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Predictions in Overdispersed Series
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Predictive Likelihood

PHILIPPE LAMBERT*
University of Liege, Belgium

ABSTRACT

The generalized autoregression model or GARM, originally used to model
series of non-negative data measured at irregularly spaced time points
(Lambert, 1996a), is considered in a count data context. It is first shown
how the GARM can be expressed as a GLM in the special case of a linear
model for some transform of the location parameter. The Butler approxi-
mate predictive likelihood (Butler, 1986, Rejoinder) is then used to define
likelihood prediction envelopes. The width of these intervals is shown to
be slightly wider than the Fisher (1959, pp.128-33) and Lejeune and
Faulkenberry (1982) predictive likelihood-based envelopes which assume
that the parameters have fixed known values (equal to their maximum
likelihood estimates). The method is illustrated on a small count data set
showing overdispersion. © 1997 by John Wiley and Sons, Ltd.
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INTRODUCTION

The goal of the present paper is to apply methods existing in conditional inference to make
predictions in time series of non-normal data. We shall focus on the particular case of
overdispersed count data, although the presentation is sufficiently general to be applied in other
contexts. The data set of interest concerns the growth of three closed colonies of Paramecium
aurelium in a nutritive medium on a 20-day period. The observed counts are plotted in Figure 1.
Details concerning the experiment can be found in Diggle (1990, p.8). We have (artificially)
truncated one of the series at day 10. We propose to build likelihood prediction envelopes for
the discarded part of the series and to check that the actually observed values fall in these
intervals.
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Growth of colonies of paramecium aurelium
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Figure 1. Growth of three closed colonies of Paramecium aurelium in a nutritive medium (Gause, 1934):
fitted profile and data

The first step in the forecasting procedure is to build a likelihood for the observed data. Various
techniques have been proposed in the literature to model series of counts. Most of them assume
that the data are equally spaced and seem to suggest that extension to continuous time can be
done easily, although this is often not true. The model considered for the observed part of the
series is based on the generalized autoregression model (GARM) (Lambert, 1996a) originally
used with series of non-negative data. This flexible tool, taking serial association into account,
can be used to model virtually any type of nonnormal series of data. It is presented more
specifically in a count data context in the next section.

A rewriting of the generalized autoregression model as a classical generalized linear model
(GLM) is then proposed. This enables us to use the classical iterated weighted least squares
(IWLS) algorithm to estimate the linear parameters in the model when the two serial association
parameters (and possibly scale or shape parameters) are fixed. Only a non-linear optimizer is then
required to obtain the maximum likelihood estimates (MLEs) of these parameters.

Our goal is to construct a likelihood function L(z) where the datum z to be predicted plays
the same role as a parameter of interest in an inference procedure. The most likely value Z such
that

max L(z) = L(2)

would then be our point prediction. Similarly, p% likelihood prediction interval could be
defined as

{z: L(z)/L(Z) > p%)}
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The classical likelihood extension in this context is based on the relative likelihood described in
Fisher (1959, pp. 128—33) and in Lejeune and Faulkenberry (1982). It consists of two parts: the
first is the contribution to the likelihood made by the observed data, as provided, for example, by
the GARM; the second is related to the observation to come. The profile likelihood

L(z) = L(z; 0 = (p, §, B, D)) = max L(z. 0)

