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Massive stars, binaries, and Massive stars, binaries, and 
some of their emission some of their emission 

processesprocesses
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What stars are we talking about?

Hertzsprung-Russel 
diagram

Most massive stars in 
the upper left corner

Mass:
Typically larger than 8 – 10 M

sol

Luminosity:
Larger than 104 L

sol
 (most frequently in 

the range 105 – 106 L
sol

)

Temperature:
Larger than 20000 K (up to ~105 K)

Evolution time-scale:
A few/several Myr (up to ~10 Myr)
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A crucial feature of massive 
stars: the stellar wind!

Consequence of the high luminosity
→ strong radiation pressure
→ massive stars lose large amounts of material during their evolution time

Conversion of radiative energy 
into mechanical energy!

What stars are we talking about?
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A crucial feature of massive 
stars: the stellar wind!

Consequence of the high luminosity
→ strong radiation pressure
→ massive stars lose large amounts of material during their evolution time

 Depending on the spectral type/evolutionary stage, typical mass loss rates are 
in the range 10-7 – 10-5 M

sol
/yr 

(mass loss rate of the solar wind ~10-14 M
sol

/yr)

 Ejected material can reach quite high speeds:
Terminal velocities typically of the order 1000 – 3000 km/s

As a result, a huge amount of kinetic power is ejected into the interstellar medium

 [ Usual units are M
sol

/yr and km/s ]

(erg / s)

Important for energy 
budget considerations!

Conversion of radiative energy 
into mechanical energy!

What stars are we talking about?
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The physics of massive stars 
can be viewed/discussed in 
terms of a succession of 
energy conversion processes

Results from a conversion 
of radiative energy into 
kinetic power
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Stellar winds consist of a 
plasma, made of ions and 
electrons, at a typical 
temperature of a few 104 K

→ Optically thick thermal 
bremsstrahlung spectrum

Emission processes from individual stellar winds

Thermal radio emission

Emission spectrum predicted, and measured, 
as a power law with a positive spectral index :
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Conversion of a small 
fraction of the kinetic 
power into thermal radio 
emission

L
radio

Emission processes from individual stellar winds

Thermal radio emission
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The smooth wind is thus able to produce thermal bremsstrahlung in the radio and 
far-infrared domains. Do we expect significant emission processes to operate at 
other wavelengths?

Let's turn to one of the most important features of stellar winds: 
instabilities !

Responsible for a fragmentation of the stellar wind, with different parcels of 
wind material moving at different velocities

→ fragments moving at different speeds will collide

→ intrinsic hydrodynamic shocks 

→ significant heating of the post-shock material

→ thermal energy available to feed thermal emission processes!

Emission processes from individual stellar winds
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Shock physics: 

Rankine-Hugoniot relations for strong shocks

→ post-shock temperature depends on the pre-shock velocity

Pre-shock velocity for intrinsic shocks ~ 300 – 600 km/s

→ post-shock temperatures of the order of a few 106 K

→ stellar winds are expected to be thermal X-ray emitters

Some pioneering works exploring the idea that stellar winds of massive stars 
could produce thermal X-rays:
Lucy & White 1980, ApJ, 241, 300
Lucy 1982, ApJ, 255, 286

Emission processes from individual stellar winds
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L
X
 – L

bol
 relation :

Many observational studies emphasized a likely relation between thermal X-ray 
luminosity (emerging from the stellar wind) and the bolometric luminosity: 

L
X
 / L

bol 
 ~ 10-7

 

Results from a competition between X-ray emission and intrinsic free free absorption 
by the stellar wind material (remember we are talking about soft X-rays, at most at a 
few keV)

Some theoretical validation: (Owocki et al. 2013, MNRAS, 429, 3379)

A linear relation between L
X
 and L

bol
 should exist over a wide range of stellar wind parameters, 

with some deviations expected for very high / low density stellar winds.

