

Reconnecting agriculture to food systems for global sustainability

the example of long term experimental crop rotations of AgricultureIsLife

De Clerck C., Dumont B., Beckers Y., Bodson B., Colinet G., Cornelis J.T., Dufrêne M., Monty A., Pierreux J., <u>Bindelle J.</u>

25th National Symposium for Applied Biological Sciences 31/01/2020

Pression démographique sur la planète

The other 7 billion CANNOT be sustained without agriculture

Through History, mankind has developed a wide variety of food systems

Nowadays, food systems are increasingly converging toward the agroindustrial model

Total areal land use for agriculture, measured as the combination of land for arable farming (cropland) and grazing in hectares.

The world is not enough

Agriculture is almost already at its maximal expansion

Need to reduce the gap between dietary patterns and health boundaries

Urgent need to (re)-connect healthy diets with sustainable agricultural systems

Considering societal claims

Mainly on livestock and pesticides

Suicides chez les agriculteurs : des chiffres qui font froid dans le dos

Sur le plateau du 12/13, Anne-Claire Le Sann détaille les chiffres alarmants et croissants du suicide chez les agriculteurs.

Mis à jour le 11/09/2019 | 17:48 publié le 11/09/2019 | 17:32

Les chiffres des suicides chez les agriculteurs sont alarmants et la réalité est encore plus sinistre pour une profession frappée par la solitude des exploitants, les conditions de vie difficiles, mais aussi les difficultés financières récurrentes. "Ce serait plus de deux suicides par jour, selon les chiffres de la Mutualité sociale agricole parus cet été. Elle évoque 605 suicides chez agriculteurs, exploitants et salariés", appuie en plateau Anne-Claire Le Sann.

Study: Asia-Pacific loses steam in efforts to end hunger

By Reuters

In this March 21, 2007 photo, jobless Mel Rosete (L), watches over his three children sharing a plate of noodle in Manila's slum district of Tondo. Mel's wife Leticia, a market vendor makes 120 pesos (US\$2.47) a day, not enough to ensure three meals a day for their seven children. (Romeo Gacad / AFP)

A healthy diet is beyond the financial reach of 3.7 million children in the UK: it's time we addressed the inequalities in our food system

September 2018

Tweet

Not forgetting social justice

Ravensburger

What pieces do we have to start with and solve this puzzle?

- People
- Crops
- Livestock

Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems

Walter Willett, Johan Rockström, Brent Loken, Marco Springmann, Tim Lang, Sonja Vermeulen, Tara Gamett, David Tilman, Fabrice DeGerdt, Amanda Wood, Malin Jandl, Michael Clark, Line J Gordon, Jessica Fanzo, Carinna Hawkes, Rami Zurayk, Juan A Rivera, Wirn DeVries, Lindiwe Majde Sibanda, Ashkan Afshin, Abhishek Chaudhary, Mario Herrara, Rina Agusting Francesco Branca, Annal, artey, Shenggen Fan, Beatrice Crong Elizabeth Fax, Victoria Bignet, Max Trodl, Therese Lindahl, Sudhvir Singh, Sarah E Comdl, K Srinath Reddy, Sunit a Narain, Sania Nisht ar, Christopher J L Murray

Executive summary

Food systems have the potential to nurture human health and support environmental sustainability; however, they are currently threatening both. Providing a growing global population with healthy diets from sustainable food systems is an immediate challenge. Although global food production of calories has kept pace with population growth, more than 820 million people have insufficient food and many more consume low-quality diets that cause micronuctions deficiencies and contribute to a substantial rise in the incidence of diet-related obesity and diet-related non-communicable diseases, including coronary heart disease, stroke, and diabetes. Unhealthy diets pose a greater risk to morbidity and mortality than does unsafe sex, and alcohol, drug, and tobacco use combined. Because much of the world's population is inadequately nourished and many environmental systems and processes are pushed beyond safe boundaries by food production, a global transformation of the food system is urgently needed.

The absence of scientific targets for achieving healthy diets from sustainable food systems has been hindering large-scale and coordinated efforts to transform the in various fields of human health, agriculture, political sciences, and environmental sustainability to develop food production practices will help ensure that the UN Agreement are achieved.

We quantitatively describe a universal healthy reference diet to provide a basis for estimating the health and environmental effects of adopting an alternative diet to standard current diets, many of which are high in unhealthy foods. Scientific targets for a healthy reference diet are based on extensive literature on foods, dietary largely consists of vegetables, fruits, whole grains, or a low quantity of red meat, processed meat, added sugar, food cultures and cuisines of all regions of the world. refined grains, and starchy vegetables. The global average

we found with a high level of certainty that global adoption Lancet 2019; 393: 447-92 of the reference dietary pattern would provide major health Published Online benefits, including a large reduction in total mortality.