obtained by replacing the serial association (p and ¢; see the next section), the regression (f) and
other nuisance (v) parameters by their respective MLEs in the relative likelihood L(z, 6), can be
used to make inferences about the unobserved datum z. One major criticism of this approach is
that it does not take into account the uncertainty attached to each of the estimated parameters.
The profile likelihood just assumes that the estimate 8 of the nuisance parameters are the true
(or ‘population’) values. A consequence of this in our setting is an underestimated width for
likelihood prediction intervals. One way round this difficulty (Hinkley, 1979) is to condition on
the maximum likelihood estimates @ which have a given distribution. The resulting conditional
density can be approximated using the modified profile likelihood (see the third section; Lindsey,
1996, p.112). There is a considerable literature on the subject which often relies on known
analytic forms for the MLEs or on a substantial reduction of the data to sufficient statistics
(Butler, 1986, 1989; Kalbfleisch and Sprott, 1970; Hinkley, 1979; Bjornstad, 1990; and, indirectly,
Barndorff-Nielsen, 1983, 1993). For a review of prediction techniques based on the likelihood, see
Bjornstad (1990). Unfortunately, with distributions outside the exponential family, problems
related to the evaluation of jacobians in the modified profile likelihood arise. The approximate
predictive likelihood Lg(z) proposed by Butler (see the third section 3; Butler, 1986, Rejoinder)
was found more flexible in this context. Note also that the restriction to a linear form for the
mean response in the generalized autoregression model (see the next section; Lambert, 1996a)
simplifies the procedure. But even with such simplifications, a simple plot of the modified
predictive likelihood is computationally intensive because it requires the numerical evaluation of
the new maximum likelihood estimates @ for each value of z considered. From this plot of z, p%
(Butler approximate) prediction intervals

{z: Lp(2)/Lp(Z) > p%}

can be derived where Z is the point prediction maximizing Lg(z). The correction to the
conventional (Fisher) relative likelihood prediction intervals, not surprisingly, results into a small
bias correction and slightly wider intervals. Note that this last effect is not that marked in our
example. But the correction obtained by the technique might be more substantial with shorter
series and smaller observed counts, or if all series had been truncated at day 10.

THE GENERALIZED AUTOREGRESSION MODEL

In this section we propose to review the ideas underlying the generalized autoregression model
(GARM). It was originally considered in a completely different setting in Lambert (1996a). The
problem of interest was then the modelling of series of dog blood parameters observed at

© 1997 by John Wiley & Sons, Ltd. J. forecast. 16: 195-207, 1997



198 Journal of Forecasting Vol. 16, Iss. No. 3

irregularly spaced time points. The response variables were typically non-negative and were
shown to require distributions other than the usual normal and log-normal alternatives. This led
us to develop a general methodology for modelling series of non-normal data. Here, we propose
to illustrate the technique on the count data of the previous section. Instead of the traditional
Poisson distribution, we have chosen the negative binomial which can deal with overdispersion.
Basically a chosen transform of some location parameter (such as the mean response) is expressed
as a function of the explanatory variables (here, time #;;) plus one extra term accounting for the
serial association. Mathematically speaking, denote by f(y; |, {vi1»---» ¥ ;—1}; vi) a distribu-
tion (not necessarily a member of the exponential family) for the response (conditional on past
observations) where y; and y;;, respectively, denote the response and some location parameter for
unit i(i =1,...,7) at the jth (j = 1,...,n;) sampling time ;. The vector v; stands for other
parameters such as scale or shape parameters. Note that v; can include parameters common to all
the series. Hence the vector of nuisance parameters might just be a scalar independent of 7, as in
the example below. More specifically, in our example, we have considered the following mean
parameterization for the negative binomial

g+ ( w N v Y _,
Pr(Y; :J’g,') = . < s :f(y[/Hyil’ ---’yi,j—l}’:“ijvv) (D

yi!lbv) v+ w; v+
where
{ie {1,2,3},ny =n, =19,n3 = 10
V> O,yij €{0,1,2,...}, E(Yy) = i > 0
Denote by

e g(.) the desired transformation of the mean, or ‘link function’ (as in the GLM terminology).
One could, for example, decide to model the log of the mean in the Poisson or the negative
binomial distribution.

e r;, the residual for unit i at time #; on the g-scale, defined by

{wzaw—ﬁm

rip = 0

where f stands for the regression parameter and x;; for the vector of regressors at time ¢;. This
definition for the residual is rather arbitrary, as pointed out by Lindsey (1993, p. 56). Note
also that non-linear forms can be considered for the systematic part of the model. In our
specific case, if we decide to model the log of the mean as a polynomial function of degree ¢
(say), then one would set

g() =log(), x} = (1, 15, ... 19), B; € RY*!

