the SP, 

there was a higher 21% deviation from original protocol. As reflected in the lower workload for STAR 

(Table 11.3), STAR more often suggested longer treatment intervals compared to STAR-IO (1 [1 3] h 

(mean 2.0h) vs. 1 [1 2] h (mean 1.6h), respectively). In both arms, the maximum treatment was selected 

by clinical staff ~90% of the time. 

In total, there are 14 (48%) GC episodes with non-compliance, of which 6 (43%) are patients included 

on STAR and 8 (57%) included on STAR-IO. GC episodes with non-compliance mainly occurred during 

the inclusion of the first third of patients, where 70% (7/10) had non-compliance, compared to 37% (7/19) 

for the last two thirds of patients. Thus, GC non-compliance is dropping, likely reflective of clinical staff 

protocol uptake and education. 

Table 11.5 – Compliance analysis results for STAR and STAR-IO, and the SP 

 STAR STAR-IO SP 

Max treatment interval available 

(mean) 
1 [1 3] (2.0) 1 [1 2] (1.6) (3.65) 

% max interval chosen  90 91 / 

% insulin intervention unchanged 87 92 79 

% nutrition intervention unchanged 87 / / 
Data given as median [IQR] as appropriate. 

11.4. Discussion 

Clinical results from this ongoing trial are encouraging, and suggest key observations. Overall, STAR 

(and STAR-IO) achieved safe and effective control for all patients, despite targeting a lower target band 

than SP or those usually recommended in ICU guidelines. This result suggests intensive GC to lower 

target bands is possible without increasing hypoglycaemic risk. Furthermore, it reinforces the idea GC 

has been wrongly blamed for hypoglycaemia [160], while protocol design and GC approach are the 

primary concerns to safely achieve high quality GC outcomes. This goal is essential before assessing 

potential clinical outcome, and failing to do so would suggest poor protocol design [135].  
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The difference in %BG in the 4.4-8.0 mmol/L range using STAR and STAR-IO (~80%) compared to SP 

(55%) is significant, and these ranges have been associated with improved outcomes in numerous 

studies [38, 76, 77, 79]. While this result could be explained from the modestly different target band, SP 

only managed to have 54% BG within its target (5.6-8.3 mmol/L), where STAR (78%) and STAR-IO 

(67%) performed better in this range also. 

Figure 11.2 clearly shows per-patient tighter BG levels achieved in STAR compared to STAR-IO, where 

median BG CDFs are similar, but BG CDFs of the 25th-75th and 5th-95th are wider. The higher severe 

hyperglycaemia in STAR-IO compared to STAR is reflected in the 95th percentile per-patient BG CDF 

shift to the right, showing >50% of STAR-IO patients had 5% BG >10.0mmol/L.  However, this difference 

can be explained, at least in part, by the higher initial BG for STAR-IO, or equally, the significantly higher 

nutrition rates provided by the clinical staff in STAR-IO (25% of patients receiving >120%GF in STAR-

IO, Table 11.4). 

 
Figure 11.3 – Cumulative distribution function of insulin (left) and nutrition (right) deviation from protocol 

recommendations. Differences are computed so that a negative Δ corresponds to a reduction from the original 

recommendation, while a positive Δ corresponds to an increase from the original recommendation. 
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For the SP, percentage BG in mild hyperglycaemia is high compared to STAR and STAR-IO (31% vs. 

~12%). The higher target could somewhat explain this result, or the higher BG level starting criteria (10.0 

mmol/L compared to 8.0 mmol/L with STAR), but the initial BG levels in SP were unexpectedly much 

lower than STAR and STAR-IO, amplifying the gap in performance. However, it is likely a consequence, 

in part, of clinical judgement considering BG in 8.0-10.0 mmol/L under the SP protocol as acceptable. 

The lower compliance to protocol for SP (79%) could also explain some of this result (Table 11.5). 

A previous analysis showed 68% of the 21% total insulin interventions changed from original SP 

recommendations were made when BG was above target band [265]. For those 68%, nurses 

(unexpectedly) decreased insulin in 62% of the deviations. While in band, 18% of the 21% total 

intervention changes were made, from which 78% were a decrease in insulin rate. These changes 

clearly suggest potential shift to higher BG levels due to clinical judgement. 

Protocol compliance for STAR (87%) and STAR-IO (92%) was high in this clinical trial. Off these 13% 

(49) insulin deviations in STAR, 80% (39) were made when in target band, 20% (10) when above target, 

and none when below target. In STAR-IO, 71% (30), 24% (10), and 5% (2), respectively, from the total 

8% (42) of insulin intervention changed. There is no clear pattern to the way insulin rates were adjusted. 

However, observations of large insulin deviations (larger than ± 2.5U/h) suggest bedside clinical staff 

were not able to balance insulin against nutrition rates, which is automatically considered by STAR. 

Most of the large modulations of insulin to higher rates occurred when BG was increasing.  In this 

context, STAR typically recommended a reduction in nutrition rates, and, thus, lowered insulin to 

balance the risks of hypoglycaemia. In contrast, clinical staff often kept insulin constant and thus very 

high relative to nutrition. In other cases, a decrease in BG was often accompanied by an increase in 

recommended nutrition, and maintenance of a constant or increased insulin dose to match. Overall, it 

seems that clinical staff struggle to manage, assimilate, and mitigate current BG level, risk of 

hypoglycaemia, any glycaemic variability, and the relative changes in insulin and nutrition into 

appropriate bedside action. Most often, it seems clinical staff had difficulty to take into account CHO 

intake, and balance that against insulin administration. These deviations highlight the benefit of model-

based systems, which can account for multiple variables when calculating treatments. In the worst case, 

this saturation of variables in clinical decision making can result in safety issues, such as in the case of 

overriding and increasing the insulin dose despite lowering nutrition. 
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STAR’s lower incidence of mild and severe hyperglycaemia compared to STAR-IO is a consequence of 

the combination of nutrition modulation, and higher initial BG. This result is also reflected in the overall 

nutrition rates achieved, and insulin requirements (Figure 11.1). While overall nutrition is lower in STAR, 

the gain in performance is significant. In fact, nutrition below GF for STAR is minimal in Table 11.3 

because nutrition is mainly temporarily decreased for very resistant patients, where BG remains high 

while receiving the maximum insulin rate. These patients’ BG levels can only be lowered if glucose 

intake is lowered [263]. Interestingly, there was 25-30% of control hours where nutrition rates were 

higher than STAR 100%GF recommendations. This augmented rate is due to the background parenteral 

feed rates often administered to patients in this ICU. A recent study analysed the nutrition delivery of 

STAR compared to other ICUs in the world, and showed STAR performs equal to the best ICUs in the 

world [134]. Therefore, despite modulating nutrition, STAR does not underfeed patients, and still 

manages to improve GC outcomes.  

A case study is shown in Figure 11.4, where glucose-insulin interventions and outcomes are shown for 

a patient on STAR and another on STAR-IO. In Patient A, on STAR, nutrition is first increased to 100% 

GF then reduced to ~30% after 6 hours GC. Underlying SI allows STAR to reduce nutrition rates, where 

excess nutrition will not be tolerated, as would be indicated by persistent hyperglycaemia. Hence, this 

temporary lower dextrose rate is safer for the patient. By hour 31, the nutrition rate was progressively 

increased back to 100% GF as the patient metabolism was better able to handle higher dextrose intake. 

In contrast, nutrition rate is kept constant for Patient B, as per clinical guidelines, resulting in consistent 

high BG levels, above, or close to the upper target band limit, with higher associated insulin rates. This 

higher fixed nutrition and associated high insulin rate may often lead to hypoglycaemia and higher 

glycaemic variability if patient SI changes due to underlying condition, or other clinical interactions. 

These results are achieved with much higher workload with STAR (13.6 measures per day) and STAR-

IO (15.5 measures per day) compared to SP (7 measures per day). This difference reflects the big trade-

off of measurement frequency to achieve high control quality, where too low a frequency can increase 

hypoglycaemic risk and lower time in band, while too high a frequency leads to excessive clinical burden. 

The resulting median [IQR] BG is much higher than STAR, with 25% of BG measurements higher than 

160 mg/dL.  
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Figure 11.4 – BG levels, insulin rate, and nutrition rate for Patient A (top) on STAR, and Patient B (bottom) on 

STAR-IO. Dashed line shows the 4.4-8.0 mmol/L target band. 

While being the standard of care in this ICU, more than 20% of SP interventions are changed by clinical 

staff, leading to a large and important influence from clinical judgment on GC outcomes, which in turn 

questions the results and protocol design. Additionally, in a previous study, virtual trials of SP on virtual 

patients created using this cohort data suggested, despite similar GC outcomes, a likely low compliance 

to protocol [259]. Simulations show SP needed an average of 11 measurements per day when exactly 

following the protocol, much higher than the 7 observed here, and, more importantly, much closer to the 

13.6 measurements per day required by STAR. This outcome thus suggests, in addition of higher 

deviation from protocol recommendations, the measurement frequency was also an issue impacting 

compliance to protocol, and, thus, GC outcome. 
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It is also important to further note the important difference in workload, at a per-patient level, between 

STAR and STAR-IO. STAR workload (13.8 [10.9 14.5] measures per day), was much lower compared 

to STAR-IO (15.9 [12.6 18.3] measures per day), with an average extra 2-3 measures per day required. 