Emission processes from individual stellar winds
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Results from a conversion 
of the kinetic power into 
thermal X-rays

L
X

Emission processes from individual stellar winds

Thermal X-ray emission
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High resolution X-ray spectra
→ XMM-Newton/RGS spectrum of  Pup
→ emission line spectrum produced by a hot plasma (Kahn et al. 2001, A&A, 365, L312) 

Emission processes from individual stellar winds

Thermal X-ray emission
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The case of evolved O-type stars :

Denser stellar winds → enhanced intrinsic 
absorption → reduced L

X
 / L

bol
 ratio

Ex: HD16691 and HD14947 (OIf+) 
“presumably single stars”
(De Becker 2013, NewA, 25, 7) 

Low resolution XMM/EPIC spectra, 
fitted with a 1-T thermal model

L
X
 / L

bol
 ~ 10-7.4 – 10-7.5

Thermal X-ray emission

Emission processes from individual stellar winds
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When winds collide...

● Systems made of massive stars (O, B, 
WR…)

● Multiplicity is a crucial feature (binaries, 
triple and higher multiplicity…)

● A large fraction of massive stars are in 
binary systems 

● Variability on the orbital time-scale is 
very important 

● Strong stellar winds collide and create 
strong shocks
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A fraction of the wind 
kinetic power is injected 
into the colliding-wind 
region

When winds collide...
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Shock physics: 

Rankine-Hugoniot relations for strong shocks

→ post-shock temperature depends on the pre-shock velocity

Pre-shock velocity for CW shocks : V
∞
 ~ 2000 – 3000 km/s

→ post-shock temperature of the order of a few 107 K

→ post-shock plasma expected to be a thermal X-ray emitter

Emission processes from colliding winds
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Considering the intrinsic emission 
from the winds in the system 

L
X
 – L

bol
 relation :

L
X,1

 / L
bol,1 

 ~ 10-7

→ L
X,1

  ~ 10-7 L
bol,1 

L
X,2

 / L
bol,2 

 ~ 10-7

→ L
X,2

  ~ 10-7 L
bol,2 

L
X,tot

 = L
X,1

  + L
X,2  

 ~ 10-7 ( L
bol,1 

+ L
bol,2

 ) = 10-7 L
bol,tot

  

→ L
X,tot

 / L
bol,tot 

 ~ 10-7

1 2

Emission processes from colliding winds
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Considering the intrinsic emission
from the winds in the system and
the contribution from the Colliding-

Wind Region (CWR)

L
X
 – L

bol
 relation :

L
X,1

 / L
bol,1 

 ~ 10-7

→ L
X,1

  ~ 10-7 L
bol,1 

L
X,2

 / L
bol,2 

 ~ 10-7

→ L
X,2

  ~ 10-7 L
bol,2 

L
X,tot

 = L
X,1

  + L
X,2  

+ L
CWR

 > 10-7 ( L
bol,1 

+ L
bol,2

 ) = 10-7 L
bol,tot

  

→ L
X,tot

 / L
bol,tot 

 > 10-7

1 2

A luminosity ratio larger than 10-7 is often 
considered as an indication of colliding 
winds contributing to the overall thermal 
X-ray emission → indirect indication for 
binarity !

Emission processes from colliding winds
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Results from a conversion 
of the kinetic power 
injected in the CWR into 
thermal X-rays

Emission processes from colliding winds

Thermal X-ray emission



March 2019 IIST, Trivandrum, India

Cyg OB2 #8A : O6If + O5.5III(f)  

L
X
 / L

bol
 ~ 10-5.6 – 10-5.5

→ high X-ray overluminosity 

(De Becker et al. 2006, MNRAS,371, 1280) 

Multi-observatory, phase-folded 
light curve (P ~22 d)

(ephemeris determined on the basis 
of visible data)

Multiple components model

Emission processes from colliding winds

Thermal X-ray emission
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How many sources of thermal X-rays in this system?

 Stellar wind of component Aa
 Stellar wind of component Ab
 Stellar wind of component B
 Wind collision region Cwab
 Wind collision region CWAB

Where should a variability come from?