The residual r;; is then the ‘unexplained’ part of the response on the log-scale. It is illustrated
on Figure 2 in the case ¢ = 1. Note that this plot is typical when dealing with serially
associated observations: residuals observed at close time points tend to be of the same sign
and order.
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tij

Figure 2. Typical plot of serially associated data against time

o 1 the cumulated residual for unit i at time 7; on the g-scale, defined by
= e_¢A’ffrﬁ_/_1 + 1y

. =0

q

C _ —QAL;, c
wy =e Wi i1+ 1

c _
Wy =10

where At; = tl, t;j—1 and 0 < ¢. Thus 1 - 1s a weighted sum of past residuals, with weights
defined by w{. Then, the idea is to use rf; | as a forecast for the residual at the following
observation tlme tij. Note that ¢ will be modelhng the relative importance of former residuals
in the prediction of this last quantity.

Then we model the g-transform of the location parameter as

C
Sluy) = X[ + &M =L e
Wiisi
where 0 < p.

The first term in equation (2) corresponds to the usual modelling of the covariate influence
on the response in generalized linear models. This is the solid line in Figure 2. The second term
is proportional to the last cumulated residual that we hope to be close to the yet unobserved
residual rj;. Note that this residual correction is decreasing with the time elapsed (A#;) since it
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has been observed. A large value for p makes the second term meaningless, giving back the
independence model. We refer the reader to Lambert (1996a) for more details.

We now propose to formulate the GARM in such a way that it can be handled by software like
GLIM, S-Plus or SAS, if one restricts attention to distributions in the exponential family and to
linear models for the systematic part. Consider the GARM model in equation (2) with the same
notation as above. Then one can show that

gluy) = x| B
g(itn) = X5HB + e "22[g(y;y) — x] B
=[x — e PAex, 1T B + e PAg(y,)

or [0 = XEB] + ¢ Ly, — X
1 4+ e— %A

—dArxnAT — bAs
Xn — o bA X2 T € PAt2Xa B+ cmrhio g(ypn) + e~ PMag(y,)
i3 1 + e—%Ain 1 + e~ %A

gu) = XITzﬂ +

More generally, if we define as an offset, some fixed regression parameter in a regression model,
we have

dT
g(uy) = x;; B+ offset;; 3)
where
x¢ .
oA Xij—1
X?- = X;j — € pALy BT
i v we
ij—1

c —pAtjj ¢
Xl/ = Xjj + e P ”X[,
c

j—1

X = X (4)
¥ = gy +e Py
“/?1 = g(vn)
Vi
offseti,- — e PAG LLIT D

wl?’ i1
From equation (3), we conclude that, for fixed values of p and ¢, the GARM can be expressed as
a GLM where, for each unit, and some observation time ¢,

e Any row xgr of the design matrix can be expressed as the difference between the original
design matrix row xijT and some weighted average of design matrix rows from previous
observation times.

e An offset, which is a weighted average of the last observation on the g-scale and the previous

g-observations on that unit, is introduced.

This formulation will be particularly useful below to compute modified or approximate
predictive likelihoods. We give more details in the Appendix on how to use GLM software to fit a
GARM to the illustrative data set.
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LIKELIHOOD PREDICTION ENVELOPES

Let us assume that a suitable model has been found for the observed data and that the
contribution

Sy s yig—ads s vi)

to the likelihood for each observation is available.