Per-patient workload CDFs are presented in Figure 11.5 for both protocols, clearly showing ~50% of 

patients required ≥~16 measures per day, compared to ~15% for STAR. Although initial BG was higher 

in STAR-IO, this important difference is most probably a consequence of excessive nutrition 

administered to highly resistant patients, resulting in excessive BG levels, and thus more interventions 

required to attempt reaching the target. 

Compared to 2 published pilot trials of STAR (SL1 and SL2) in the same Hospital [77, 267], each 

including 9 patients, STAR and STAR-IO achieved significantly safer, more effective control. In SL1 and 

SL2, nutrition was left at clinician discretion. Additionally, workload was extremely high in those trials 

(>17 BG measurements per day), a clear clinical workload failure. Finally, nurse compliance was ~75% 

in SL2, much lower than for STAR and STAR-IO (Table 11.5). Hence, the approach, and thus 

compliance and control quality, have all improved in this study.  

 
Figure 11.5 – Per-patient workload CDF for STAR-IO (red) and STAR (blue). 
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The main difference between STAR and STAR-IO is the ability to also modulate nutrition based on the 

identified patient-specific ability to take up BG (SI), and resulting risk-based assessment associated with 

a given treatment. Hence, STAR is not only able to minimise hypoglycaemia, but it can also, in addition, 

minimise hyperglycaemia by temporarily turning down caloric intake. The results of this trial comparting 

both protocols clearly show STAR’s ability to significantly improve GC performance, while ensuring 

similar (or better) safety and, also, providing improved personalised nutrition compared to STAR-IO. In 

addition, in the context of this proven GC framework, modulating nutrition also significantly reduced 

workload, as STAR can better manage highly resistant patients by significantly reducing caloric intake 

until these patients can better assimilate energy expenditure. 

This study compares clinical data to retrospective patients and has some limitations. The number of 

patients in each arm are not identical, and the results are not based on the exact same underlying 

cohorts e.g. Age. GC episode length is also extremely higher in SP (8.2 [4.9 12.4] days) compared to 

STAR (2.0 [0.8 3.0] days) and STAR-IO (2.3 [1.2 2.9] days). STAR has lower shifted distribution by 15-

50% of time on GC compared to STAR-IO, where greater patient number may better delineate this trend. 

However, these patients are from the same general medical ICU, and the cohorts are believed to be 

representative of the overall population. Importantly, more patients should be included to generalise and 

further confirm these results, although there already is a clear, significant, improvement in GC outcomes 

compared to the SP. 

This model-based GC protocol identifies and directly uses inter- and intra- patient variability to improve 

safety and efficacy of GC, avoiding reliance on clinical judgment [91]. Altogether, the improved safety 

and performance, associated with lower mortality, lower morbidity, and lower ICU LOS [11, 38, 45, 54, 

55, 121, 161], might be worth the slightly increased workload. More importantly, STAR can adapt to 

local ICU standards and practice, and its insulin-only version (STAR-IO) still managed to provide safe 

and effective control for nearly all patients. The clinical trial results presented here thus further validate 

STAR’s ability to provide high quality of control, and generalise internationally. 
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11.5. Summary 

STAR was able to achieve safe and effective GC, while targeting lower intermediate glycaemic ranges 

compared to the local standard protocol, associated with improved outcomes. The full STAR version is 

also able to better tailor nutrition needs for the patient, by temporarily reducing caloric intake for 

persistent hyperglycaemia. This approach significantly improves GC safety, and efficacy compared to 

the insulin-only version (STAR-IO), for lower workload. These intermediate results of the STAR-Liège 

clinical trial are encouraging, and suggest the continuation of this trial. 

The results presented in this chapter once again suggest reconsidering GC guidelines. GC needs to be 

safe and effective for all patients, regardless of patient condition. Computerised model-based methods 

using key physiological parameters to identify patient-specific needs are proving positive results in GC 

targeting lower glycaemic ranges. 

While proving the high benefits associated with STAR, the associated increased workload compared to 

the SP can potentially be seen as an excessive clinical burden in ICUs with lower nursing staff, 

preventing uptake and use. This outcome suggests assessing the impact of longer treatment intervals 

on GC outcome, to potentially reduce workload is necessary. Understanding and quantifying explicitly 

this trade-off in the context of the STAR GC framework would be beneficial to its uptake and use, and 

allow an explicit, quantified clinical choice in how STAR is deployed and used.
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Chapter 12: Longer Treatment Intervals, the Risk and 

Reward Trade-off  

 

 

 

 

Compliance to protocol is essential for GC. While more frequent measurements enable safer GC, it 

often leads to excessive clinical burden. In turn, clinical staff may not fully follow protocol 

recommendations if burden is too high [179], impacting GC outcome. Non-compliance can potentially 

significantly bias results and conclusions, as shown in Chapter 5 [160].  

STAR offers 1-3 hourly treatment intervals based on patient-specific risk assessment of hypoglycaemia, 

averaging ~12 measurements per day in Christchurch, New Zealand, and ~13 measurements per day 

in Liège, Belgium (Chapter 11). While some protocols use even lower measurement intervals, most 

protocols typically use 4-hourly treatment intervals [8, 85, 268], significantly reducing workload. 

However, these longer intervals are often associated with significant reductions in both the safety and 

efficacy of GC. 

This chapter aims to assess the impact of increasing treatment intervals in the context of STAR on GC 

outcomes. Stochastic models predicting SI variability up to 6 hours are developed. Virtual trials are used 

to assess safety and performance using these longer measurement intervals within the STAR 

framework, thus quantifying the risk of reduced safety and performance versus the reward of decreased 

workload. This analysis is the first of its kind in GC. 

This chapter presents results published in [269]. 
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12.1. Introduction 

To date, STAR uses 1-3 hourly forward prediction intervals to assess potential risk of hypo- and hyper-

glycaemia for given 1-3 hourly treatments, averaging 11-12 BG measurements per day [87, 95, 96, 123]. 

While some ICUs can manage this workload, this value can be seen as excessive clinical burden for 

others, often due to lower nurse per patient ratios or greater clinical complexity of the patients. In the 

STAR-Liège clinical results (Chapter 11), the excessive workload compared to the standard protocol 

was clearly pointed out as a barrier to adopt this protocol. Equally, many clinical studies used longer 

intervals, but could not deliver safe, consistently effective GC [46, 47, 50, 89, 255]. 

This chapter extends from 1-3 hourly to 1-6 hourly measurement and intervention intervals in the STAR 

GC framework, and analyses the impact on GC safety and efficacy using clinically validated virtual 

patient modelling approach [91, 128]. If accomplished with minimally reduced safety and performance, 

this change has the potential to significantly reduce nurse workload, which is a major issue in GC [174, 

270, 271]. It would also extend STAR’s capability while increasing its acceptability for clinical use in 

more ICUs. More specifically, this study aims to assess the risk and reward trade-off associated with 

lower BG measurement frequency. 

12.2. Methods 

12.2.1. STAR 1-6 Hourly Extension  

STAR currently uses 1-3 hourly measurements to provide GC [95, 96, 123]. This interval was originally 

chosen based on Christchurch (New Zealand) ICU standards and conservative decisions to ensure high 

safety and efficacy [81, 129]. The average 11-12 measurements per day required can be an excessive 

clinical burden in other ICUs [174, 270, 271], which could lead to protocol non-compliance [152], 

potentially affecting GC outcomes. Therefore, STAR is extended in clinically validated virtual trials to 1 

to 4-, 5-, and 6- hourly treatment intervals, using 1 to 6-hourly stochastic models with the goal of 

assessing the safety and performance trade-offs at longer intervention intervals within this proven GC 

approach.  

It is hypothesised there will be some loss of tighter control to the narrower, potentially safer 4.4-7.0 

mmol/L bands, but lesser loss of performance in the wider, but still safe 4.4-8.0 mmol/L band [76, 77, 
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79]. Major questions arise over safety from mild and severe hypoglycaemia [46, 163] over longer 

intervals, and any impact from any resulting reductions in nutrition delivery [29].  

In this study, 1 to 3-, 4-, 5-, and 6- hourly versions of STAR are simulated to better capture the effect of 

increased measurement intervals on STAR GC safety and performance. Stochastic models to predict 

future SI 1-6 hourly are built from retrospective patient data, using kernel-density methods [124, 127, 

256], where SI is identified hourly from clinical data [130, 131]. As this is a first study analysing longer 

treatment intervals, the well proven 2D stochastic model approach is used. 

Five-fold cross validation is used to build new 1-6 hourly stochastic models using 80% of patient data 

(by patient). The resulting model is then tested using the new extended version of STAR on the other 

20% of patient data, where all five test sets are reported in aggregated results. This approach ensures 

independent development and test sets, and a more robust analysis ensuring stochastic models are not 

biased by outlying patients or small sub-cohorts. 

12.2.2. Virtual Trials 

To compare the impact of longer treatment intervals on GC outcomes, validated virtual trials are used 

to simulate different protocol designs on virtual patients [94]. This approach allows comparison of the 

safety and performance of the original STAR 1-3 hourly [95, 96, 123], with STAR 1 to 4-, 5-, or 6- hourly 

on the same underlying virtual patients [91], and is further explained in Chapter 3. In these in-silico 

simulations, virtual patients, including starting BG levels and nutrition rates, were based on initial starting 

clinical data. 

