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Summary. Our focus is on the joint analysis of longitudinal non-normal

responses and early discontinuation in (pre)-clinical trials. Separate mod-

els are fitted to the two series (response and discontinuation) to account for

covariate and time e ects. The serial dependence and the dependence be-

tween response and drop-out are also modelled. This is done using particular

dependence functions, called copulas. Copulas are used to create a joint dis-

tribution with given marginal distributions. Applications are given for the

analysis of heart rate/morbidity in toxicology and pain severity/intake of res-

cue medications in a trial on migraine. Using copulas, the level of dependence

between two variables remains invariant to changes in the marginal distribu-

tion of either variable. This proves interesting in modelling the association

in a longitudinal setting when responses change over time.
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1. Introduction

In many longitudinal studies, subjects drop out of the trial before completion.

This produces unbalanced sets of data with unequal numbers of observations

per subject. In addition to the longitudinal response, the drop-out rate can

also be interesting to analyze. This was the case in a recent migraine trial

in which drop-out occurred after the intake of a rescue medication (RM).

Both the pain severity profile and the rate of RM intake can be analyzed to

provide evidence of a potential treatment e ect. Standard statistical software

is available to analyze unbalanced repeated and survival data separately. But

when the drop-out process is not independent of the response - e.g. when

patients tend to take a RM as their pain remains severe - a separate analysis

of the two variables can bias the results.

Rubin (1976) introduced and Little and Rubin (1987) developed a taxon-

omy to distinguish several types of missing data according to their association

to the response. The non-response process is termed missing completely at

random (MCAR) when it is independent of responses. It is missing at ran-

dom (MAR) when conditionally independent of the unobserved response(s)

given the observed data. When neither MCAR nor MAR hold, it is termed

missing not at random (MNAR). The analysis of repeated measures with non

random drop-outs has been discussed by various authors. Likelihood meth-

ods were used by Diggle and Kenward (1994) for continuous responses and by

Molenberghs, Kenward and Lesa re (1997) for discrete ordinal responses. In

the two cases, the joint density f Y , D of the response vector Y and drop-out
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time D is factored as f Y f D | Y . These classes of models are known as se-

lection models. The conditional distribution of (D |Y) is typically modelled

as an event-time regression including Y as covariate. A distinction between

MCAR, MAR and MNAR processes is made based upon the responses which

have to be included in the modelling of f D | Y .

Another factoring is f Y | D f D . This is known as pattern mixture models.

This approach stratifies the data over the di erent patterns (e.g. times) of

drop-out and then applies a di erent model to each pattern. An application

is given by Little (1993). A taxonomy equivalent to that of Rubin (1976)

was developed by Molenberghs, Michiels, Kenward and Diggle (1998) in the

framework of pattern mixture models.

Both selection and pattern mixture models have merit in either the lon-

gitudinal or the survival settings but the interpretation of parameters is dif-

ferent in the two models. A marginal and a conditional model are explicitly

available in the two cases. The conditional model applies to the drop-out

process in a selection model and to the response in a pattern mixture spec-

ification. The transformation from one probability model to the other is

generally not straightforward (Little, 1994).

When the two conditional models f Y | D and f D | Y are of direct inter-

est, Molenberghs, Michiels and Kenward (1998) have developed a pseudo-

likelihood method for their joint analysis. In this paper, we focus on the

specification of marginal models f Y and f D for the response and drop-out

indicator, respectively. We develop a likelihood method that permits a valid

joint inference on these models when drop-outs are not MCAR. To do so, we

create a joint distribution for Y and D in which the dependence between the
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marginal distributions is modelled using copulas.

A copula C (·) is a multivariate distribution on [0, 1]J , where J is the

variable dimension. Sklar (1959) showed that for any set of random variables

Z1 , ..., Z J with univariate marginal distributions F 1(z j ), the construction

F J (z1 , ..., zJ ) = C [F 1(z1), ..., F 1(zJ )], (1)

generates a J -variate joint distribution for the Z j . Hence, we propose to use

parametric families of copulas to generate a joint density f Y , D with marginal

densities f Y and f D . Given f Y , D , a likelihood-based analysis is possible

to jointly estimate the parameters of the margins and of the copula which

specify the dependence structure. Since the dependence embodied in the

copula does not depent on the margins, its parameters could also be estimated

nonparametrically (Shih and Louis, 1995; Genest et al., 1995).