We shall restrict our attention to likelihood based prediction methods. Suppose that we want to
predict an extra observation z on the kth (say) series at some given time ¢ = #;,, 1. As already
mentioned in the introduction, one naive but simple way to make predictions is to consider the
profile predictive likelihood (Fisher, 1959, pp. 128—33, Lejeune and Faulkenberry, 1982):

LY y) = LGy B, )]_[]_[f(yl, Wit A9

where z stands for the observation to come on unit k& (which now plays the role of the parameter
of interest in the likelihood), y; denotes the set of observations on unit 7, and ,&f;) and 052),
respectively, denote the MLEs of y; and v; given {y;,...,»;, 2} and the observations on the
other series. The symbol (z) as superscript is used to make a distinction between the MLEs
computed from the likelihood including the contribution of the unobserved z datum and the
‘classical’ MLEs computed using only the observed data contribution to the likelihood. More
precision is achieved by estimating the model parameters using a likelihood based on all the series
instead of using the sole likelihood contribution from the series of interest. Note that the first
element in the profile predictive likelihood is related to the observation to come, whereas the
others are the contribution of the observed data.

As already mentioned, assuming the unknown parameters to be fixed at their MLEs is not
realistic (Butler, 1986): hence the need for likelihood methods based on distributions conditional
to the maximum likelihood estimates of the nuisance parameters. Deriving such quantities is not
an easy task and except in very special circumstances one has to approximate the conditional
distribution. The so-called Barndorff-Nielsen (1983) p*-formula provides an approximation to
the distribution of MLEs given an ancillary statistic. The required (approximate) conditional
distribution can then be derived yielding

* z 2)\|— 0 0
LGy s y) = LETyg oyl JO@9) 12 569 (5)
where 87 = (BT, vl ... vT)) stands for all the parameters in the model such as the regression

parameters f defining ,u,/ and the nuisance parameters; J© )(6(‘)) is the observed information
matrix about 8 computed at the MLEs for a given value of the unobserved data z, i.e.

& log f(z 1y 6)
90007

n Zzaz log f(yy i -  yij—15: 6)

JOO®y =
@ 0=62 TS 960967

6=6?

Unfortunately the last factor in equation (5) is particularly tedious to compute because it
requires the analytical expression of the MLEs, which, outside the exponential family, are usually
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impossible to determine. In such settings, Butler (1986, Rejoinder) proposes an approximate
predictive likelihood that can be evaluated with any type of distribution because it only requires
the maximum likelihood estimates of the nuisance parameters based on {y?,...,y7, z}:

Ly(z1Y1s- o ¥) = LGy, - YL TO@D) 2| HOD)HT (89) (6)

with

& log f(z 1y 6)

H(99) =
@) a0y, ....yH}

e log f(yyl{yirs - vij—1}: 6)
+ZXJ: aeayl,....yH)

g:é(f) 0:@‘3)

As briefly explained in the original paper, this last formula for the conditional likelihood can be
derived using a Taylor series expansion for the joint density of the observed and unobserved data
about the nuisance parameter MLEs, and by dividing the whole by a normal approximation to
the joint distribution of the nuisance parameters. Using the inverse of the Fisher information
evaluated at 0 as an approximation to the covariance matrix of the above normal distribution
simplifies the final formula, yielding equation (6).

As already mentioned in the introduction, the aim of this paper is to construct likelihood
prediction envelopes. By a p% likelihood prediction envelope, we mean a succession of p%
(Butler approximate) predictive likelihood intervals computed at the time points of interest.
These likelihood intervals are obtained in the same way as with a traditional parameter likelihood
(Kalbfleisch, 1985), the role of the parameter here being played by the unobserved quantity.
We have not tried to compute simultaneous prediction intervals, to make an analogy with the
frequentist simultancous confidence intervals. In our view one is more interested by what is
‘likely’ to be observed in the future at one given time point independently of what the other
predictions are. Plotting an envelope is more a way to summarize graphically a series of
independent results than giving artificially related statements. However, a simultaneous approach
is feasible, but this is technically far more difficult, particularly in a non-normal setting, because it
requires the computation of N,- (and thus possibly large) dimension normed likelihood regions
(if one wants to predict NV, unobserved data). Finally, note that a method for modelling series of
data observed at unequally spaced times is required because the time at which the prediction is
made is (in practice) totally arbitrary. A second (but not rigorous) choice would be to proceed
step by step by using a conditioning argument. The observation at time # ,, 1 could be predicted
conditional on the last observation; the one at time #; , 42 could be derived by conditioning on
the first-step prediction; and so on (with accumulation of errors) until the time of interest has
been reached. This can be useful when the point forecast is really what interests us, but this
becomes far more complicated when prediction intervals are required.