The Commission integrates, with quantification of universal healthy diets, global scientific targets for sustainable food systems, and aims to provide scientific boundaries to reduce environmental degradation caused first appeared at the boost comby food production at all scales. Scientific targets for the on February 7, 2019 safe operating space of food systems were established for See Comment page 386 six key Earth system processes. Strong evidence indicates HarvardTHOsan School of that food production is among the largest drivers of global Public Health, Harvard Medical environmental change by contributing to climate change, biodiversity loss, freshwater use, interference with the andWomen's Hospital, Boston global nitrogen and phosphorus cycles, and land-system MA, USA (Prof WWilet MD); change (and chemical pollution, which is not assessed in this Commission). Food production depends on continued functioning of biophysical systems and processes to (Profil Rockström PhD): regulate and maintain a stable Earth system; therefore, these systems and processes provide a set of globally Stockholm, Sweden systemic indicators of sustainable food production. The Commission concludes that quantitative scientific targets Mjonel PhQ LJ Gordon PhQ, constitute universal and scalable planetary boundaries for BCross PhD, V Bignet MSc, global food system. This Commission brings together the food system. However, the uncertainty range for these M Total PAO, TLindah PAO, 19 Commissioners and 18 coauthors from 16 countries food boundaries remains high because of the inherent complexity in Earth system dynamics.

Diets inextricably link human health and environmental global scientific targets based on the best evidence sustainability. The scientific targets for healthy diets and Audiand New Zealand available for healthy dies and sustainable food prod- sustainable food systems are integrated into a common uction. These global targets define a safe operating space framework, the safe operating space for food systems, so Food and Control Population for food systems that allow us to assess which diets and that win-win diets (ie, healthy and environmentally sustainable) can be identified. We propose that this Sustainable Development Goals (SDGs) and Paris framework is universal for all food cultures and production systems in the world, with a high potential of Health (M.Springmann PhD). local adaptation and scalability.

Application of this framework to future projections of Network Environmental world development indicates that food systems can provide healthy diets (ie, reference diet) for an estimated global population of about 10 billion people by 2050 and UK; Centre for Food Policy, City, remain within a safe operating space. However, even patterns, and health outcomes. This healthy reference diet small increases in consumption of red meat or dairy foods

**Foot Reviews Prof: WeddWide

**The Prof Reviews Prof. WeddWide

**The P would make this goal difficult or impossible to achieve. Fund for Nature International legumes, nuts, and unsaturated oils, includes a low to Within boundaries of food production, the reference diet Gland Switzerland moderate amount of seafood and poultry, and includes no can be adapted to make meals that are consistent with

Because food systems are a major driver of poor health London, UK (5 Vermeulen); intake of healthy foods is substantially lower than the and environmental degradation, global efforts are urgently reference diet intake, whereas overconsumption of needed to collectively transform diets and food production. unhealthy foods is increasing. Using several approaches, An integrative framework combined with scientific targets

http://dx.doi.org/10.1016/

Stockholm Resilience Centre

S E Cornell PhD1; EAT, Onlo. A Wood, S Singh MBChB); University of Auckland (5 Singh); Oxford Martin rogramme on the Future of Department of Populatio Food Climate Research Change Institute and Oxford Martin School (T Garnett PhD) University of Oxford, Oxford, UK (ProfT Lang PhD, (SVermeulen PhD): Hoffmann Centre for Sustainable Resource Economy, Chatham House,

www.thelancet.com Vol 393 February 2 2019

Agronomical constraints

- 3 to 8 years
- Maximization of intercrops
- Intercrops possible only before crops that are sowed in spring
- Periodicity of legumes >= 3 years
- Alternance of botanical families:
 - Solanaceae/Brassicaceae/Amaranthaceae,/Cannabaceae, Fabaceae
 - except for Poaceae
- No constraints on fertility