STAR, in its current version, always ensures safety, not allowing the 5th percentile of future BG below 

the lower limit of the target band (4.4 mmol/L), regardless of the resulting 95th percentile, all of which is 

a function of the risk-based dosing approach. Because a 3-h measurement interval is relatively short in 

a clinical sense, the 95th percentile is rarely above 8.5 mmol/L, which is considered acceptable, and 

nutrition in this case is not decreased. However, as measurement interval increases, wider 5th-95th 

percentile prediction ranges of BG are more likely, induced by higher potential variability [126, 127, 248, 

249], resulting in predicted 95th percentile BG potentially much higher than 8.5 mmol/L.  
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To mitigate this impact of rising hyperglycaemia over longer intervention intervals, a second version of 

the protocol is implemented. In this case, the 95th percentile of predicted BG must be lower than 8.5 

mmol/L for the treatment intervention to be considered, which is accomplished (where necessary) by 

reducing nutrition. This approach will decrease the increased risk of hyperglycaemia and show improved 

efficacy, but could also increase workload and/or reduce nutrition delivery, both of which are clinically 

desirable “rewards”. This second protocol approach is denoted STAR-ULC (STAR Upper Limit 

Controlled). 

The combination of analysing two STAR protocol approaches (STAR and STAR-ULC, Table 12.1) over 

extended 4-6 hourly intervals limits the analysis and provides the full range of possible performance and 

safety trade-offs.  

Table 12.1 - Summary of STAR and STAR-ULC protocol designs compared in this analysis. 

 STAR STAR-ULC 

Type Model-based Model-based 

Target band 4.4-8.0 mmol/L 4.4-8.0 mmol/L 

Measurement intervals 1-6 hourly 1-6 hourly 

Insulin strategy Max 9U/h Max 9U/h 

Nutrition strategy 
Modulation between 30-

100% GF 

Modulation between 30-

100% GF 

Treatment selection strategy 

(predicted BG) 

5th percentile ≥4.4 mmol/L 

and 

95th minimised 

5th percentile ≥4.4 mmol/L 

and 

95th percentile ≤8.5 mmol/L 

12.2.3. Patient Cohorts 

The cohort of patient used is similar to the one used previously in Chapter 9, totalling 681 patient GC 

episodes ≥ 10 hours and with starting BG > 7.0 mmol/L, from the SPRINT, STAR Christchurch, and 

STAR Gyula cohorts (Chapter 4). This represents 59439 hours of control. 

12.2.4. Comparison Analysis 

Safety, efficacy, BG achieved, insulin and nutrition rates, and workload are compared. BG is hourly 

resampled to allow fair comparison between protocols. Safety is compared using %BG outside target 

band (%BG < 4.4 mmol/L and %BG > 8.0 mmol/L) and %BG below severe hypoglycaemic threshold 

(%BG < 2.2mmol/L). Performance is analysed using %BG in the 4.4-8.0 mmol/L target band and median 
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BG levels achieved. Per-patient insulin (U/h) and nutrition rates (%GF)) are also compared, and 

workload is assessed using average number of measurements per day. 

Additionally, the proportion of patients with ≥ 50% BG in 4.4-7.0 mmol/L and 4.4-8.0 mmol/L are 

compared for each protocol. High percentage time in these bands, and low incidence of hypoglycaemia, 

are associated with improved outcomes in ICU patients [10, 11, 32, 38, 50, 76, 77, 79]. Hence, 

comparing the number of patients reducing / improving time in these bands provides a further outcome-

based means to quantify whether patient GC outcomes improved, or not. The number of patients 

experiencing severe hypoglycaemia is also compared. 

The main outcome of the study is to show and evaluate the risk and reward trade-off where: 

▪ Risks are safety (hypoglycaemia), efficacy (performance of GC control), and nutrition provided, 

▪ Reward is the lower workload, reflected by lower measurements per day with the longer 

treatment intervals used.  

This study thus analyses STAR’s design robustness as measurement timeframes increases, where, as 

per protocol design, a reduction in workload (reward) is expected, but at the cost of reduced safety and 

performance (risks). 

12.3. Results 

12.3.1. Stochastic Model Comparison 

Stochastic models represent the probabilities of changes in SI, as calculated from clinical data. Example 

2D stochastic models for predictions 1-6 hours ahead are presented in Figure 12.1, where the 5th and 

95th percentiles for future SI at a given current SI are shown. The probability distribution within these 

bounds would be described by a 3-D ‘mountain range’ sticking out of the page, approximately centred 

on the 1-1 line.  

Intra-patient variability becomes more similar as prediction interval time increases, and the prediction 

lines converge to a similar range. This result clearly shows, while a bigger difference can be observed 

from 1-3h in SI evolution, the difference in intra-patient variability becomes similar when longer intervals 
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are considered. This outcome can represent a general, conservative, range of intra-patient variability, 

but alternatively may represent the average of more and less variable patients, which could result in 

reduced safety in some cases.  

More specifically, the longer interval model ranges may “hide” a larger range of changes (rising and 

falling) before returning to range, increasing the risk of larger unexpected glucose excursions. As a 

narrower range of possible SI outcomes translates directly to a narrower range of possible BG outcomes 

for a given treatment. More aggressive dosing can be used for shorter treatment intervals with narrower 

ranges, as predictions of future SI variability is tighter compared to longer intervals with wider prediction 

ranges. Thus, the larger the measurement interval, the more conservative the treatment, given the likely 

higher potential sudden extreme changes in SI. 

 
Figure 12.1 – Stochastic model representation showing the 5th-95th percentile prediction range of future 1-6h SI 

levels given current identified patient-specific SIn. Data density is higher for lower SI values, explaining the 

corresponding tighter 5th-95th percentile prediction ranges around the 1-1 line. 
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12.3.2. STAR Virtual Trial Results 

Five-fold cross validation virtual trial results using virtual patients, or ‘digital twins’ derived from clinical 

data, are presented in Table 12.2, for each version of STAR (1 to 3-, 4-, 5-, and 6- hourly). These digital 

twins allow analysis of BG response cohort to different treatment protocols to be compared in both 

individual patients and the overall cohort. Each arm has the same number of patients, but can have a 

slightly different number of GC hours, depending on the last measurement interval used in each virtual 

patient trial (i.e.: if last treatment is 3-hourly vs. 6-hourly, there will be 3 extra simulated hours of GC for 

this patient). Excerpts from two virtual patient trials comparing STAR-3H and STAR-6H are also 

presented in Figure 12.2 and Figure 12.3. 

As expected, workload decreased as measurement interval increased (from 12 to 8 measurements per 

day for STAR-3H to STAR-6H). Time in the 4.4-8.0 mmol/L target band was high and similar in all 

scenarios (80-83%), but with a clear shift upward in median BG levels (6.5 [5.9 7.3] mmol/L for STAR-

3H to 6.9 [6.3 7.7] mmol/L for STAR-6H), as reflected in the decreasing % BG in 4.4-7.0 mmol/L. 

Additionally, the number of patients with ≥ 50% BG in the tighter, safer 4.4-7.0 mmol/L (68% to 55%) 

and the wider, safe 4.4-8.0 mmol/L (86% vs 84%) slightly decreased, where additional analysis showed 

80% of these patients dropping below 50% in those ranges were typically going to higher BG ranges, 

and 20% where going to lower BG ranges. 

Table 12.2 – Virtual trial results of STAR Standard for 1 to 3-, 4-, 5-, and 6- hourly measurements intervals. 

 STAR-3H STAR-4H STAR-5H STAR-6H 

# GC Episodes 681 681 681 681 

# GC hours 59240 59528 59782 60003 

# BG meas. 28961 24792 22243 20272 

Workload (meas. per day) 12 10 9 8 

Median BG (mmol/L) 6.5 [5.9 7.3] 6.7 [6.1 7.5] 6.8 [6.2 7.6] 6.9 [6.3 7.7] 

Median Insulin (U/h) 3.2 [2.0 5.0] 3.0 [2.0 4.0] 2.5 [2.0 3.5] 2.5 [1.5 3.0] 

Median Nutrition (%GF) 100 [85 100] 95 [80 100] 90 [80 100] 90 [75 100] 

%BG in 4.4-8.0 mmol/L 83 82 81 80 

%BG in 4.4-7.0 mmol/L 65 59 55 52 

%BG >8.0 mmol/L 15 16 17 18 

%BG < 4.4 mmol/L 1.6 1.5 1.5 1.6 

%BG < 2.2 mmol/L 0.03 0.02 0.04 0.06 

# patients ≥50%BG in 4.4-7.0 

mmol/L (%) 
466 (68%) 432 (63%) 401 (59%) 372 (55%) 

# patients ≥50%BG in 4.4-8.0 

mmol/L (%) 
589 (86%) 583 (86%) 573 (84%) 571 (84%) 

# patients min BG < 2.2 

mmol/L (%) 
14 (2.1%) 12 (1.8%) 18 (2.6%) 19 (2.8%) 

Results are based on hourly resampled BG. Median [IQR] is given for per-patient statistics, where appropriate. 
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Incidence of hyperglycaemia is slightly higher as the interval increased. Most importantly, the incidence 

of severe hypoglycaemia increased as measurement interval increased, and the number of patients 

experiencing severe hypoglycaemia also increased (from 14 to 19 patients between STAR-3H and 

STAR-6H, 2.1% to 2.8% by patient). Interestingly, hypoglycaemia decreased in STAR-4H, with only 12 

(1.8%) patients experiencing severe episode. 