APPLICATION
Applying the theory of the previous sections to construct a likelihood prediction envelope for
the truncated part of the introduction data set is the subject of this section. The full data set has
been studied by Diggle (1990, pp. 155) who proposed a quartic polynomial in time to model the

observed growth curve. Lambert (1996b) uses a generalized form of the logistic growth curve
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(Nelder, 1961, 1962) to take into account the asymptotic behaviour of the colony sizes and
compares it with the quartic polynomial fit. It was noticed that both solutions fit equally well
empirically in the observed time range, but that the generalized logistic form should be
preferred because it is more sensible than polynomials to model biological mechanisms of
growth.

However, because forecasts are made in the observed time range, and in order to illustrate the
expression of the GARM as a GLM, we have decided to present the construction of the
likelihood prediction envelopes with the quartic polynomial (and thus linear) model. Note that
the same approach can be used with the generalized logistic form, but this would require the use
of specially written FORTRAN of GAUSS (in our case) code to compute MLEs.

As already pointed out in Lambert (1996b), a negative binomial distribution seems to be more
adapted than the Poisson alternative.

The influence of time as well as of any other explanatory variable on the mean response y; on
unit i at time #; can be modelled using the regression

log(u;) = xg.rﬁ + offset;;

jointly with a GARM to take serial dependence into account. For a quartic polynomial in time,
take xi]T =(Lt,..., tj-}); xg- can be deduced from equation (4). Note that the GARM appears in
the regression equation through the offset and the transformed design matrix X¢. We refer the
reader to the Appendix for details on the estimation procedure.

If the negative binomial parameter v and the serial association parameters p and ¢ were
known, then one could simply compute the regression parameter MLEs using the IWLS algo-
rithm. Taking a grid of values for the three unknown parameters might be one solution to
determine the MLEs. In this example we have used the non-linear optimizing procedure PROC
OPTMUM in GAUSS. The corresponding MLEs and fit are respectively displayed in Table I
and Figure 1. The fitted profiles displayed on this figure are not smooth curves because
corrections due to serial association were added to the polynomial contribution.

Table 1. Parameter MLEs computed on the
Paramecium Aurelium data set using a
logistic regression jointly with a GARM

Par. Est.

v 63.38

Serial association Par.

¢ 0.2786
o 0.7685

Regression Par.

Bo 0.6804
B 1.104

B —6.493% 1072
B 7.550x 10~
B 2.260x 103
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Figure 3. Growth of three closed colonies of Paramecium aurelium in a nutritive medium (Gause, 1934):
predictions and likelihood prediction envelope for the artificially truncated series

The next step is the computation of the Butler approximate predictive likelihood for various
values of z at the time point of interest. This can be done in three steps:

(1) Given the likelihood based on the observed data and z, compute the MLEs of the eight
parameters in the model (see Table I). .

(2) Compute the Jacobian J®(6“)) and the matrix H(6%)) at the MLEs from step 1.

(3) Compute the approximate predictive likelihood using equation (6) together with the results
of the first two steps.

In our example, the procedure has been simplified by only conditioning on the regression
parameter estimates. This reduces the dimension of the Jacobian and of the H matrices from
eight to five. Of course, it is not necessary to use numerical methods to compute the J and H
matrices: analytic forms are easy to derive. This point is essential to ensure a reasonable rapidity
to the procedure. Indeed one has to repeat the three above-described steps for different values of z
to first determine the forecast Z (which maximizes the approximate predictive likelihood) at the
time point of interest. Once Z is known, the predictive likelihood is rescaled by dividing it by its
maximum value. The 10% (say) predictive likelihood interval can then be determined. This can
be done using, for example, the secant method for determining the zeros of a function. This
method has the advantage of not requiring the derivative of the predictive likelihood (at the cost
of a function evaluation).

