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Abstract

A proof of a conjecture advanced in [1] is presented.
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In [1], a system of equations similar to the following was looked at

∂C

∂t
= −γC −∇· (uC −K·∇C) (1)

∂α

∂t
= −γα + C −∇· (uα−K ·∇α) (2)

Equation (1) can be written in compact notation as

L [C] = 0 (3)

with the linear operator [L] being

L[·] =
∂·
∂t

+ γ ·+∇· (u · −K·∇ ·) (4)

Equation (1) describe thus how a tracer concentration C is transported in a domain Ω by a
divergence-free velocity field u over time t with a diffusion modelled using a positive-defined symmetric
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diffusivity tensor K. A linear decay term with decay rate γ ≥ 0 is also included. All parameters
might change with time t and position x as long as the governing equations remain linear for C and
α.

Usual boundary conditions are prescribed with zero fluxes in the normal direction n to imperme-
able boundaries Γi:

[K·∇C] · n = 0 x on Γi (5)

[K·∇α] · n = 0 x on Γi (6)

At the departure boundary Γdep, zero values for α and unit values for concentration C where used
in the original problem, but we replace it by using a Robin condition with a piston velocity χdep

assumed to be a constant here:

[K·∇C] · n = χdep
(
Cdep − C

)
on Γdep (7)

[K·∇α] · n = χdep (0− α) on Γdep (8)

We can recover the original case by using χdep →∞ and Cdep = 1.
At the arrival boundary Γarr we also use a general Robin condition but nudging the concentration

and age concentration towards zero with constant piston velocity χarr

[K·∇C] · n = χarr (0− C) on Γarr (9)

[K·∇α] · n = χarr (0− α) on Γarr (10)

The present set of equations is a slight generalization of the problem posed in [1] in the sense
that a linear decay term was added (so we can retrieve the original set by letting γ = 0) and that
the Dirichlet conditions or Neumann conditions are replaced by a Robin condition. We recover the
Dirichlet condition if χarr → ∞. For a zero gradient condition χarr = 0. As in [1], zero initial
conditions on C and α are applied.

We take the usual definitions of age a, concentration C and age concentration α as presented in
the CART framework (www.climate.be/cart) such that α = aC .

The conjecture to be proven is that the age for Dirichlet conditions at the arrival boundary Γarr

is lower than the one for zero gradient conditions, a conjecture which is generalized here to

∂a

∂χarr
≤ 0 (11)

1 Green-function approach

G(t,x; t′,x′) is Green function defined by the solution of the following problem:

L [G(t,x; t′,x′)] = δ(t− t′)δ(x− x′) (12)

[K·∇G(t,x; t′,x′)] · n = 0 x on Γi (13)
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[K·∇G(t,x; t′,x′)] · n = −χarrG(t,x; t′,x′) x on Γarr (14)

[K·∇G(t,x; t′,x′)] · n = −χdepG(t,x; t′,x′) x on Γdep (15)

G(0,x; t′,x′) = 0 (16)

where the Dirac function is noted δ(). It can be shown that (for a positive-defined diffusivity tensor
as we assumed in the problem definition) G(t,x; t′,x′) ≥ 0 and that for zero initial concentration C
we have

C(t,x) =

∫ t

0

∫
Γdep

G(t,x; t′,x′
s)χ

depCdep(t′,x′
s)dx

′
sdt

′ (17)

Note that the Green’s function defined also allows for contributions from inside the domain and
therefore allows to calculate age concentration α. The latter indeed satisfies the same equation as C,
except that it has no non-homogeneous part in the boundary condition but has a ”source” term C in
the domain Ω. Hence the solution is simply the superposition of all contributions of these ”sources”
propagated by the Green’s function and reads

α(t,x) =

∫ t

0

∫
Ω

G(t,x; t′,x′)C(t′,x′) dx′dt′ (18)

=

∫ t

0

∫ t′

0

∫
Ω

∫
Γdep

G(t,x; t′,x′)G(t′,x′; t′′,x′′
s)χdepCdep(t′′,x′′

s) dx′′
sdx′dt′′dt′ (19)

Later in the analysis we would like to check how the age-concentration changes when the piston
velocity χarr is changed. Therefore, following the idea of [2], it is interesting to calculate the changes
in the Green’s function ∂G

∂χarr noted Gχ(t,x ; t′,x′). Deriving all equations for the Green’s function
with respect to this piston velocity, we see that it must obey

L [Gχ(t,x ; t′,x′)] = δ(t− t′)δ(x− x′) (20)

[K·∇Gχ(t,x ; t′,x′)] · n = 0 x on Γi (21)

[K·∇Gχ(t,x ; t′,x′)] · n = −χdepGχ(t,x ; t′,x′) x on Γdep (22)

[K·∇Gχ(t,x ; t′,x′)] · n = −χarrGχ(t,x ; t′,x′)− G(t,x; t′,x′) x on Γarr (23)