Overall, these results were achieved with lower insulin and nutrition rates as intervals increased. 

However, the nutrition rates remained high in these scenarios, where only 25% of patients received less 

than 75% GF in the worst case (STAR-6H). Thus, there was also some increased hyperglycaemia, as 

noted. 

 
Figure 12.2 – Excerpt of virtual trial results for Patient A. Blood glucose (top), insulin rates (middle), and enteral 

(solid lines) and dextrose bolus (bars) nutrition rates (bottom) are compared between STAR-3H (red) and STAR-

6H (blue). 
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Figure 12.3 – Excerpt of virtual trial results for Patient B. Blood glucose (top), insulin rates (middle), and enteral 

(solid lines) and dextrose bolus (bars) nutrition rates (bottom) are compared between STAR-3H (red) and STAR-

6H (blue). 

 

Table 12.3 – Virtual trial results of STAR-ULC 1 to 3-, 4-, 5-, and 6- hourly, forcing the predicted 95th BG 

percentile ≤ 8.5 mmol/L. 

 STAR-ULC-3H STAR-ULC-4H STAR-ULC-5H STAR-ULC-6H 

# GC Episodes 681 681 681 681 

# GC hours 59203 59392 59614 59845 

# BG meas. 31204 27196 24769 23387 

Workload (meas. per day) 13 11 10 9 

Median BG (mmol/L) 6.4 [5.9 7.2] 6.5 [6.0 7.3] 6.5 [6.0 7.3] 6.5 [6.0 7.3] 

Median Insulin (U/h) 3.0 [2.0 4.5] 2.5 [1.7 4.0] 2.0 [1.5 3.5] 2.0 [1.5 3.5] 

Median Nutrition (%GF) 95 [80 100] 75 [65 85] 70 [60 80] 60 [50 75] 

%BG in 4.4-8.0 mmol/L 84 84 85 85 

%BG in 4.4-7.0 mmol/L 68 67 67 67 

%BG >8.0 mmol/L 14 14 14 14 

%BG < 4.4 mmol/L 1.6 1.5 1.5 1.5 

%BG < 2.2 mmol/L 0.02 0.02 0.02 0.04 

# patients ≥50%BG in 4.4-

7.0 mmol/L (%) 
497 (73%) 486 (71%) 481 (71%) 481 (71%) 

# patients ≥50%BG in 4.4-

8.0 mmol/L (%) 
597 (88%) 596 (88%) 594 (87%) 592 (87%) 

# patients min BG < 2.2 

mmol/L (%) 
11 (1.6%) 9 (1.3%) 9 (1.3%) 15 (2.2%) 

Results are based on hourly resampled BG. Median [IQR] is given for per-patient statistics, where appropriate. 
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12.3.3. STAR Upper Limit Controlled (STAR-ULC) Virtual Trial Results 

An ‘Upper Limit Controlled’ approach is also analysed, in which nutrition is modulated so the upper 95th 

percentile of possible BG outcomes does not exceed 8.5 mmol/L. This approach reduces 

hyperglycaemia, as well as the increased risk associated with large insulin and nutrition doses, which 

amplifies uncertainty in SI, especially as the measurement interval increases. Five-fold cross validation 

results of the 1 to 3-, 4-, 5-, and 6- hourly versions of the STAR Upper Limit Controlled (STAR-ULC) 

approach, forcing the 95th percentile of BG ≤ 8.5 mmol/L are presented in Table 12.3. 

High performance (~84% in target band and ~67% in 4.4-7.0 mmol/L) and high safety (14% BG > 8.0 

mmol/L and 1.5% BG < 4.4 mmol/L) were achieved, and this result was surprisingly very similar 

regardless of measurement intervals. The number of patients experiencing severe hypoglycaemia 

decreased compared to STAR Standard (Table 12.2). STAR-ULC-4H (9 patients) and STAR-ULC-5H 

(9 patients) had both reduced number of patients experiencing hypoglycaemia compared to STAR-4H 

(12 patients) and STAR-5H (18 patients). These values were also lower compared to STAR-ULC-3H 

(11 patients) and STAR-ULC-6H (15 patients). This result reflects a reduction in risk due to reduced 

insulin dose by limiting the upper glycaemic as well within the STAR risk-based dosing system. 

The number of patients with ≥ 50% BG in 4.4-7.0 mmol/L (~71%) and 4.4-8.0 mmol/L (~87%) was similar 

across all measurement intervals, reflecting effective control was achieved consistently for most 

patients. These numbers are higher compared to STAR Standard (Table 12.2), especially when 

comparing the tighter, safer 4.4-7.0 mmol/L band (55-68% for STAR Standard vs. 71-73% for STAR-

ULC), which would reflect a significant improvement in outcomes [77, 78]. 

Improved safety and efficacy were achieved here with significantly lower insulin and nutrition rates 

administered (Table 12.3) compared to STAR Standard (Table 12.2). A comparison of STAR-6H and 

STAR-ULC-6H is presented in Figure 12.4, where this difference is clearly illustrated. Finally, workload 

increased by 1 additional measurement per day for each version compared to STAR Standard (Table 

12.2), but are still lower than STAR 3-h standard of 12 per day [87] at the 4-6 hourly intervals with better 

performance and safety. 
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Figure 12.4 – Excerpt of virtual trial results for Patient C. Blood glucose (top), insulin rates (middle), and enteral 

(solid lines) and dextrose bolus (bars) nutrition rates (bottom) are compared between STAR-6H (blue) and STAR-

ULC-6H (red). 

12.4. Discussion 

Foremost, it is important to understand metabolic variability, reflected in inter- and intra- patient 

variability, is what makes GC hard to achieve safely [86, 135]. Therefore, it is critical for GC protocol 

design to account for both, using dynamic, personalised solutions [98]. While the use of physiological 

models allows direct identification of inter-patient variability [99], STAR is the only current protocol also 

using stochastic modelling to evaluate intra-patient variability [95], which it then employs in a unique 

risk-based dosing strategy. 

In Chapter 6 comparing survivors and non-survivors, inter-patient variability has been shown different 

while intra-patient variability was clinically equivalent [135]. Therefore, this result emphasizes the 

importance of identifying key physiological parameters, such as SI here, and assessing potential 

variability to provide safe, and effective control for all, which is critical to improving outcomes [38, 160]. 
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In addition, compliance to protocol is essential to ensure any clinical judgement bias in results outcomes 

and conclusions [160], where longer intervals may improve compliance [152]. 

In many ICUs, protocols are often 4-hourly based once BG levels are stabilised in the target band. In 

practice, this interval can quickly become 5- or 6- hourly, given clinical judgement and excessive clinical 

workload [8, 85, 86, 160, 268]. Usually, the higher the target band, the greater the permissive 

hyperglycaemia, and, indirectly, the lower the risk of hypoglycaemia. However, it is also important to 

keep in mind it is impossible to clearly know whether the patient suffered from hypoglycaemia over 

longer measurement intervals without CGM or similar [272, 273]. 

This study assesses the potential to reduce workload with the safe, and effective STAR GC framework, 

and the impact on safety and performance. Specifically, extreme changes in SI levels between 

consecutive measurements have a greater chance to occur as measurement intervals increase. 

Typically, for a given insulin dose and a sudden rise in SI, BG levels will suddenly drop. If this drop 

occurs one hour after treatment intervention and the next measurement is due in 5 hours, it can have 

significant impact on patient BG, seen in the increased number of patients experiencing severe 

hypoglycaemia (Table 12.2). However, when limiting GC to lower measurement intervals, this sudden 

reduction in BG levels will potentially be seen sooner, and treatment adapted, potentially averting severe 

hypoglycaemia. This scenario is shown in Figure 12.3, where Patient B becomes more insulin sensitive 

at 12h, and where STAR-3H captures this behaviour and can adapt treatment faster (at 15h) compared 

to STAR-6H where severe hypoglycaemia occurs (at 18h). 

As seen in Figure 12.2 - Figure 12.4, the different GC scenarios, based on the different measurements 

intervals allowed, led to significant different measurement timing. Therefore, while one version could by 

chance measure BG right before hypoglycaemia, another could fail due to unfortunate timing. This issue 

adds difficulty when interpreting results, but reflects real practice, where measurement timing is also a 

factor influencing control. In clinical practice, despite nurse selecting a specific treatment interval, the 

new measurement may be taken a few minutes or even hours later, or earlier. This measurement timing 

may thus (unexpectedly) influence results, as seen in Table 12.3, where incidence of severe 

hypoglycaemia is actually lower for STAR-ULC-4H and STAR-ULC-5H compared to STAR-ULC-3H. 

However, while this issue is typical in medical environment and time dependant decision making, a large 
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cohort of virtual patients enables a balanced analysis of the potential advantage/disadvantage. More 

specifically, the differences reported in Table 12.3 are small, and may thus be considered as ‘noise’. 

Another potential consequence of increased measurement interval is the lower confidence in future 

evolution of SI. The 5th-95th percentile of predicted SI is thus wider, and STAR will consistently be more 

conservative in insulin dosing [127], typically providing lower insulin rates to ensure safety (Table 12.2). 