As a joint distribution is obtained whatever the marginal distributions

F 1(z j ) involved in (1), copula models can thus evenly be applied to contin-

uous or to non-continuous responses. Oakes (1994), Shih and Louis (1995)

and Wang and Wells (2000) use copulas to model multivariate survival data.

Meester and MacKay (1994) gave an application to the modelling of clus-

tered categorical data. Trégouèt, Ducimetière, Bocquet, Visvikis, Soubrier

and Tiret (1999) presented a copula model for the analysis of familial bi-

nary data. In this paper, we consider longitudinal data of either continuous

or discrete (ordinal) type and we also use copulas to model the dependence

between repeated responses. The techniques proposed by Lambert and Van-

denhende (2002) and by Vandenhende and Lambert (2000) are used to model

the dependence in continuous and ordinal data respectively.
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The layout of the paper is as follows. Notations are introduced in Sec-

tion 2. The joint likelihood for repeated responses and drop-outs is given in

Section 3. Copula models for repeated measures are defined in Section 4 and

models for the dependence between response and drop-out are in Section 5.

In Section 6, we present the copulas that will be used in the examples and

review their dependence properties. Two examples are given in Section 7.

A continuous response (heart rate) is modelled in a toxicology study and a

discrete ordinal response (pain severity score) is considered in a clinical trial

on migraine. A discussion of key results is then made in Section 8.

2. Some Notations

We consider longitudinal studies with the same number  of measurements

scheduled for all subjects. For simplicity, notations are introduced with-

out subscript for the subject’s indicator. Let the random vector Y be the

complete set of  measurements on a subject and let O be the associated

response indicator. For a particular realization (y, o), the elements of o take

the value 1 when the corresponding element of y is observed and a value 0,

when missing. This paper does not consider intermittent but only monotone

patterns of missing data (i.e., drop-outs). In this situation, the information

contained in the vector O can be replaced by a random variable D indexing

the first time td at which no response is available for the subject. We shall

set d =  + 1 for completers. A series of covariates is recorded together

with the data. Parametric models indexed by a vector of parameters  will

be considered to relate covariates to the responses and to drop-out hazards.

The vector  T is partitioned as (  T
Y ,  T

D ,  T ) where  Y and  D are for the

marginal models of the response and drop-out respectively. The dependence
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model between Y and D is given by a copula K (·;  ) with parameter  . The

vector  T
Y is further partitioned into (  T ,  T ) where  is the set of parame-

ters for the marginal models at each time. The dependence model between

repeated responses is given by a copula Q(·;  ) indexed by  . Distributions

and densities (pmf for discrete responses) are denoted as F j (·;  ) and f j (·;  )

respectively, where the subscript j gives the dimension.

3. Likelihood for a Selection Model

Let us consider the realizations (y, o) for any subject dropping at the dth time.

In a selection model, the contribution to the likelihood f d(y1 , ..., yd − 1 , d;  )

for this subject can be written as (Diggle and Kenward, 1994)

f d − 1(y1 , ..., yd − 1;  Y )
d − 1 

j = 1

Pr(O j = 1|O j − 1 = 1, y1, ..., y j ;  )

 
Pr(Od = 0|Od − 1 = 1, y1, ..., yd;  )g1(yd|y1 , ..., yd − 1;  Y )dyd . (2)

The first factor in (2) is the joint density of all observed responses y1 , ..., yd − 1

for the subject; the next factor is the joint probability of being observed up

to time td − 1 conditional on the historical responses; and the last factor ex-

pressed as an integral is the expected (conditional) drop-out hazard at time

td under the full conditional density g1(yd|y1, ..., yd − 1) for the non-observed

response Yd.

For subjects who complete the study, d =  + 1 and (2) reduces to

f  (y1 , ..., y  ;  Y )
  

j = 1

Pr(O j = 1|O j − 1 = 1, y1 , ..., y j ;  ).

Under MCAR mechanisms, the drop-out hazard is totally independent of
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y and (2) can be rewritten as

f d − 1(y1 , ..., yd − 1;  Y )
d 

j = 1

Pr(O j = o j |O j − 1 = 1;  D ). (3)

The density of the observed responses and the probability model for the

drop-out hazard clearly separate in (3). Parameter vectors  Y and  D are

distinct and a separate estimation of the two models (e.g. using maximum

likelihood) produces unbiased estimates.