Year 1	Silage corn	Cereal corn	Sugarbeet	Sugarbeet	Sugarbeet	Potatoe	Rapeseed	Sugarbeet	Sugarbeet	Potatoe	Potatoe	Sugarbeet	Sugarbeet	Potatoe	Sugarbeet	Potatoe	Rapeseed	Sugarbeet	Sugarbeet	Potatoe
Year 2	Winter wheat			Cereal corn			Winter wheat	Winter wheat			Winter wheat		Winter wheat	Winter wheat						Winter wheat
Year 3	Winter Barley			Winter wheat			Winter Barley	Silage corn		Silage corn		Spring potatoes	Rapeseed	Rapeseed	Spring Pea	Spring Pea	Spring Pea	Rapeseed	Rapeseed	Rapeseed
Year 4	-	-	-	-	-	-	-	Winter wheat					Winter wheat	Winter wheat		Winter wheat				Winter wheat
Year 5	-	-	-	-	-	-	-	-	-	-	-	_	-	-				Silage corn	Cereal corn	Silage corn
Year 6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			Winter barley
Year 7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Year 8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Year 1	Potatoe	Sugarbeet	Sugarbeet	Potatoe		_		Spring potatoes	Sugarbeet	Sugarbeet	Sugarbeet	Sugarbeet	Grassland Temp.	Grassland Temp.	Grassland Temp.	Grassland Temp.	Grassland Temp.	Hemp	Hemp	Sugarbeet
Year 2				Winter wheat				Winter wheat	W.wheat + W.pea			Winter wheat	Grassland Temp.	Grassland Temp.	Grassland Temp.	Grassland Temp.			1	Winter wheat
Year 3	Rapeseed	Rapeseed	Rapeseed	Rapeseed	Rapeseed	Rapeseed	Rapeseed	Rapeseed	Rapeseed	Rapeseed	Rapeseed	nabeseeu	Silage corn	Cereal corn	"	Cereal corn		_		Spring potatoes
Year 4				l .			W.wheat + W.pea	W.wheat + W.pea	Spring potatoe	W.wheat + W.pea			Winter wheat	Winter wheat					1	Winter wheat
Year 5	Cereal corn	Winter wheat	SB/SP	SB/SP	"		Silage corn	Cereal corn	Winter wheat	Sugarbeet	Potatoe	Pea/(Faba)bean	Sugarbeet	Sugarbeet	Potatoe	Potatoe	Faba beans	Rapeseed	Rapeseed	Rapeseed
Year 6	L .						Winter barley	Winter barley					Winter wheat	Winter wheat					I	W.wheat + W.pea
Year 7	-	-		Winter barley	-	-	-	-	-			Winter barley	Rapeseed	Rapeseed	Rapeseed	Rapeseed	Rapeseed	Spring Pea	Spring Pea	Silage corn
Year 8	-	-	-	-	-	-	-	-	-	-	-	-	Winter wheat	Winter wheat			W.wheat + W.pea	Oats	Oats	Winter wheat

Connecting diets to cropping system

Table 4 Composition (g/kg DM) of some example concentrate feeds

	Dairy cows	Beef cattle and sheep	Pigs	Broiler chickens	Laying hens
	A. Bell, personal communication and author's estimate (2009)	A. Bell, personal communication and author's estimate (2009)	A. Bell, personal communication (2009); Hazzeldine, (2009)		C. Rymer, personal communication (2009)
Cereal grain	200	450	600	700	640
Cereal by-products	150	300	180	0	20
Soyabean meal	70	_ 0	_120	150	150
Rapeseed meal	350 LIVE	stock cond	centrate d	diets	0
Other oilseed meals	50	40	0	0	60
Pulses	0	campo	cition	50	0
Other by-products	170	çømpo	Sitiqii	90	30
Minerals + vitamins	10	10	10	10	100
ME (MJ/kg DM)	12.5	12.8	13.0	13.4	12.0
CP (g/kg DM)	255	172	198	205	164
Human-edible proportion	0.36	0.47	0.64	0.75	0.65

DM = dry	matter;	ME =	metabolisable	energy.

Table F Connals material	I IN Bustack as	dustan many	on hand and law	 and I	Arred	on MORE and	-1 200Cl