 Wind collision region CWAB
 Potentially, the eclipse if the AaAb system

HD167971 :  (O7.5III +  O9.5III) +  O9.5 I 

P
AaAb

 = 3.32 d (circular orbit, eclipsing)

P
AB

 ~ 21 yr (eccentric orbit)

(Leitherer et al. 1987, A&A, 185, 121)

(Ibanoglu et al. 2013, MNRAS, 436, 750)

Emission processes from colliding winds

Thermal X-ray emission
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(De Becker 2015, MNRAS, 451, 1070)

Long period, ~21 yr !
Eccentric orbit → significant variation of the 
separation between 2002 and 2014

CWAB contributes only to a moderate fraction 
of the overall X-ray spectrum
→ the spectrum is not dominated by the 
long period wind collision region

However!
Slight – marginal – variation compatible with an 
eclipse effect between the two observations in 
2002

Significant overluminosity:
L

X
 / L

bol
 ~ 1.3 – 1.8 10-6

Themal X-ray efficiency ratio:
L

X
 / P

kin
 ~ 1.2 – 1.6 10-3

Emission processes from colliding winds

Thermal X-ray emission
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RXTE X-ray light curve 
(2 – 10 keV)

WR140 : WC7pd + O5.5f (III – I)

P ~ 7.9 yr
e ~ 0.9

Pre-periastron

Post-periastron

Chandra gratings 
spectra

(Pollock et al. 2005, ApJ, 629, 482)

Emission processes from colliding winds

Thermal X-ray emission
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Modelling the X-ray spectrum using a hydro + radiative code 
depending on wind parameters 

→ determination of mass loss rates and terminal velocities: 
P : 2.5 10-4 M

sol
 / yr ; 500 – 700 km/s

S : 10-5 M
sol

 / yr ; 3000 km/s 

Eta Car : LBV ? 

P ~ 5.5 yr

(Pittard & Corcoran 2002, A&A, 383, 636)

Emission processes from colliding winds

Thermal X-ray emission
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So far, we have learned that..

- individual stellar winds can produce thermal radio emission

- individual stellar winds can produce thermal X-ray emission

- colliding stellar winds can produce additional thermal X-ray emission

Those features are common among Colliding-Wind Binaries (CWB)
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The sub-class of particle The sub-class of particle 
accelerators :accelerators :

PACWBsPACWBs
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So-called 'standard scenario' for particle acceleration by massive stars
→ Diffusive Shock Acceleration in the wind collision region in massive 
binaries

Particle acceleration in CWBs

Strong shocks likely 
to be active in DSA
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So-called 'standard scenario' for particle acceleration by massive stars
→ Diffusive Shock Acceleration in the wind collision region in massive 
binaries

V : shock velocity jump

Relative energy gain :

Iterative process with escape 
probability at every iteration

Power law distribution :

Energy of the particle calculated using 
a Lorentz transformation

Requirement : velocity vectors of 
particles need to be randomized on 
either side of the shock 

Strong shocks: p ~ 2

(e.g. Longair, 1994, High energy astrophysics – 2nd Edition)

DownstreamUpstream

Particle acceleration in CWBs
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Results from a conversion 
of the kinetic power 
injected in the CWR into 
non-thermal particles

Particle acceleration in CWBs
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The power injected in 
non-thermal particles is 
distributed between 
electrons and hadrons

Particle acceleration in CWBs
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Radiative processes involving relativistic 
electrons:

 Synchrotron radiation
Interaction with the magnetic field

 Inverse Compton scattering
Interaction with the photospheric radiation 

field

 Relativistic bremsstrahlung
Interaction with nuclei in the stellar wind 

material
(most of the time negligible with respect to 

other processes)

Particle acceleration in CWBs
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Among the class of CWBs, about 40 
systems are known to be particle 
accelerators:

Catalogue of PACWBs : 
De Becker & Raucq 2013, A&A, 558, A28

 Most PACWBs are identified thanks to 
synchrotron radiation in the raido domain
(relativistic electrons)

 In one case, there is confirmation of non-
thermal X-ray and gamma-ray emission
(relativistic electrons and protons)

Particle acceleration in CWBs

Let's have a look at their 
non-thermal signatures
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Non-thermal emission Non-thermal emission 
from PACWBsfrom PACWBs
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Synchrotron emission from PACWBs

The radio spectrum is a combination of thermal 
(optically thick) emission from the stellar winds, 
and synchrotron emission produced in the 
colliding wind region (composite spectrum!) → 
spectral index can be neither typical of pure NT 
or T emission

Thermal radio 
emission

Synchrotron 
radio emission
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● Spectral index
● Brightness temp.
● Variability

Synchrotron emission is the most efficient tracer of particle 
acceleration in massive binaries !
→ valuable probe for non-thermal physics in massive binaries