When the drop-out process is MAR, Equation (2) becomes

f d − 1(y1 , ..., yd − 1;  Y )
d 

j = 1

Pr(O j = o j |O j − 1 = 1, y1, ..., y j − 1;  Y ,  D ,  ). (4)

Little and Rubin (1987) have suggested that, under MAR mechanisms,

the drop-out process could be ignorable for a likelihood-based analysis of the

response model. The ignorability condition requires that the set of parame-

ters for the models f Y and f D | Y be distinct (the assumption of separability).

In our case, we do not specify a parametric model for f D | Y directly. Instead,

it is a consequence of the chosen marginal models f D and f Y and of the cop-

ula used to relate them. The complete vector of parameters (  T
Y ,  T

D ,  T ) is

involved in the modelling of f D | Y . The assumption of separability between

 Y and (  T
D ,  T ) is not always verified in our approach so that ignorabil-

ity does not necessary hold for all dependence models. As a consequence,

maximum likelihood estimators of  Y can be di erent between an identical

response model specified in (3) and in (4).

4. Dependence between Repeated Responses

We start by specifying a common parametric family F 1(y j ;  ) for the distri-

bution of Y j at each time t j ( j = 1, ..., d). For any subject dropping at td, the
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joint distribution of the d − 1 successive observations is then modelled as in

(1) using a copula Q(·;  ) indexed by a vector of parameters  . This yields

F d − 1(y1 , ..., yd − 1;  Y ) = Q[F 1(y1;  ), ..., F 1(yd − 1;  );  ]. (5)

When the response is absolutely continuous, the joint density is obtained

by derivation of (5) with respect to Y1 , ..., Yd − 1. Assuming that q(·;  ) is the

density associated to Q(·;  ), Y1 , ..., Yd − 1 have density

q[F 1(y1;  ), ..., F 1(yd − 1;  );  ]
d − 1 

j = 1

f 1(y j ;  ), (6)

where f 1(y j ;  ) is the marginal density of Y j derived from F 1(y j ;  ).

We then consider a discrete ordinal response. Without loss of generality,

we assume that the response is distributed across K consecutive categories

k = 1, ..., K at all times. The joint probability mass function (pmf) Pr(Y1 =

y1 , ..., Yd − 1 = yd − 1;  Y ) is (Joe, 1997, p. 237)
y1 

l1 = y1 − 1

...
y d − 1 

l d − 1 = y d − 1 − 1

( −1)
d − 1
j = 1 (y j − l j ) Q[F 1(l1;  ), ..., F 1(ld − 1 ,  );  ]. (7)

For simplicity, (7) will also be termed density and referred as f d − 1(y1 , ..., yd − 1;  Y ).

The conditional density g1(yd|y1, ..., yd − 1;  Y ) of the unobserved response

Yd at drop-out does not need to be from the same family as the density

f d − 1(y1, ..., yd − 1;  Y ) of observed responses. The choice of g1 is merely arbi-

trary and its adjustment to the non-observed data cannot be verified. As

raised by many discussants of Diggle and Kenward (1994), MNAR mod-

els rest upon untestable hypotheses and should be interpreted with caution.

When MNAR models are considered, sensitivity analyzes are recommended

to evaluate the robustness of conclusions to changes in the distributional

assumptions. Such analyzes are however not in the scope of this paper.
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In our approach, we assume that the marginal distribution F 1(yd;  ) is of

the same family as distributions at previous times. The conditional distribu-

tion g1(·;  Y ) is then computed in the usual way, as the ratio of a joint density

hd(y1 , ..., yd) of the d responses over f d − 1(y1 , ..., yd − 1). The joint density hd(·)

is constructed in a similar way as f d − 1(·), from equations (6) and (7) in the

continuous and the ordinal cases respectively.

5. Dependence between Drop-out and Response

We specify a marginal Bernoulli model indexed by a vector  D for the drop-

out status O j given that O j − 1 = 1 for j = 1, ..., d. The joint distribution of

(O j |O j − 1 = 1) and of any prior response Yl (l ≤ j ) is modelled using a copula

K (·;  ) with parameter  . The bivariate distribution F 2(y l , o j |O j − 1 = 1;  ) is

defined as

K [F 1(y l;  ), Pr(O j ≤ o j |O j − 1 = 1;  D );  ]. (8)

The conditional distribution of O j given y l (l ≤ j ) is then computed from

the (discrete) derivation of Equation (8) with respect to F 1(y l;  ).