						Forage crops (kg DM/head)		
System	Description	Unit	Time (weeks)	Output (kg) ¹	(kg DM/head)	Grazing	Silage/hay	
Milk	Housed 190 days per year, grazed 175 days per year	1 cow + 0.25 heifer	44 (cow lactation) + 8 (cow dry period) + 104 (heifer)	6500	1787	2229	3149	
Upland suckler beef	Spring-calving, grass-finishing of weaned calves, 530 kg live weight and 20 months at slaughter	1 calf + 1.087 cow	80 (calf), 52 (cow)	292	674	4851	2506	
Lowland suckler beef	Autumn-calving, water-enishing of weaned calves, \$6 km 1 4 4 4 5 18 months at slaggiter	OCK P	roducti	on	cycle	e , ⁴²⁶¹	1811	
18 to 20 month beef	Spring-born dairy-bred calves, grass	1 calf	d conc	288	1150	1680	1660	
Cereal beef	months at slaughter Continental × dairy-bred bul weight and 12.5 months at slaughter	ige ai	id Colic		iale	0	90.0	
Upland lamb	Half-bred flocks, 0.35 of lambs finished off grazed pasture. Store lambs flashed indoors. 30 kg live weight an 7 at slaughter	uiren	nents &	yie	elds	425	34.0	
Lowland lamb	Pure-bred flocks, 0.6 of lambs finished off grazed pasture. Store lambs finished indoors. 37.5 kg live weight and 7 months at slaughter	1 lamb + 0.667 ewe	28 (lamb), 52 (ewe)	18.8	47.0	375	127	
Pig meat	Housed indoors, heavy bacon, 109 kg live weight at slaughter	1 piglet + 0.045 sow	25 (piglet), 52 (sow)	78.1	283	0	0	
Poultry meat Eggs	Housed 42 days, 2.54 kg at slaughter Housed 385 days, 295 eggs/layer, 60 g/egg	1 chicken 1 hen	6	2.0	4.0 38.6	0	0	

Cultures	Nature de la recolte	1.00	g		
1. Céréales pour le grain					
Froment d'hiver	grain	129.919	94,3	1.224.528	1.213.985
Froment de printemps	grain	1.756	53,7	9.422	9.211
Epeautre	grain	18.458	73,2	135.092	96.718
Seigle (y c. méteil)	grain	293	49,0	1.437	872
Orge de brasserie	grain	258	63,6	1.642	1.642
Orge d'hiver	grain	30.166	91,9	277.187	274.294
Orge de printemps	grain	2.466	53,5	13.202	12.154
Avoine (y c. mélanges de céréales d'été)	grain	3.244	54,5	17.680	14.576
Triticale	grain	3.024	71,2	21.528	21.488
Maïs grain	grain	5.972	119,2	71.159	60.346
Autres céréales	grain	2.928	44,1	12.898	13.402
2. Cultures industrielles					
Plants de pommes de terre	tubercules	831	275,5	22.893	29.069
Pommes de terre hâtives🦱 🌉 🚬	tubercules	141	383,8	5.41	2.732
Pommes de terre de con erva fic 1	tub er (I) s	3 6	476,0		1.761.718
Betteraves sucrières	racines	34.535	863,1	2.980.645	3.421.986
Lin	paille	9.205	59,1	54.444	25.142
Colza et navette	grain	10.646	42,7	45.441	50.582
3. Cultures fourragères					
Betteraves fourragères	racines	947	1.038,3	98.326	86.168
Maïs fourrager	masse verte	53.306	464,4	2.475.317	2.721.486
Pois fourragers	grains secs	625	46,3	2.895	
Fèves et féveroles	grains secs	515	31,2	1.608	
Autres légumineuses	grains secs	977	1.038,3	3.544	
Légumineuses	grains secs				7,222

Statbel, 2018

https://statbel.fgov.be/sites/default/files/files/documents/landbouw/8.1 %20Land-%20en%20tuinbouwbedrijven/L06-2018-PROV-WEB-BE-FR.xlsx

Food in the Anthropocene: the EAT-Lancet Commission on @ 1 healthy diets from sustainable food systems

	Macronutrient intake (possible range), g/day	Caloric intake, kcal/day
Whole grains*		
Rice, wheat, corn, and other†	232 (total gains 0–60% of energy)	811
Tubers or starchy vegetables		
Potatoes and cassava	50 (0-100)	39
Vegetables		
All vegetables	300 (200-600)	••
Dark green vegetables	100	23
Red and orange vegetables	100	30
Othervegetables	100	25
Fruits		
All fruit EAT Lan	cet diet	126
Dairy foods		
Whole milk or derivative equivalents (eg, cheese)	250 (0-500)	153
Protein sources‡		
Beef and lamb	7 (0-14)	15
Pork	7 (0-14)	15
Chicken and other poultry	29 (0-58)	62
Eggs	13 (0-25)	19
Fish§	28 (0-100)	40
Legumes		
Dry beans, lentils, and peas*	50 (0-100)	172
Soy toods	25 (0–50)	112
Peanuts	25 (0-75)	142
Tree nuts	25	149
Added fats		
Palm oil	6-8 (0-6-8)	60
Unsaturated oils¶	40 (20-80)	354
Dairy fats (included in milk)	0	0
Lard or tallow	5 (0-5)	36
Added sugars		
All sweeteners	31 (0-31)	120
Willot et al. 2010		26