While it is a safe approach, performance is affected due to the higher predicted risk, increasing BG 

levels (Table 12.2). The other effect is a general increase / shift in BG outcomes achieved, leading to 

higher %BG > 8.0 mmol/L and %BG > 10.0 mmol/L, the severe hyperglycaemic threshold. Interestingly, 

this outcome is achieved with slightly lower, but still high, nutrition rates [134, 274] to avoid potentially 

more important hyperglycaemic risk (Table 12.2). 

Hence, to reduce the related expected increased hyperglycaemia, an adapted approach forcing the 95th 

percentile of predicted BG ≤ 8.5 mmol/L, the STAR-ULC approach, was undertaken. Figure 12.5 

presents the main risk and reward summary outcome comparison between STAR Standard and STAR-

ULC as a function of measurement intervals. Significantly more consistent GC outcomes were achieved 

regardless of measurement timeframe (Table 12.3, Figure 12.5). Surprisingly, these results show 

improved safety, and lowered the number of patients experiencing hypoglycaemia. This result and 

consistency can be explained by the increased workload, increasing the chances to react faster to 

reduced BG. However, it is most likely due to treatments suggesting lower insulin and nutrition rates 

(Table 12.3, Figure 12.5), where insulin’s impact on BG reduction from a sudden rise in SI was reduced 

thanks to lower insulin concentrations and concomitantly reduced nutrition.  

Virtual patient trials using the STAR-ULC to mitigate the risk of hyperglycaemia due to larger predicted 

variability resulted in trade-off between BG outcomes, workload, and nutrition rates achieved. Nutrition 

management in ICU is a hot topic [27-29, 254], where no clear uniform guidelines exist. Recent reviews 

suggest stepping increased nutrition rates from ICU admission, starting at 25% GF and ideally 

increasing by 25% every two days to reach 100% within a week [27]. In these results, nutrition rates 

achieved (60 [50 75] %GF in the worst STAR-ULC-6H case) are still comparable to, or better than, the 

recommendations, and thus potentially acceptable. 
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Figure 12.5 - Risk and reward trade-off between STAR Standard (solid) and STAR-ULC (dashed) as a function of 

intervention intervals. 

In addition, these rates achieved with STAR-ULC were comparable to the SPRINT protocol results, 

which was the only study to reduce all three of mortality, organ failure, and hypoglycaemia [38, 81]. 

Previous studies showed STAR using 1-3 hour intervals provides close to the best nutrition delivery 

rates in the world [134] due to its ability to provide personalised nutrition, adapted to patient needs, while 

always ensuring safety. Hence, these results show the STAR Standard and STAR-ULC approaches can 

deliver acceptable, but different nutrition delivery rates with extended intervals and reduced workload, 

presenting a clear trade-off choice. 

Ideally, 1-hourly measurements would provide the best outcomes. However, this approach is not 

clinically feasible and would require too much workload. CGM could also potentially provide improved 

control [273, 275]. In general, this technology is still not fully reliable in ICUs [191], but may develop 

further in future to full effect and enable far more flexible control approaches [276]. 

Overall, the virtual trial results are encouraging, and, regardless of measurement interval, provided safe 

and effective control for nearly all patients. Consistent high %BG in the tighter, safer 4.4-7.0 mmol/L and 
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wider, still safe 4.4-8.0 mmol/L target band are associated with improved outcomes in ICUs [38, 76, 77]. 

Results suggest STAR is robust when using longer treatment intervals, and can safely adapt treatment 

to patient needs. However, these results also show the inevitable risk and reward trade-off between 

measurement interval and GC safety and efficacy. Increasing measurement intervals modestly 

increases risk of hypoglycaemia from 1.6% of patients to 2.2% or 2.8% (Tables 1-2), which are still very 

low compared to many prior studies [65-67]. The potentially bigger trade-offs come between nutrition 

delivery and desired performance, both compared to workload. 

More specifically, reducing workload using longer treatment intervals results in slightly high incidence of 

hyper- and hypo- glycaemia, given higher potential future SI variability. STAR-ULC provides safer, more 

effective, and tighter control compared to STAR Standard, at the cost of slightly increased workload and 

lower nutrition and insulin rates. This outcome suggests high nutrition and insulin rates magnify 

uncertainty as treatment interval increases, which should be expected. Reducing nutrition (and thus 

insulin) thus reduces risk of hypoglycaemia, further emphasising this “workload-performance-nutrition” 

risk and reward trade-off. While 4-hourly measurements are common in GC, whether 5- and 6- hourly 

are suitable in clinical practice is an important question. 

The only major change in the STAR GC protocol design in this analysis is the ability to suggest longer 

treatment intervals, given these treatments meet safety requirements, using additional corresponding 

extended stochastic models. Nothing else was changed from the original protocol. However, further 

analysis could consider some kind of hybrid system, with more restriction for longer treatment intervals 

(such as a potential reduced upper limit of insulin rate), to avoid additional risks. While this change could 

be considered, results presented here still show very high safety compared to most published protocols 

[8, 65, 66], and, thus, such changes to the original protocol seem less necessary. 

The results presented here use virtual patient and trial simulations [128]. Such simulations use a 

physiological model, where some physiological parameters are approximated, and, thus, could 

potentially lead to some minimal bias [93]. However, the model used has been validated and extensively 

clinically used in a wide range of clinical scenarios [87, 91, 94, 128, 136, 137, 150, 154, 259]. It is also 

proven to reflect what is seen clinically by accurately predicting subsequent clinical results [96, 105]. 

However, virtual trials represent ideal conditions, with full compliance to protocol. Results may thus be 
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a best case compared to reality, but representative of the reality and generalisable to other population 

cohort. Hence, all results presented should be validated in future clinical pilot trials, which are justified 

by the results presented here. 

12.5. Summary 

In this study, the STAR GC framework is shown to provide safe, effective control to nearly all patients, 

despite increasing measurement intervals from 3- to 6- hourly to reduce workload. However, longer 

treatment intervals are associated with modestly increased risks of hyper- and hypo- glycaemia, as well 

as potential reductions in nutrition delivery when these risks are mitigated by limiting hyperglycaemic 

risk. The overall results present a clear risk and reward trade-off between workload and GC outcomes 

within the context of this proven risk-based GC framework. Overall, STAR’s unique risk-based dosing 

approach is robust to adaptation to using longer treatment intervals. Clinical pilot trials using STAR with 

different measurement timeframes should be undertaken to confirm these results clinically. 
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Chapter 13: Conclusions 

 

 

 

 

 

 

 

Stress-induced hyperglycaemia is common in critically ill patients, leading to excessive glucose 

production and increased insulin resistance. The resulting excessive BG levels are associated with 

increased morbidity and mortality. Tight GC has shown beneficial impact, but is hard to achieve safely 

and effectively due to high levels of inter- and intra- patient variability. However, the increased risk of 

hypoglycaemia with GC, and its independent association with increased mortality, has been identified 

has a potential safety barrier for GC targeting normoglycaemic ranges. Hence, there is ongoing debate 

on the optimal glycaemic targets, considering possible benefits against the consequences of the widely 

shown increased hypoglycaemic risks with lower target bands. 

However, causality of the association of hypoglycaemia with tight GC remains unclear. This thesis first 

aimed to better understand what makes achieving (safe) GC hard. It then examines whether safe GC 

can be achieved for all patients, suggests solutions to achieve precision GC in an ICU context, and, 

finally, addresses major issues impacting the future of GC in the ICU. 

This chapter presents the main conclusions of this thesis, by addressing the four questions raised in 

Chapter 1. 
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13.1. The Keys to GC Success 

What are the main factors influencing high quality GC, and why did some studies successfully 

provide safe, effective control, while others did not? 

Most guidelines, to date, recommend higher targets based on studies failing to provide safe control for 

all patients, as a “first do no harm” approach. However, many other studies have demonstrated the 

ability to achieve safe, tight GC with patient-specific model-based methods. Virtual trial analysis of two 

contradicting studies (NICE-SUGAR and STAR), on the same underlying virtual cohort, enabled a better 

understanding of the issues and identified reasons for NICE-SUGAR’s increased incidence of 

hypoglycaemia, despite targeting normoglycaemic ranges. 

Virtual trial results provided evidence that poor compliance to protocol can bias results, thus questioning 

the conclusions of the NICE-SUGAR, with implications for the interpretation of similar studies. More 

specifically, simulations of the protocol showed significant differences with reported clinical results, 

despite providing relatively safe and tight control. The excessive BG measurements required by NICE-

SUGAR per protocol (~1-hourly) was clearly a design failure, as they were not achieved in practice. In 

addition, the absence of specific limits on the insulin dosing may have led to further non-compliance, 

and thus further biased safety and performance outcomes. 

Virtual trial results also showed NICE-SUGAR’s lack of patient-specificity resulted in lower GC safety 

and efficacy. In contrast, STAR’s unique patient-specific risk-based dosing approach significantly 

decreased hypoglycaemia and provided tighter control. Accounting for inter- and intra- patient variability 

is thus also a key to GC success. 

These results bring new important considerations when assessing GC clinical trial outcomes, suggesting 

assessing how well GC is implemented is an absolute requirement before assessing clinical outcomes. 

Importantly, the results suggest hypoglycaemia has been wrongly blamed for poor patient outcomes, 

which are instead due to the ineffectiveness of GC design. 
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13.2. Safe, Effective GC for All 

Is poor GC due to patient severity and outcome, and thus unavoidable? Or should everyone be able 

to benefit from equally safe and effective control, regardless of clinical outcome? 