Gχ(t, x ; t′,x′) = 0 (24)

i.e. again the same set of equations as the problem on C, except for a ”source” term −G(t,x; t′,x′)
on the boundary Γarr instead of the departure boundary. Hence the solution has the same structure as
(17) but where χdepCdep is replaced by −G(t,x; t′,x′) and integration is done on the arrival boundary
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∂G
∂χ

= Gχ(t, x ; t′,x′) = −
∫ t

0

∫
Γarr

G(t,x; t′′,x′′
s)G(t′′,x′′

s ; t′,x′) dx′′
sdt′′ ≤ 0 (25)

We are now ready to proceed to the demonstration. First we rewrite the age a as

a =
α

C
=
α/χdep

C/χdep
=
α̃

C̃
(26)

with

C̃(t,x) =

∫ t

0

∫
Γdep

G(t,x; t′,x′
s)C

dep(t′,x′
s) dx′

sdt
′ (27)

α̃(t,x) =

∫ t

0

∫
Ω

G(t,x; t′,x′) C̃(t′,x′) dx′dt′ (28)

=

∫ t

0

∫ t′

0

∫
Ω

∫
Γdep

G(t,x; t′,x′)G(t′,x′; t′′,x′′
s)Cdep(t′′,x′′

s) dx′′
sdx′dt′′dt′ (29)

The conjecture ∂a
∂χarr ≤ 0 is true if

C̃
∂α̃

∂χarr
− α̃ ∂C̃

∂χarr
≤ 0 (30)

or

∫ t

0

∫
Ω

C̃(t,x)Gχ(t,x; t′,x′) C̃(t′,x′) dx′dt′ +

∫ t

0

∫
Ω

C̃(t,x)G(t,x; t′,x′)
∂C̃(t′,x′)

∂χ
dx′dt′

≤
∫ t

0

∫
Ω

∂C̃(t,x)

∂χ
G(t,x; t′,x′) C̃(t′,x′) dx′dt′ (31)

All terms are negative, but there is a strong symmetry in terms 2 and term 3 which will be shown
to cancel each other. Exploiting the expression (17) and (25) we can rewrite the inequality to prove
as ∫ t

0

∫
Γdep

∫ t

0

∫ t′

0

∫
Ω

∫
Γdep

(H1 +H2 −H3) Cdep(t′′′,x′′′
s )Cdep(t′′,x′′

s)dx′′
sdx′dt′′dt′dx′′′

s dt′′′ ≤ 0 (32)

H1 = G(t,x; t′′′,x′′′
s )Gχ(t,x; t′,x′)G(t′,x′; t′′,x′′

s) (33)

H2 = G(t,x; t′′′,x′′′
s )G(t,x; t′,x′)Gχ(t′,x′; t′′,x′′

s) (34)

H3 = Gχ(t,x; t′′′,x′′′
s )G(t,x; t′,x′)G(t′,x′; t′′,x′′

s) (35)
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and finally

∫ t

0

∫
Γdep

∫ t

0

∫ t′

0

∫
Ω

∫
Γdep

∫ t

0

∫
Γarr

(F1 + F2 −F3) Cdep(t′′′,x′′′
s )Cdep(t′′,x′′

s)dx′′′′
s dt′′′′dx′′

sdx′dt′′dt′dx′′′
s dt′′′ ≥ 0

(36)

F1 = G(t,x; t′′′,x′′′
s )G(t,x; t′′′′,x′′′′

s )G(t′′′′,x′′′′
s ; t′,x′)G(t′,x′; t′′,x′′

s) (37)

F2 = G(t,x; t′′′,x′′′
s )G(t,x; t′,x′)G(t′,x′; t′′′′,x′′′′

s )G(t′′′′,x′′′′
s ; t′′,x′′

s) (38)

F3 = G(t,x; t′′′′,x′′′′
s )G(t′′′′,x′′′′

s ; t′′′,x′′′
s )G(t,x; t′,x′)G(t′,x′; t′′,x′′

s) (39)

For the integration of F2 we can exploit∫
Ω

G(t,x; t′,x′)G(t′,x′; t′′′′,x′′′′
s )dx′ = G(t,x; t′′′′,x′′′′

s ) (40)

meaning that the distribution at time t and position x due to a Dirac at moment t′′′′ x′′′′
s can be

obtained by looking what looks the solution at a later moment t′ in any place of the domain x′, i.e.
G(t′,x′; t′′′′,x′′′′

s ) and calculate how this new ”initial condition” would propagate to time t. Similarly
for integration of F3 we can use∫

Ω

G(t,x; t′,x′)G(t′,x′; t′′,x′′
s)dx′ = G(t,x; t′′,x′′

s) (41)

But then the remaining integrals of F2 and F3 are the same as the running parameters t′′,x′′
s and

t′′′,x′′′
s (over the same boundary Γdep) can be interchanged in one of them, yielding then the same

expression for the integrals of F2 and F3.
Q.E.D.
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