With continuous responses, Pr(O j ≤ o j |O j − 1 = 1, Yl = y l;  ) is (Joe,

1997, p. 245)

∂ K [x , Pr(O j ≤ o j |O j − 1 = 1;  D );  ]
∂x

    
x = F 1 (y l ;  )

. (9)

With a discrete ordinal response (on k = 1, ..., K ), it is
 y l

k l = y l − 1( −1)(y l − k l ) K [F 1(k l;  ), Pr(O j ≤ o j |O j − 1 = 1;  D );  ]
f 1(y l;  )

.

6. Some Copula Distributions and Dependence Properties

In this section, we review the copula distributions that will be used in the

illustrations. Other parametric families of copulas can be found in Joe (1997,
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ch. 5). As defined in (1), copulas are direct functions of the marginal distri-

butions F 1(z j ). They characterize the type and the strength of dependence

between margins. When all the Z j are mutually independent, the joint dis-

tribution is the product of the marginal distributions. A particular copula,

called the product, is used to characterize independence. It is

 (u1 , ..., uJ ) = u1 ...uJ . (10)

Another copula is created from the multivariate standard normal distri-

bution  J (·; R), with correlation matrix R. It is given as

C  (u1 , ..., uJ ; R) =  J [  − 1
1 (u1), ...,  − 1

1 (uJ ); R], (11)

where  1(·) is the univariate standard normal distribution.

The dependence between random variables U j is modelled in (11) using

the correlation matrix R. Under independence, R is the identity and C  (·; R)

reduces to  (·). When all marginal distributions F 1(z j ) are normal, (11)

generates a multivariate normal distribution for the Z j . The matrix R is

then also the correlation matrix for the Z j . When the Z j are not all normally

distributed, R still quantifies dependence but it is not a formal correlation

matrix anymore. With continuous responses, the (i , j )th entry of R can be

written in the form 2 sin(πr i j /6), where r i j is Spearman’s rank correlation

between Z i and Z j . Standard dependence structures such as exchangeable

or autoregressive can be specified using R (see Lambert and Vandenhende,

2002) . In the heart rate example, the copula C  (·; R) with R indexed by

the vector  will be used to model the dependence between responses.

Another copula considered in the examples is the family of Frank (1979)

with one parameter  . Statistical properties of Frank’s copula are given in
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Nelsen (1986) and Genest (1987). It is equal to

−
1
 
log[1 +

 J
j = 1(e −  u j − 1)

(e −  − 1)J − 1 ]. (12)

Nelsen (1999) discussed various dependence properties of copulas. Ran-

dom variables U1 , ..., UJ are termed positively dependent when large (or

small) values are more likely to occur simultaneously than if they were inde-

pendent. Then, we have

C (u1 , ..., uJ ) ≥  (u1 , ..., uJ ),  u j  [0, 1].

Negative dependence occurs when C (u1 , ..., uJ ) ≤  (u1 , ..., uJ ),  u j  

[0, 1]. Both positive and negative associations can be modelled using  in

the copula of Frank. Positive dependence occurs when  > 0 and negative

dependence occurs when  < 0. The case  = 0 does not produce a copula

distribution but it is a limiting case for independence (C =  ). In the bivari-

ate case (J = 2), the whole range of dependence down to complete negative

association can be modelled. When J > 2, however, the set of parameter

values yielding negative dependence shrinks as J  ∞ , so that only parame-

ter values corresponding to positive degrees of dependence are admissible for

all dimensions (Kimberling, 1974). A bivariate Frank’s family parameterized

by the vector  will be used to model the dependence between drop-out and

responses in the two examples. The same family with parameters  will be

used for the dependence between repeated measures in the migraine example.

The indicator of drop-out O j has been ordered in such a way that a

low value (0) indicates drop-out and a large value (1) indicates observation.

Positive dependence in Equation (8) implies that dropout (i.e., a small value
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for O j ) is more likely to happen with smal l responses. Negative dependence

implies the opposite; that subjects tend to drop with large responses. This

parameterization requires some care in the interpretation of the dependence

parameters  in the illustrations.