Willet et al., 2019

Optimization of the total biomass use efficiency of each rotation

 To feed 25 people per ha eating the diet suggested by the EAT-Lancet commission

Objective

 Minimization of the excess (possible exports) and deficits (required imports) of food and feed commodities

Some first observations

Asbolute difference between DM produced and used to feed 25 people per ha

- Shorter rotations are "wasting" more biomass
- But huge diversity for a same duration

Excess and deficit in commodities

Longer rotations address the recommendations to reduce animal-based foods better

Share of animal-based protein in the diet

Going vegan?

Not all crop products are edible

Year 1	Silage corn	Cereal corn	Sugarbeet	Sugarbeet	Sugarbeet	Potatoe	Rapeseed	Sugarbeet	Sugarbeet	Potatoe	Potatoe	Sugarbeet	Sugarbeet	Potatoe	Sugarbeet	Potatoe	Rapeseed	Sugarbeet	Sugarbeet	Potatoe
Year 2	Winter wheat			Cereal corn			Winter wheat	Winter wheat	Winter wheat		Winter wheat	Winter wheat		Winter wheat		Winter wheat				Winter wheat
Year 3				Winter wheat			Winter Barley	Silage corn	Cereal corn	Silage corn		Spring potatoes	Rapeseed	Rapeseed	Spring Pea	Spring Pea	Spring Pea	Rapeseed	Rapeseed	Rapeseed
Year 4	-	-	-	-	-	-	-	Winter wheat	Winter wheat		Winter wheat	Winter wheat	Winter wheat	Winter wheat		Winter wheat				Winter wheat
Year 5	-	_	-	-	-	-	-	-	-	-	-	_	_	-				"	Cereal corn	Silage corn
Year 6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_			Winter barley
Year 7	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Year 8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Year 1	Potatoe	Sugarbeet	Sugarbeet	Potatoe		_		Spring potatoes	Sugarbeet	Sugarbeet	Sugarbeet	Sugarbeet	Grassland Temp.	Grassland Temp.	Grassland Temp.	Grassland Temp.	Grassland Temp.	Hemp	Hemp	Sugarbeet
Year 2	Winter wheat			Winter wheat			Winter wheat	Winter wheat	W.wheat + W.pea		Winter wheat	Winter wheat	Grassland Temp.	Grassland Temp.	Grassland Temp.	Grassland Temp.	Grassland Temp.		Winter wheat	Winter wheat
Year 3	Rapeseed	Rapeseed	Rapeseed	Rapeseed	Rapeseed	Rapeseed	Rapeseed	Rapeseed	Rapeseed	Rapeseed	Rapeseed	Rapeseed	Silage corn	Cereal corn	-	Cereal corn				Spring potatoes
Year 4				Winter wheat		Winter pea		W.wheat + W.pea	Spring potatoe	W.wheat + W.pea		Winter wheat	Winter wheat	Winter wheat		Winter wheat	Winter wheat		Winter wheat	Winter wheat
Year 5	Cereal corn	Winter wheat	SB/SP	SB/SP	"		Silage corn		Winter wheat	Sugarbeet	Potatoe	Pea/(Faba)bean	Sugarbeet	Sugarbeet	Potatoe	Potatoe	Faba beans	Rapeseed	Rapeseed	Rapeseed
Year 6	L .			Winter wheat				Winter barley	Winter barley			Winter wheat	Winter wheat	Winter wheat			Winter wheat		1	W.wheat + W.pea
Year 7	-	-		Winter barley	-	-	-	-	-			Winter barley	Rapeseed	Rapeseed	Rapeseed	Rapeseed	Rapeseed	Spring Pea	Spring Pea	Silage corn
Year 8	-	-	-	-	-	-	-	-	-	-	-		Winter wheat	Winter wheat			W.wheat + W.pea	Oats	()ats	Winter wheat

BAU- open agricultural system for an open feed and food system

Livestock-banning food system re-localizing agriculture

Hemp

Winter wheat

Faba beans

Winter wheat

Rapeseed

Winter wheat

Spring Pea

Oats

Food system re-localizing agriculture, using livestock as agroecological lever in the rotation

Excess and deficit in commodities

Supported flocks

Are all these systems managable and stable without pesticides?