While protocol design is a key to GC success, the associated increased hypoglycaemia in some studies 

could be considered as a consequence of underlying patient state, rather than poor GC protocol design. 

In turn, this question would suggest more severely ill patients would benefit less from GC, and, thus, 

there would be a lesser necessity to control glycaemia beyond a modest lowering for at least these 

patients.  

In a retrospective analysis comparing survivors and non-survivors, SI was shown to be different between 

the groups, while SI variability was equivalent. Given the equal variability, survivors and non-survivors 

are equally difficult to control, suggesting similar GC outcomes, safety and performance, should be 

achieved regardless of patient severity and (eventual) patient clinical outcome. GC outcome is thus a 

function of GC design, not patient condition, and all patients should be able to benefit from equally safe, 

and effective GC.  

Similar analyses on SI levels and variability for males and females provided the same conclusions. 

Overall, it suggests while inter-patient variability may be different across patients, intra-patient variability 

is always equivalent. Thus, patients may need different insulin dosage based on their patient-specific 

SI, but the associated risks are always equivalent. This outcome further establishes the necessity of 

directly accounting for intra-patient variability. 

Hence, failing to provide safe control for nearly all patients can bias clinical trial results, which thus may 

not reflect metabolic response to treatment, but instead reflect the poor quality of control applied. Given 

a patient-specific, model-based, and risk-based GC protocol, safe and effective GC should be achieved 

for all. 
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13.3. The Leading Role of Metabolic Variability in Precision GC 

How can precision GC be achieved for all? And can this patient-specific precision be increased? 

Quantifying and directly accounting for inter- and intra- patient variability is essential to provide safe, 

and effective GC. The STAR GC framework accounts for both. STAR characterised patient-specific SI, 

accounting for inter-patient variability, and assesses the risks associated with a given treatment using a 

stochastic model, accounting for intra-patient variability. STAR has been shown to provide safe, effective 

control for nearly all patients, with high clinical staff compliance to protocol. 

While intra-patient variability is similar across patients, it must be clearly characterised to avoid any 

potential hypoglycaemic risk. The more accurate the predictions of potential sudden change in SI levels 

are, the better STAR can mitigate the risks of hypoglycaemia in treatment recommendation. A new 

stochastic model was thus developed accounting for prior changes in SI levels to predict future 

variability. This new 3D stochastic model better characterises patient-specific metabolic variability, 

providing much tighter, personalised prediction ranges, and thus better performance with equal or better 

safety. 

This new 3D stochastic model was implemented in a pilot clinical trial in Christchurch, New Zealand, 

improving both safety and efficacy of STAR, while also providing higher nutrition to patients. It also 

further validated STAR’s ability to provide safe control for all, despite targeting lower, normoglycaemic 

ranges. 

13.4. Hypoglycaemia, Nutrition, and Treatment Intervals: The Risk and 

Reward Trade-off 

What is the risk and reward of longer treatment intervals? 

STAR is the only GC protocol also modulating nutrition to achieve safe, and effective GC. A clinical trial 

was implemented at the University Hospital Centre of Liège, Belgium, to assess STAR’s ability to adapt 

to different ICU practices, but also quantify, for the first time, the impact of also modulating nutrition. 
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Clinical trial results provided evidence STAR was able to provide significantly safer, more effective GC 

than the insulin-only version. The overall nutrition rates achieved were more consistently managed with 

STAR than clinically, and, in theory, much closer to the patient-specific energy expenditure. Modulating 

nutrition also significantly reduced workload, as indicated by the lower measures required. Compared 

to the local standard protocol, STAR provided significantly tighter control, and resulted in lower incidence 

of both hypo- and hyper- glycaemia, proving STAR’s ability to generalise across different patient 

populations and ICU practices.  

These encouraging results were achieved with higher workload compared to local standards. This 

outcome suggested assessing the impact of using longer treatment intervals on GC. Virtual trials were 

thus simulated to assess the risk and reward trade-off associated with longer treatment intervals in the 

context of STAR. More specifically, STAR treatment intervals were extended from 1 to 3-hourly to 1 to 

4-, 5-, and 6- hourly. While the reward of using longer treatment intervals is the lower workload 

associated, the risks include lower GC safety and efficacy at similar nutrition levels, or equally safe, 

effective control with reduced nutrition. This outcome range of compromises allows clinical staff to 

significantly reduce workload, which is critical to more regular uptake of GC. This analysis is the first 

time such trade-offs have been quantified, despite the impact of workload and non-compliance on safety 

and performance. 

13.5. Take Home Message 

Safe and effective GC to normoglycaemic ranges can be achieved for all patients, regardless of patient 

condition. This can be done using patient-specific, clinically feasible, GC design accounting for inter- 

and intra- patient variability, ultimately improving patient outcome. Failing to do so suggests critical GC 

design failure. It is thus time to rethink GC guidelines, and to undertake clinical trials assessing the 

impact of GC on clinical outcome, without the bias of avoidable hypoglycaemia. 
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Chapter 14: Future Work 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This thesis provided significant contributions for improved personalised precision GC in the ICU. This 

chapter suggests potential future work that could be undertaken to further address and characterise the 

keys for tight GC success. 
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14.1. Inter- and Intra- Patient Variability 

Intra-patient variability, equivalent across patients, centres, and a range of sub-cohorts, has been better 

characterised in Chapter 9. The improved predictions of future variability thus enabled greater 

personalisation of GC. However, more work could be done to further improve these predictions. Recent 

published studies using BG and SI as inputs to predict future variability also showed improved 

associated GC outcomes [256, 257]. Using even more inputs to predict future SI levels could potentially 

further improve predictions. The main limitations would be the potential lack of clinical data and data 

density at this time. Additionally, given the extremely high safety already achieved in STAR, the net gain 

in GC outcome might not be significant compared to the effort (computational complexity). 

Inter-patient variability has been shown to be not equivalent and varies significantly between centres, 

patients, and sub-cohorts. The patient-specific, model-based identified SI allows STAR to account for 

inter-patient variability in every intervention. Hence, improving the accuracy of identified SI across 

patients can also bring significant improvement in the context of STAR. A known problem in the current 

ICING model used in STAR is the impact of under-estimated EGP production when SI saturates at very 

low values [277, 278]. A better, more patient-specific estimate of EGP would enable more accurate SI 

values. However, EFP is not uniquely identifiable with current clinical data This issue has not been 

addressed in this thesis, and could be analysed in future work. 

14.2. Multi-Centre Clinical Trial Assessing Clinical Outcome 

It is time to implement new RCTs truly assessing the GC impact on clinical outcome, based on the 

evidences presented in this thesis. More specifically, given a feasible patient-specific GC protocol, 

accounting for both inter- and intra- patient variability, all patients should benefit from equally safe, and 

effective GC. If strict compliance to protocol is achieved across different participating ICUs, and no 

significant difference in the incidence of hypoglycaemia between patients is observed, then assessing 

the true impact of GC targeting different ranges will truly be quantified, and it will not be biased by poor 

protocol design or compliance. In turn, these future RCTs could finally make a case for the 

implementation of tight, or conventional, GC in all ICUs. 
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14.3. Clinical Trial of Extended 1-6 Hourly Measurement Intervals 

The risk and reward trade-off associated with longer measurement intervals needs to be confirmed 

clinically. The encouraging results obtained in Chapter 12 suggest the implementation of a pilot trial to 

confirm these findings and better quantify the associated risks. However, while 4-hourly measurements 

are common in GC practices, whether 5- or 6- hourly measurement intervals should be used is an 

important debate to discuss prior clinical implementation. More specifically, longer treatment intervals 

could lead to important increased risk of hypoglycaemia, without compromises regarding nutrition 

delivery. This trial would thus open significant consideration of the necessary level of nutrition delivery 

in critical care. 

14.4. Nutrition During Critical Illness 

One of the advantages of STAR is its ability to also control nutrition to achieve safer GC. Despite 

modulating nutrition, STAR has been previously shown to provide close to best nutrition expenditure in 

the world. The amount of nutrition to provide, the administration route, and the timing are all challenging 

questions in ICU patients, and vary across patients and over time. While no gold standard exists, current 

guidelines suggest progressive adaptive nutrition based on days from ICU admission [27, 70], but once 

again lack patient-specificity. 

Recent studies showed early feeding and overfeeding during the acute phase do not improve outcomes 

compared to trophic or permissive underfeeding, and may have negative effects [28, 274, 279, 280]. 

Additionally, early parenteral nutrition during the acute phase suppresses autophagy, a critical repair 

process for critical illness organ failure [281, 282]. However, during the recovery phase, increased 

nutritional intake is necessary in the transition from catabolism to anabolism to maximize anabolic repair 

in recovery [29]. Lacking a biomarker capturing metabolic state and its transition, it is impossible to know 

when and how much nutrition to deliver.  

The main challenge is to optimise nutrition based on the patient-specific transition from the acute phase 

to the recovery phase. Future work should investigate whether identified SI is an accurate, personalised, 

real-time marker to capture the transition from catabolic to anabolic metabolism, reflecting patient-

specific ability to utilise glucose. In turn, this model-based identified SI parameter could be used to 
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identify the transition between acute and recovery phases, and improve nutrition intake for critically ill 

patients. 
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Appendix I: Metabolic System and Insulin Sensitivity 

This Additional File is designed to present the model and methods used in several referenced studies 

(e.g. [81, 86, 92, 97, 105, 106, 129, 283, 284]) in this paper. The presentation is brief, relying on a 

separate set of references (from the main article) given at the end of this Appendix, which interested 

readers can use for explicit details on any aspect of this model and the methods used. 