→ Catalogue of ~40 systems

α < 0.6 ( for Sν  prop. to να )

→ deviation w.r.t. pure thermal emission

Component with T
B
 ~106 – 107 K

Emission related to the colliding-wind region
- physical conditions are phase dependent
- orientation effect due to free-free absorption

( De Becker & Raucq 2013, A&A, 558, A28 ) 

http://www.astro.ulg.ac.be/~debecker/pacwb/

Synchrotron emission from PACWBs
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Simulations of radio emission from colliding-wind 
binaries (Dougherty et al. 2003, A&A, 409, 217)

Typical case of a WR + O system

1.6 GHz

22 GHz

Synchrotron emission from PACWBs
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● Turn-over processes  

Synchrotron Self-Absorption (SSA)
- optically thick spectrum with α = 5/2
- active if the number density of NT e is high enough
- not dominant for PACWBs (may contribute for shorter 
period systems : De Becker 2018, A&A, 620, A144)

Razin-Tsytovitch effect
- suppression of the effect of beaming for NT electrons 
embedded in a thermal plasma
- strong suppression of synchrotron emission below a 
cut-off frequency
- may contribute for PACWBs

Free-free absorption (FFA)
- absorption of radio photons by thermal electrons very abundant in the wind plasma
- highly dependent on stellar separation, system orientation, wind properties…
(e.g. Williams et al. 1990, MNRAS, 243, 662 ; Dougherty et al. 2003, A&A, 409, 217) 
- very important for PACWBs, origin of a strong phase-locked variability

Synchrotron emission from PACWBs
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Simulations of radio emission from colliding-wind 
binaries (Dougherty et al. 2003, A&A, 409, 217)

Effect of FFA on the spectrum, as a 
function of the inclination of the system

 i < 0° : WR wind in front
 i > 0° : O wind in front

→ orientation effects are very important !

At some lower frequencies, the intrinsic 
synchrotron emission may be high, but 
severely attenuated by FFA

Inclination i

Synchrotron emission from PACWBs
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Cyg OB2 #8A: binary system with 
a period of about 22 d
(VLA observations)
(Blomme et al. 2010, A&A, 519, 
A111) 

Radio emission variable on the orbital time-scale 

WR140: a binary system with a 
period of about 8 yr
(VLA observations)

(Dougherty et al. 2005, ApJ, 
623, 447)

Synchrotron emission from PACWBs
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HD167971: triple system with a long 
period of about 21 yr
(VLA observations)
(Blomme et al. 2007, A&A, 464, 701) 

Radio emission variable on the orbital time-scale 

Synchrotron emission from PACWBs
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WR147: a system with an very long 
orbital period! 

(MERLIN observations at 5 GHz)
(Williams et al. 1997, MNRAS, 289, 10)

VLBI observations: imaging of the synchrotron 
emission region

Cyg OB2 #5: a multiple O-type system 
including notably a 6.7 yr period! 
(VLBA observations at 8.4 GHz)
(Ortiz-Leon et al. 2010, ApJS, 737, 30)

Synchrotron emission from PACWBs
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HD93129A: a system with an orbital 
period of decades!

(LBA observations at 2.3 GHz)
(Benaglia et al. 2015 A&A, 579, A99)

VLBI observations: imaging of the synchrotron 
emission region

WR140: a binary system with a period of about 8 yr
(VLBA observations at 8.4 GHz)
(Dougherty et al. 2005, ApJ, 623, 447)

Synchrotron emission from PACWBs
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What about the detection of high energy 
NT emission ?

Inverse Compton scattering is 
expected to be active in CWBs

→ what about soft X-ray 
observations (below 10 keV) ?

Soft X-ray spectra are dominated by 
the thermal emission from the 
colliding winds (and from individual 
winds)
→ soft X-rays not adequate (no 
detection of any IC scattering 
component in XMM spectra so far)
→ strong requirement to explore 
hard X-rays

(De Becker 2007, A&ARv, 14, 171) 

High energy NT emission from PACWBs



March 2019 IIST, Trivandrum, India

Inverse Compton scattering

(Blumenthal & Gould 1970, Rev. Mod. Phys., 42, 237)Condidering the high radiative energy density, 
IC scattering is the most efficient cooling 
process for relativistic electrons in a CWR

Energy loss rate:

Typical energy of scattered photons:

For a population of relativistic electrons:

Comparison to synchrotron radiation:

Energy loss rate:

Synchrotron/IC luminosity ratio:

U
mag

 << U
rad

 → IC dominates !