Copula parameters  and  quantify the dependence between marginal

distributions. When all random variables are continuous, these parameters

are directly related to rank-based dependence measures such as Kendall’s tau

or Spearman’s rho. This relationship is presented and discussed in Nelsen

(1999, ch. 5). With non-continuous random variables, a value for the copula

parameter can be associated with several estimates of rank-based dependence

measures. As shown by Vandenhende and Lambert (2000) for bivariate or-

dinal responses, the value of the rank-based statistic also depends on the

marginal distributions. When marginal distributions are fixed and when

considering ordered copulas, they observe a monotonic relationship between

the copula parameter and Kendall’s tau-b. This monotonicity supports the

interpretation of copula parameters as dependence measures, though an ex-

act quantification of tau-b would also require information from the marginal

models.

7. Illustrations

A continuous response (heart rate) is modelled in the first example and a dis-

crete ordinal variable (pain severity) is analyzed in the second example. All

computation were performed using the MathematicaT M package. The sta-

tistical add-ons ContinuousD istribut ions and Mult inormal D istribut ion were

used to access standard univariate and the multivariate normal distributions,

respectively. Frank’s copula and the discrete distributions were hard-coded.
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Maximum likelihood estimates were obtained using the F indM inimum built-

in function. The observed information matrix was derived using the D func-

tion and standard errors were calculated using the Inverse function. Pro-

grams were rather short (2 pages) and fast to run (a few seconds).

7.1 Heart rate in Toxicology Study

An acute toxicology study was performed in male rats. Five doses of

an investigational drug were randomly administered to groups of 6 animals

each. Heart rate (HR) was recorded in beats per minute at several times

relative to dosing. Results are summarized in Table 1. Mean baseline HR

were comparable between groups. Treatment tends to decrease mean HR

but the e ect is not dose-related. A few animals died during the study,

predominantly at the high dose. The two animals dying within 30 minutes

had baseline HR slightly above the average. Thereafter, HR recorded in

animals prior to death were below or close to the group’s geometric mean at

time of measurement. This suggests that a time-varying dependence between

drop-out and HR is possible. The following models were fitted to the data.

[Table 1 about here.]

Several marginal distributions (Cauchy, Gamma, Log-normal) were tested

and the Log-normal distribution was finally retained for HR because of

its fit. A log-linear regression on log(t j ) was applied to each group sep-

arately. Due to the similarity of mean baseline values between groups, a

single intercept was estimated across groups. The model was parameterized

as E [log(Y j )] =  +  group log(t j ), where  is the intercept and  group are dose-

specific slopes. The dependence between repeated responses was modelled
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using the copula defined in (11) for Q(·;  ), with  indexing the correlation

matrix R. A first-order autoregressive - AR(1) - dependence structure was

chosen so that the ( j , l)th element of R was equal to  | j − l | (0 ≤  ≤ 1).

Note that in the case of Log-normal margins, the copula (11) approach is

identical to a traditional AR(1) model on log-responses with normal innova-

tions. The drop-out hazard was assumed constant over time and modelled

using a logistic regression. The logit of p j = Pr(O j = 0|O j − 1 = 1) was lin-

early regressed on the administered dose as logit(p j ) =  D i n t +  D dosedose.

Two models for the dependence between drop-out probability and response

were developed. A MCAR process was modelled using the product copula in

(10). A MAR process was modelled assuming that drop-out probability was

conditionally independent of the historical data, given the last prior obser-

vation. A bivariate Frank’s copula as in (12) was used for K (·;  j ) to relate

Pr(O j ≤ o j |O j − 1 = 1) and F 1(y j − 1). A distinct copula parameter  j was

first fitted for each time. The graphical representation of the estimated   j

(with 95% confidence intervals) over time suggested that a linear relationship

 j =  0 +  1 log(t j − 1) could be considered. The baseline time (t1) was taken

as 1 minute instead of zero for identifiability of the above model. This yields

a dependence equal to  0 between response and drop-out when occurring

prior to 30 min ( j = 2) and, then a monotonic change in the dependence

over time.