A clinically validated computer model of the metabolic system [94] was used to identify [131] patient-

specific, time-varying (hourly) insulin sensitivity (SI) every hour. The model presented is a compartment 

model, accounting for the appearance of insulin and glucose in blood and interstitial fluid volumes. 

Figure A1-1 shows this model schematically. 

 

Where G(t) [mmol/L] is plasma glucose concentration, I(t) and Q(t) [mU/L] are plasma and interstitial 

insulin concentrations. Pancreatic insulin secretion is modelled as a function of plasma glucose and is 

denoted uen(G). The associated parameter values and descriptions are listed in Table A1-1. Table A1-2 

shows the exogenous input variables to the model.  
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𝐼(𝑡)

1 + 𝛼𝐼𝐼(𝑡)
− 𝑛𝐼(𝐼(𝑡) − 𝑄(𝑡)) +

𝑢𝑒𝑥(𝑡)

𝑉𝐼

+ (1 − 𝑥𝐿)
𝑢𝑒𝑛(𝐺)

𝑉𝐼

 A1.3 

𝑃(𝑡) = min(𝑑2𝑃2,  𝑃max) + 𝑃𝑁(𝑡)  A1.4 

𝑃1̇(𝑡) = −𝑑1𝑃1 + 𝐷(𝑡) A1.5 

𝑃2̇(𝑡) = −min(𝑑2𝑃2,  𝑃max) + 𝑑1𝑃1  A1.6 

𝑢𝑒𝑛(𝐺) = min (max (𝑢𝑚𝑖𝑛 , 𝑘1𝐺(𝑡) + 𝑘2), 𝑢𝑚𝑎𝑥) A1.7 
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Table A1-1. Parameter values and descriptions for the glucose-insulin model. 

 Value DESCRIPTION FIXED? IDENTIFICATION METHOD REPORTED RANGE 

SI(t) l/mU/min Insulin sensitivity N Integral based fitting [131] - 

𝛼𝐺 1/65 (0.015) l/mU 
Saturation of insulin-mediated glucose 

uptake 
Y 

Chosen from literature [97].  Sensitivity 

tested in [141]. 
0.001 – 0.025 l/min [285]. 

𝑝𝐺 0.006 min-1 
Other non-insulin mediated glucose 

clearance 
Y 

Identified: grid search and error 

minimisation [93] 
0.004 – 0.047 min-1 [93] 

𝑉G 13.3 L Glucose distribution volume Y Chosen from literature [93] 
10.0 – 15.75 L [140] 

0.22 L/kg [286] 

𝐸𝐺𝑃 1.16 mmol/min 
Endogenous glucose production 

(hepatic) 
Y 

Grid search and error minimisation [93]. 

Later (unsuccessful) analysis as function 

of glucose and time [82]. 

0.10 – 2.36 mmol/min [82]. 

𝐶𝑁𝑆 0.3 mmol/min 
Glucose uptake by central nervous 

system 
Y Chosen from literature [93]. 0.29 – 0.38 mmol/min [93]. 

𝑥𝐿 0.67 
Fractional first pass hepatics insulin 

clearance from portal vein 
Y Chosen from literature [93] 0.5-0.95 [138]. 

𝑛𝐿 0.1578 min-1 
Rate parameter: general hepatic 

insulin clearance 
Y Chosen based on previous work [93] 0.1 – 0.21 min-1 [140] 

𝛼𝐼 1.7x10-3 l/mU 
Saturation of hepatics insulin 

clearance 
Y Chosen from literature [285]. 0.0005 – 0.0043 L/mU [285]. 

𝑛𝐾 0.0542 min-1 
Rate parameter: kidney clearance of 

insulin 
Y Chosen from literature [93]. 0.053–0.064 min-1[140]. 

𝑛𝐶 0.006 min-1 
Rate parameter: cellular degradation of 

internalised insulin 
Y 

Identified: grid search and error 

minimisation [141] 
Parameter sensitivity: [141]. 

𝑛𝐼 0.006 min-1 
Rate parameter: diffusion of insulin 

between plasma and interstitium 
Y 

Identified: grid search and error 

minimisation [141] 
0 – 0.06 min-1 [141]. 

𝑘1 
14.9 

mU·l/mmol/min 
Insulin secretion model parameter Y 

Model fit to clinical C-peptide and Insulin 

data. Compared to results derived from 

literature [82]. 

8 - 45.9 mU/min [82]. 

𝑘2 -49.9 mU/min Insulin secretion model parameter Y 
Model fit to clinical C-peptide and Insulin 

data [82]. 
- 

𝑢𝑚𝑖𝑛 16.7 mU/min Minimum insulin secretion Y 
Constraint derived from lower range of 

clinical insulin secretion data [82]. 
- 

𝑢𝑚𝑎𝑥 266.7 mU/min Maximum insulin secretion Y 
Constraint derived from upper range of 

clinical insulin secretion data [82]. 
- 

𝑉I 4.0 L Insulin distribution volume Y Chosen from literature [82]. 3.15 – 4.75 L 
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Table A1-2. Exogenous input variables to the glucose-insulin model. 

Variable Unit Description 

PN(t) mmol/min Intravenous glucose input rate (parenteral nutrition) 

D(t) mmol/min Oral glucose input rate (enteral nutrition) 

uex(t) mU/min Intravenous insulin input rate 

 

The insulin sensitivity SI can be identified hourly from blood glucose data along with the clinical insulin 

and nutritional inputs from all sources [131, 287]. SI is also the critical parameter in predicting the 

outcome of a nutrition and/or insulin intervention in this model, based on the definition above [97, 131, 

283]. It represents the whole body balance of insulin and CHO from all sources. SI can vary with patient-

status hour to hour, with larger acute changes or smaller gradual evolution. Thus, the identified SI can 

be used to characterise metabolic response and evolution for cohorts or specific-patients, enabling more 

optimal and robust dosing [124, 125, 157, 185]. Two example SI profiles and model fit to clinical data 

can be found in Figure A1-2. Both show stable BG within the 4.4 – 8.0 mmol/L range, despite different 

underlying insulin sensitivity variability and the insulin and nutrition doses required to achieve 

comparable BG stability. 

 
Figure AI-1: Model schematic for Equations (A1.1)-(A1.3) showing the physiological compartments and clearances, 

as well as the appearance of exogenous insulin and carbohydrate, and their kinetic pathways. Insulin sensitivity 

(SI) can vary over time (hour to hour) thus affecting glycaemic outcomes for a given insulin and/or nutrition 

intervention. 
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Figure A1-2: Example patients from clinical data, showing measured blood glucose (BG), clinically delivered insulin 

and nutrition, and model fitted insulin sensitivity (SI). A more ‘Stable’ SI profile (left) and more variable SI profile 

(right). 
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Appendix II: Clinical Significance Calculations 

The equivalence range is determined by examining the changes in insulin sensitivity (SI) which become 

clinically significant. This is different from hypothesis testing, as the equivalence range is determined 

independently. Further, in theory, two samples can be clinically equivalent, even if they are statistically 

different. The equivalence range for insulin sensitivity changes can be determined in two ways: 

▪ Change in SI possible due to measurement error 

▪ Change in SI required to change the insulin dose recommendation 

The first accounts for variation in model-based SI during the identification process due to measurement 

error, while the second examines its impact on GC outputs. The equivalence range will be determined 

conservatively as the minimum changes in SI required to cause clinically significant change, to ensure 

the strongest test of equivalence.  

A2.1 Change in SI due to measurement error 

Model-based blood glucose is defined: 

�̇�(𝑡) = −𝑝𝐺𝐺(𝑡) −  𝑆𝐼(𝑡)𝐺(𝑡)
𝑄(𝑡)

1 + 𝛼𝐺𝑄(𝑡)
+

𝑃(𝑡) + 𝐸𝐺𝑃 − 𝐶𝑁𝑆

𝑉𝐺

 (A2.1) 

Parameter descriptions and values can be found in Table A2.1. Considering the average response over 

an hour, Equation 1 can be rewritten: 

Δ𝐺

60𝑚𝑖𝑛
= −𝑝𝐺𝐺𝑚 −  𝑆𝐼𝐺𝑚

𝑄𝑚

1 + 𝛼𝐺𝑄𝑚

+
𝑃 + 𝐸𝐺𝑃 − 𝐶𝑁𝑆

𝑉𝐺

 (A2.2) 

If Equation 2 is then re-arranged for SI: 

𝑆𝐼 =  
(−𝑝𝐺𝐺𝑚 + (𝑃 + 𝐸𝐺𝑃 − 𝐶𝑁𝑆) 𝑉𝐺⁄ −  Δ𝐺 60𝑚𝑖𝑛⁄ )(1 + 𝛼𝐺𝑄𝑚)

𝐺𝑚𝑄𝑚

 (A2.3) 
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For an absolute error in BG of ξ %, according to Equation 3 the new SI becomes 

𝑆𝐼,ξ =  
(−𝑝𝐺𝐺𝑚(1 + ξ 100⁄ ) + (𝑃 + 𝐸𝐺𝑃 − 𝐶𝑁𝑆) 𝑉𝐺⁄ −  Δ𝐺 60𝑚𝑖𝑛⁄ )(1 + 𝛼𝐺𝑄𝑚)

𝑄𝑚𝐺𝑚(1 + ξ 100⁄ )
 (A2.4) 

The possible percentage difference in SI due to measurement error is then: 

𝛥𝑆𝐼,ξ =
𝑆𝐼,ξ − 𝑆𝐼

𝑆𝐼

 (A2.5) 

For the Arkray Glucocard X, a very similar device compared to the Super Glucocard II, the standard 

deviation of percentage error on a BG measurement is 9.4% [186]. From Equation 4, the insulin 

sensitivity can be affected by insulin and nutrition inputs (indirectly reflected through 𝑄𝑚 and 𝑃 

respectively), as well as the range of change of BG. The range of possible 𝛥𝑆𝐼,ξ for different 𝐺𝑚 values, 

𝑄𝑚 values, Δ𝐺 60𝑚𝑖𝑛⁄ , and nutrition inputs (𝑃) was assessed. 