The corresponding results for the Paramecium aurelium data set are displayed in Figure 3. Two
approaches were used to compute the 10% likelihood prediction envelope. The first was based
on the Fisher predictive likelihood which assumes that the parameters are known (and equal to
their MLESs). The second method is the one described above. As can be seen from Figure 3, there
is a small bias correction and the likelihood prediction envelope derived using the Butler

J. forecast. 16: 195-207, 1997 © 1997 by John Wiley & Sons, Ltd.



Philippe Lambert Predictions in Overdispersed Series of Counts 205

approximation is slightly wider, reflecting the extra uncertainty on the regression parameters
values. It would probably be even wider if all eight parameters were used when conditioning. The
correction with respect to the Fisher method is not very important in this setting. We would expect
larger corrections with smaller counts and shorter series. Finally, note that the actually observed
data fall well within the 10% likelihood prediction envelope (whatever the chosen method).

DISCUSSION

In this paper we have shown how to express the generalized autoregression model (Lambert,
1996a) or GARM as a GLM when a linear model for a given transform of the location parameter
is chosen. This enables the use of the IWLS algorithm which is available in most statistical
software. However, a non-linear optimizer has to be used to determine the MLEs of the serial
association, shape and scale parameters. The example considered in the previous section involves
only three such parameters.

The Butler approximate predictive likelihood (Butler, 1986, Rejoinder) has been used to
compute likelihood prediction envelopes. The resulting likelihood prediction intervals were
shown to be slightly wider than the Fisher (1959, pp. 128—33) intervals, although the size of the
correction might be more important in other settings. Moreover, a small bias correction was
pointed out. Other types of correction to the usual profile likelihood are available in the literature
(Barndorff-Nielsen, 1983; Cox and Reid, 1987; Davison, 1986, 1987; Fraser and Reid, 1989), but
they are often either uncomputable outside the exponential family or unadapted to a prediction
problem. For example, the Cox and Reid (1987) adjusted profile likelihood requires the
prediction (seen as a parameter in the likelihood) to be information orthogonal to the regression
parameters, which, in a prediction context, is not very sensible. Thus the choice of the Butler
approximate predictive likelihood was more pragmatic than theoretical.

APPENDIX

Here we show how to use GLM software to fit a negative binomial autoregression model to a data

set. One common way to fit the negative distribution is to take advantage of the similarity

between its likelihood and the binomial likelihood. Indeed, rewrite equation (1)

(y'[/ + ) },/(1 _
y'r(v)

and compare this formula with the binomial likelihood contribution

PI‘(Y[/ = yi/) = )

njj A

Pr(Y = y) = l
ij ij yij!(”:/ yU)| i

(1 —

for an observed proportion y;/n; where n;; is some number to be determined. Setting
nj = y;+v
and fitting (for a fixed value of v) a binomial distribution to the proportions

{y,»j/nij:1<i<1,0<j<ni}

© 1997 by John Wiley & Sons, Ltd. J. forecast. 16: 195-207, 1997
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we get the same conditional (on v) MLEs 7;; as if we had maximized the negative binomial
likelihood directly over m;. Of course, it is possible to include explanatory variables as in the
autoregression model of equation (3). This can be reformulated as a binomial (‘logistic’)
regression using the relation

Tj

BYy) = my = vy — my

Equation (3) then becomes

T
1 — TCjj

log = x?jrﬁ + offset;j

where
offset;/ = offset; — log(v)

Using this trick and a GLM package, the regression parameter 8 can be estimated for fixed values
of v and of the serial association parameters p and ¢ (present in Xg- and offset;).
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