The maximum likelihood estimate (MLE)   0 of the MAR model (-2 log

lik=-310.1; 12 parameters) is equal to -6.37 (s.e.=5.13). A reduced MAR

model with  0 fixed to zero was also fitted. This model implies independence

between drop-out and responses for deaths prior to 30 min. Parameter esti-
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mates from the MCAR and the reduced MAR models are presented in Table

(2). The reduced MAR model (-2 loglik=-306.6; 11 parameters) is selected as

it performs slightly better than the initial MAR and than the MCAR (-2log

lik=-302.2; 10 parameters) models. Estimates and standard errors of param-

eters common to the three models are comparable (result not shown for the

initial MAR model). Compared to placebo, the drug decreases HR but a

reversed trend is observed with dose. The decrease is more important at low

than at high doses. The drop-out hazard (death rate) increases significantly

with dose. Predicted probabilities of death are 2.3, 2.5, 3.0, 5.3 and 29.8 %

in the 0, 3, 10, 30 and 100 mg/kg groups respectively. A significant positive

estimate of  1 is found in the reduced MAR model. As discussed previously,

this indicates a negative dependence between HR and death after 30 minutes

post-dosing. From that point on, animals with a low HR are more likely to

die than those with a high rate and the trend inflates with time.

[Table 2 about here.]

As illustrated in this example, our modelling strategy allows for marginal

analyzes of the repeated response and drop-out rates, while controlling for

their dependence. The selected MAR model does not permit separability

between parameter sets {  ,  dose ,  2 ,  } and {  D i n t ,  D dose ,  1 } . Therefore,

di erent MLEs and standard errors for {  ,  dose ,  2 ,  } are obtained in the

MCAR and MAR columns of Table (2). The di erence is reasonably small

and does not alter conclusions. Parameter sets are also moderately correlated

(result not shown) in this example. A maximum correlation of 0.30 is found

between estimates of  100 and  D dose.
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A drop-out probability model which is conditional on the response is also

readily available from Equation (9). Such models are useful for the interpreta-

tion of the drop-out process, in relation to the response variable. Some condi-

tional drop-out profiles (from the reduced MAR model) are presented for the

100 mg/kg group in Figure 1. At 30 min, the drop-out probability (29.8%) is

identical whatever the response. This is the marginal estimate. Thereafter,

the drop-out probability increases with decreasing HR. Our model assumes a

monotonic change of the dependence parameter  j over time. However, when

considering a particular HR level (e.g., 375 beats/min), we do not observe a

monotonic change in conditional probabilities anymore. The drop-out proba-

bility peaks at 1h and decreases thereafter. The marginal distribution of HR

is also changing over time (decreased mean, constant CV). A HR as low as

375 beats/min is rather atypical in the 100mg/kg group at 1h post-dose but

this value is closer to the predicted mean at subsequent times. This explains

the reversed trend in conditional drop-out probability after 1h at that level.

[Figure 1 about here.]

Selection models where f D | Y extends the initial logistic drop-out model

were also fitted. Conditional models had additional terms for the response

at j − 1 (-2logL=-304.0; 11 parameters), the change in response between

j − 2 and j − 1 (-2logL=-303.2; 11 parameters), or both the response and

the change (-2logL=-304.2; 12 parameters). The reduced MAR copula model

provides a better fit to the data than any of these selection models.

7.2 C linical Trial on M igraine

The second example is a clinical trial on acute migraine. Thirty nine pa-

tients with a moderate to severe migraine were randomized into 3 treatment
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groups (0, 5 or 20 mg of LY334370 i.v.). Pain severity (PS) was measured on

a four-grade scale (no, mild, moderate, severe) on 8 occasions after dosing.

Subjects were allowed to take a rescue medication from 2 hours post-dose

but, thereafter, PS was not collected anymore. The cumulative incidence

of PS and drop-outs is displayed in the upper panel of Figure 2. There is a

progression towards lower severity with time and the PS decrease is more im-

portant in the two treated groups than under placebo. The rate of drop-outs

is also larger when not treated. A copula-based analysis of these PS data

ignoring drop-outs was made by Vandenhende and Lambert (2000). They

tested several copula families to model an AR(1) process. Marginal parame-

ter estimates and predicted rank-based dependence measures were not much

influenced by the considered copulas. Therefore, we shall use their final

model considering Frank’s family for the response. Then, we shall model the

drop-out hazard and the dependence between drop-out and PS.

[Figure 2 about here.]

Pain severity is an ordinal response with four possible values (K = 4).

No pain is coded as k = 1, mild pain as 2, moderate as 3 and severe as 4. A

cumulative regression model with complementary log-log link was selected.