High energy NT emission from PACWBs
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Energy injected in 
relativistic electrons is 
mainly radiated through 
IC scattering, because 
the energy density in the 
radiation field is larger 
than that of the local 
magnetic field

High energy NT emission from PACWBs
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What about emission processes involving relativistic protons?

Neutral pion decay from proton-proton 
collisions (e.g. Cheng & Romero 2005, ASSL, vol. 304)

→ a fraction of relativistic protons can 
interact with thermal material, and finally 
produce -rays

→ in principle, CWB could be -ray 
emitters up to energies limited by the 
energy spectrum of relativistic protons

p + p → 0 + X
0 →  + 
 

However, the interaction gamma-rays 
with the intense ambient radiation field 
yields

 + ' → e+ + e- (pair creation)

→ the radiation field produced by 
massive stars is quite opaque to -rays, 
and a significant attenuation is expected 
 

(Romero et al., 2010, A&A, 518, A12;

Reitberger et al. 2014, ApJ, 789, 87)

High energy NT emission from PACWBs
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Energy injected into 
relativistic protons (and 
potentially heavier nuclei) 
is expected to be partly 
radiated through 
hadronic processes, and 
the residual energy 
contributes to the 
population of Galactic 
cosmic-rays.

High energy NT emission from PACWBs
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Inverse Compton scattering in hard X-rays:

 Several PACWB in the Cygnus region → no 
detection with INTEGRAL (De Becker et al. 
2007, A&A, 472, 905)

 Eta Carinae (very massive transition object) 
→ detected with BeppoSax (Viotti et al. 2004, 

A&A, 420, 527), with INTEGRAL (Leyder et al. 

2008, A&A, 477, L29), and with Suzaku 
(Sekigushi et al. 2009, PASJ, 61, 629) 

 WR140 potentially detected with Suzaku, but 
might be a contamination by a background 
Seyfert galaxy

 (Sugawara et al. 2015, PASP, 67, 121)

Eta Car: extreme CWB with a P ~ 5.5 yr

High energy NT emission from PACWBs
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Detection in -rays:

 Eta Carinae  → detected with AGILE (Tavani et al. 2009, 

ApJ, 698, L142) and with Fermi (Abdo et al. 2010, ApJS, 187, 

460) 

 WR11 potentially detected with Fermi (Pshirkov 2016, 
MNRAS, 457, L99)

 A sample of WR-type CWB investigated after many 
years of observations with Fermi → no detection ! 
(Werner et al. 2013, A&A, 555, A102)

Gamma-ray emission from Eta Car (Farnier 
et al. 2011, A&A, 526, 57)

High energy NT emission from PACWBs
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Can we make some 
predictions about the 
expected emission of 
PACWBs in the high 
energy domain (where 
detections so far are 
rare)?

→ yes, we can!

(del Palacio et al. 2016, A&A, 591, A139)

The long period system HD93129A:
Spectral energy distributions for different situations/orbital phases, 
confronted to sensitivity curves for various observatories
→ significant variability
→ chances of detection depend on the assumed parameters, and 
on the orbital phase
→ strong evidence that elusive high energy detections may 
become more probable if systems are probed at adequate epochs

High importance of models to help to prepare observations!

At the time of the 
radio observations

Close to the epoch 
of the study

At the (assumed) 
periastron passage

High energy NT emission from PACWBs
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Concluding remarksConcluding remarks
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● Colliding-wind massive binaries (CWBs) display a rich and diversified physics

● Many physical processes are at work in various spectral domains, hence the interest of muti-
wavelength investigations

● These systems can be particle accelerators, hence the PACWB status

● PACWB are efficient non-thermal emitters in the radio domain, and are very good candidates for 
high energy non-thermal emission

● These systems offer the opportunity to study the same non-thermal physics as supernova 
remnants, but in a different part of the parameter space and a different geometry

● A better understanding of their physics, considering their full Galactic population, is relevant in 
the context of the study of the sources of Galactic cosmic-rays

Concluding remarks
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Thank you !Thank you !
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