Table A2.1 Glucose Parameter Values and Description. 

Parameter Value and/or Units Description 

G(t) mmol/l Blood glucose concentration 

Q(t) mU/l Interstitial insulin concentration 

SI(t) l/mU/min Insulin sensitivity 

−𝑝𝐺 0.006/min Kidney and general non-insulin mediated clearance 

𝛼𝐺 1/65 l/mU Saturation of insulin-mediated glucose uptake 

𝑉G 13.3 L Glucose distribution volume 

𝐸𝐺𝑃 1.16 mmol/min Endogenous glucose production (hepatic) 

𝐶𝑁𝑆 0.3 mmol/min Glucose uptake by central nervous system 

Nutrition range (P):  

Assuming a goal feed of 2000 kCal/day (25 kCal/kg/day for an 80kg individual) of Glucerna (1.0 kCal/mL, 

0.0812 g/mL glucose), which is the primary feed type in this unit and study, goal feed (rounded to the 

nearest 5mL/hr) is 85 mL/hr (38.3 mmol/hr glucose). The range of nutrition tested was 50:10:120% of 

this feed target. 

Sensitivity to nutrition inputs is shown in Figure A2.1. As the nutrition increases, the percent change in 

SI required to account for glucometer error decreases due to higher overall insulin sensitivity.  



 

219 

 

 
Figure A2.1: Effect of nutrition inputs on insulin sensitivity (SI) and the potential difference in SI due to BG 

measurement error. Nutrition was modulated between 50 and 120% of the clinical goal (2000 kCal/day). 

Plasma insulin range (Qm):  

Sensitivity to Qm within the common range (10 – 100 mU/L) was tested, and results are shown in Figure 

A2.2. The percentage difference in SI is not sensitive to Qm, as it normalises in Equation 5. The case 

where a change in Qm is causing the change in SI, rather than glucometer error as in Equations 4 and 

5, is examined later in section A2.3. 
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Figure A2.2: Effect of nutrition inputs on insulin sensitivity (SI) and the potential difference in SI due to BG 

measurement error. Interstitial insulin (Q) was modulated between 5 – 50 mU/L, which is a commonly observed 

range. 

Rate of Change of Blood Glucose (ΔBG/60min): 

Sensitivity to hourly changes in BG were examined, with this change ranging from an absolute change 

in BG of 2 mmol/L (a relatively large hourly change) to no change in BG. Results in Figure A2.3 show 

that the minimal change in SI required to account for glucometer error occurs at steady state (no change 

in BG). It is thus the most conservative case. 
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Figure A2.3: Effect of nutrition inputs on insulin sensitivity (SI) and the potential difference in SI due to BG 

measurement error. The change in BG over an hour was modulated between an absolute change of 2 mmol/L (a 

relatively large change) and no change. 

The percentage change in SI required to account for glucometer error (ξ in %) is shown for a range of 

different error magnitudes in Figure A2.4. As the percentage or CV of glucometer error increases, the 

larger the clinically significant change in SI.  

 
Figure A2.4: Effect of the magnitude of measurement error on the potential difference in SI due to BG measurement 

error.   
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A2.2 Change in SI required to change an insulin intervention 

The plasma and interstitial insulin model equations are defined: 

𝐼(̇𝑡) = −𝑛𝐾𝐼(𝑡) − 𝑛𝐿

𝐼(𝑡)

1 + 𝛼𝐼𝐼(𝑡)
− 𝑛𝐼(𝐼(𝑡) − 𝑄(𝑡)) +

𝑢𝑒𝑥(𝑡)

𝑉𝐼

+ (1 − 𝑥𝐿)
𝑢𝑒𝑛(𝐺)

𝑉𝐼

 (6) 

�̇�(𝑡) = 𝑛𝐼(𝐼(𝑡) − 𝑄(𝑡)) − 𝑛𝐶

𝑄(𝑡)

1 + 𝛼𝐺𝑄(𝑡)
 (7) 

Parameter descriptions and values are given in Table A2.2. 

Table A2.2 Insulin Model Parameter Values and Description. 

Parameter Value and/or Units Description 

I(t) mU/l Plasma insulin concentration 

Q(t) mU/l Interstitial insulin concentration 

𝑥𝐿 
0.67 

Fractional first pass hepatics insulin clearance from portal 

vein 

𝑛𝐿 0.1578 min-1 Rate parameter: general hepatic insulin clearance 

𝛼𝐼 1.7x10-3 l/mU Saturation of hepatics insulin clearance 

𝑛𝐾 0.0542 min-1 Rate parameter: kidney clearance of insulin 

𝑛𝐶 
0.006 min-1 

Rate parameter: cellular degradation of internalised 

insulin 

𝑛𝐼 0.006 min-1 
Rate parameter: diffusion of insulin between plasma and 

interstitium 

𝑢𝑒𝑛 mU/min Pancreatic insulin secretion 

𝑉I 4.0 L Insulin distribution volume 

Assuming steady state:  

0 = −𝑛𝐾𝐼𝑠𝑠 − 𝑛𝐿

𝐼𝑠𝑠

1 + 𝛼𝐼𝐼𝑠𝑠

− 𝑛𝐼(𝐼𝑠𝑠 − 𝑄𝑠𝑠) +
𝑢𝑒𝑥(𝑡)

𝑉𝐼

+ (1 − 𝑥𝐿)
𝑢𝑒𝑛(𝐺)

𝑉𝐼

 (8) 

0 = 𝑛𝐼(𝐼𝑠𝑠 − 𝑄𝑠𝑠) − 𝑛𝐶

𝑄𝑠𝑠

1 + 𝛼𝐺𝑄𝑠𝑠

 (9) 

Equations 8 and 9 can be numerically solved (Newton’s method was used here) for Qss and Iss for a 

given insulin dose, 𝑢𝑒𝑥. As insulin secretion, 𝑢𝑒𝑛, is dependent on BG, this steady state will depend on 

the current BG level. 

The change in insulin sensitivity required to change an insulin dose by 1 U, given a constant BG, can 

be estimated from the insulin-mediated glucose uptake component of Equation 1. The minimal degree 
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of allowable difference in SI for a clinical change in insulin treatments can be estimated from insulin-

mediated glucose uptake and the assumption of no change in BG:  

𝑆𝐼,1𝐺
𝑄𝑆𝑆,1

1 + 𝛼𝐺𝑄𝑆𝑆,1

=  𝑆𝐼,2𝐺
𝑄𝑆𝑆,2

1 + 𝛼𝐺𝑄𝑆𝑆,2

 (10) 

𝑆𝐼,2

𝑆𝐼,1

=  
𝑄𝑆𝑆,1

𝑄𝑆𝑆,2

(1 + 𝛼𝐺𝑄𝑆𝑆,2)

(1 + 𝛼𝐺𝑄𝑆𝑆,1)
 (11) 

The estimation of the minimal percentage change in SI required for a change in insulin intervention is 

shown in Figure A2.5. At higher insulin doses, Qss is higher and a 1 U change in insulin dose represents 

a smaller fraction of Qss. As a result, the percentage change in SI that allows a change in intervention 

narrows. Thus, the control system is more robust to error or variability in SI at lower insulin doses, which 

are more typical once BG is lowered into the normal range. 

 
Figure A2.5: Model-based estimates of steady state interstitial insulin concentration for a given insulin dose, and 

the minimum percentage change in SI required to change an insulin intervention by 1U, assuming steady state 

Insulin. 
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A2.3 Summary and recommendation for equivalence 

For a typical error standard deviation on Glucocard glucometers of 9.4%, to be conservative within the 

range of commonly observed BG (4.0 – 10.0 mmol/L) the minimum difference in SI that would be 

clinically significant beyond glucometer error is ~ 12-15% (Figures A2.1 – A2.3), and a function of BG.  

In the case of sustained hyperglycaemia, SI tends to be low, so percentage changes in SI required for 

clinical significance are higher.  

Hence, equations 4 and 5 will be used to determine the equivalence range, using 100% goal feed and 

a conservative estimate of no change in blood glucose. The resulting plot is in Figure A2.6. For 

equivalence the 90% confidence interval (CI) must lie within the defined equivalence interval. 

 
Figure A2.6: Equivalence range for insulin sensitivity (SI), using a conservative estimation of no change in blood 

glucose level (steady state). For non-steady state conditions, this range widens. 
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