The model included 3 threshold parameters  k for the levels k = 1, 2, 3, two

parameters  5 − 0 and  20 − 0 for the contrasts between the treated groups (5

and 20 mg respectively) and placebo and a log-time e ect  t i me. The de-

pendence between successive responses was modelled based on a bivariate

Frank’s copula with parameter  and the joint distribution of responses was

constructed assuming a first order Markov process. This induces an AR(1)
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dependence structure, with dependence decreasing with lag time. Drop-out

hazard was modelled using a time-independent logistic regression including a

di erent parameter for placebo (  0) and for drug (  5,20). Dependence mod-

els for MCAR, MAR and MNAR drop-out processes were considered. The

MAR and MNAR models were created from the bivariate Frank’s copula

with parameter  under a conditional independence hypothesis. The MAR

model relates Pr(O j ≤ o j |O j − 1 = 1) to F 1(y j − 1) as in the previous example.

The MNAR model relates it to F 1(y j ), the distribution of the possibly un-

observed response at t j . All marginal distributions of the response F 1(·) are

multinomial and the distribution at drop-out is extrapolated from the distri-

butions of previously observed data using the same AR(1) model as above.

Parameters were jointly estimated. MLEs are in Table 3.

[Table 3 about here.]

MLEs and standard errors of parameters common to the three models

are comparable. Compared to placebo, LY334370 reduces PS and the ef-

fect is comparable between doses. A strong positive dependence is found

between successive responses (Kendall’s tau-b ≈ 0.75). The drop-out rate is

larger under placebo (14%) than under active therapy (4%). These estimates

are from the MAR model (-2 loglik=427.1; 10 parameters), which performs

better than the MCAR (-2 loglik=443.6; 9 parameters) and the MNAR (-2

loglik=429.9; 10 parameters) models. A positive dependence between drop-

out and response is detected (Kendall’s tau-b ≈ 50%), implying than patients

are more likely to take a rescue medication when their PS is large. The pre-

dicted cumulative distributions of PS and drop-out are in the lower panel
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of Figure 2. Predicted and empirical (see the upper panel) distributions are

comparable. This provides evidence for the good adjustment of the MAR

model to the data.

8. Discussion

Our interest was in the specification of marginal models for repeated re-

sponses and drop-out events in longitudinal studies with non-random attri-

tion. The dependence between successive responses and between drop-out

and response was modelled using copulas and a full likelihood-based method

was proposed.

A series of parametric copula families is available; see Joe (1997, ch. 5).

The selection of a candidate is either made by convenience (e.g. when choos-

ing the multivariate normal distribution) or based on the comparison of the

adjustment of di erent models using likelihood ratios (see e.g. Vandenhende

and Lambert, 2000). Genest and Rivest (1993) have developed a goodness

of fit test and a graphical method to select copula models in comparison to

the empirical dependence found in the data. Their method applies to a sub-

family of bivariate copulas named A rchimedean. Extensions to other families

and to the multivariate case would be worth considering.

The issue of sensitivity is often raised when dealing with non-random

drop-outs. As illustrated by Kenward (1998), several selection models with a

comparable adjustment can yield very di erent conclusions. This is related

to the untestable distributional assumption for the unobserved responses at

time of drop-out. In the HR example, we decided not to further investigate

MNAR models for this reason. Here, drop-out is synonym of death and model

predictions (from data collected in a living state) were in no case satisfactory
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to meet the physiological inactivation of the heart at death. The situation

in the PS example was somewhat di erent in the sense that PS was still

predictable around the intake of a rescue medication. As noted by Kenward

(1998), ” the M N A R analysis tel ls us about inadequacies of the original model

rather than the adequacy of the M N A R model”. In the example, parameters

estimates were comparable between models.

Our copula models relate the drop-out process to the distribution of re-

sponse before (MAR) or at (MNAR) time of drop-out. This contrasts with

standard specifications of selection models, in which the drop-out hazard is

modelled in relation to the actual level of the response (using e.g. logistic

regressions). When the distribution of response is evolving over time, the

two specifications provide distinct natural interpretations for the conditional

drop-out process. Let us illustrate that point in the migraine trial example.

During a classical migraine crisis, PS tends to decrease over time and usually

terminates within 48 hours. It is also natural to assume that the probability

of drop-out (RM intake) increases with pain intensity. However, the risk of

drop-out for a patient with a mild pain severity will probably be larger at

24 hour than at 2 hour post-dosing. This is because mild pain is not con-

sidered as unacceptable (abnormal value) at 2 hours, whereas it is rather

atypical and more worrying when still present 24-hour after the crisis onset.

Such a time by response interaction is often neglected but would need to be

modelled in selection models. With copulas, no such modelling is needed.

The conditional drop-out probability model is automatically adjusted for the

distribution of responses at the time of drop-out. This behavior is further

illustrated in Figure 1 for the heart rate example.
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Figure 1. Predicted conditional drop-out hazard profiles (v.s. time (h))
in the 100 mg/kg group from the MAR model of Table (2). The marginal
hazard (29.8 %) is plotted at 0.5h, when drop-out is assumed independent
of heart rate. Lines are drawn over time for constant heart rates of 350, 375,
400 and 450 beats/min.
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Figure 2. Empirical (upper panel) and predicted (lower panel) cumulative
distributions of pain severity: no (10% gray), mild (30% gray), moderate
(50% gray), severe (black) and drop-out (white) over time in the three treat-
ment groups. Predictions are obtained from estimates of the MAR model in
Table (3).
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Table 1
Summary statistics on heart rate (beats / min) in male rats after intake of an

investigational drug at dose levels of 0, 3, 10, 30 and 100 mg / kg. Six
animals were randomized to each group but some animals died during the

study. Heart rates taken before animals’ death are in parentheses.

Dose (mg/kg) Time (min) after dosing
0 30 60 120 240

0 N 6 6 6 6 6
Mean1 461 495 481 524 513
CV(%) 11 12 8 7 4

3 N 6 6 6 6 5
(330)

Mean 458 374 355 335 331
CV(%) 11 9 4 4 7

10 N 6 6 6 5 5
(370)

Mean 454 369 361 352 338
CV(%) 6 7 6 4 1

30 N 6 6 5 5 5
(330)

Mean 479 373 382 382 356
CV(%) 8 10 5 2 4

100 N 6 4 2 2 2
(490,500) (390,380)

Mean 457 397 440 395 380
CV(%) 8 7 6 2 0

1: Geometric means are reported.
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Table 2
Maximum likelihood estimates (s.e.) for the joint repeated-measures and

survival analyzes of the heart rate data.

Parameter MCAR Model MAR Model
(-2 loglik=-302.2) (-2 loglik=-306.7)

Marginal model on heart rate
α 6.14 (0.013) 6.14 (0.013)
α0 0.0194 (0.0047) 0.0197 (0.0047)
α3 -0.0629 (0.0048) -0.0616 (0.0047)
α10 -0.0588 (0.0049) -0.0575 (0.0049)
α30 -0.0522 (0.0052) -0.0524 (0.0052)
α100 -0.0341 (0.0066) -0.0353 (0.0062)
σ2 0.0049 (0.0007) 0.0049 (0.0007)

Dependence between successive heart rates
ρ 0.442 (0.091) 0.450 (0.091)

Marginal model of drop-out hazard
βD i n t -3.75 (0.68) -3.76 (0.68)
βD dose 0.0283 (0.010) 0.0290 (0.009)

Dependence between drop-out and heart rate
θ1 1.01 (0.56)
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Table 3
Maximum likelihood estimates (s.e.) for the joint repeated-measures and

survival analyzes of the migraine data.

Parameter MCAR model MAR model MNAR model
(-2 loglik=443.6) (-2 loglik=427.1) (-2 loglik=429.9)

Marginal model on pain severity score
α1 -3.13 (0.40) -3.08 (0.40) -3.09 (0.40)
α2 -1.44 (0.29) -1.37 (0.29) -1.46 (0.29)
α3 -0.0066 (0.23) 0.036 (0.23) -0.07 (0.24)
αt i me 0.81 (0.10) 0.82 (0.10) 0.75 (0.09)
α5 − 0 1.19 (0.31) 1.11 (0.31) 1.22 (0.31)
α20 − 0 1.10 (0.32) 0.99 (0.32) 1.05 (0.33)

Dependence between successive scores
ρ 13.9 (2.14) 13.8 (2.12) 14.5 (2.22)

Marginal model on rescue medication (RM) intake
β0 -1.74 (0.44) -1.82 (0.48) -1.79 (0.52)
β5,20 -3.19 (0.51) -3.07 (0.52) -3.16 (0.53)

Dependence between RM intake and pain
θ -6.88 (2.76) -11.9 (8.96)
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