Analysis of bivariate tail dependence
using extreme value copulas:
An application to the SOA medical large claims database

Ana C. Cebrian,

Abstract. The aim of this work is to analyze the dependence
structure between losses and ALAE’s relating to large claims
using extreme value copulas. A procedure to select and esti-
mate the copula based on a parametric estimation of the de-
pendence function is proposed. An application to the evalu-
ation of reinsurance premiums is performed in group medi-
cal insurance. This work clearly enhances the relevance of the
copula-based approach to model claim amounts and their as-
sociated ALAE’s.

Keywords: extreme value copulas, bivariate extreme value
distributions, dependence function, excess-of-loss reinsurance
premiums.

1 Introduction and Motivation
1.1 The situation under study

In this work we are going to deal with the Loss-ALAE
data recorded in a database about medical insurance large
claims, available from the website of the Society of Actuar-
ies (http://www.soa.org).

ALAE’s are type of insurance company expenses that are
specifically attributable to the settlement of individual claims
such as lawyers’ fees and claims investigation expenses. The
possible dependence between losses and ALAE’s has to be ac-
counted for (e.g. to price an excess-of-loss reinsurance treaty
when the reinsurer shares the claim settlement costs; see Sec-
tion 1.3 below).

1.2 Data description

The dataset we are going to work with is part of a larger
database that records medical claim amounts exceeding
$25,000. The study by Grazier et al. (1997) collects informa-
tion from 26 insurers. The 171,000 claims recorded are part
of a database including about 3,000,000 claims over the years
1991-92. The total amount paid by the insurer for each claim
(coded as Total), which behaviour was studied in Cebrian et
al. (2001), is the sum of hospital charges (LOSS) and other
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expenses (ALAE). In this study only the 1991 record relat-
ing to Plan type 4 is used. The size of this sample is 3,901.
Univariate descriptive statistics for the the three variables are
provided in Table 1.

| H Mean ‘ Q25 ‘ Q50 | Q75 | Min. | Max. | St. dev. |

LOSS 63,450 31,360 42,310 66,130 25,000
ALAE 18,920 8,088 13,940 22,850 23 568,000 22,073
Total 82,370 43,040 58,560 88,500 25,320

1,430,000 74,665

1,530,000 85,523

Table 1.  Claims summary statistics.

The relationship between LOSS and ALAE is illustrated in
Figure 1, where the scatterplots of the two variables, in origi-
nal and log-scale are shown. Although there is a clear depen-
dence, it is not simple to model. Tests for independence (Pear-
son 7 = 0.380, Spearman p = 0.437 and Kendall 7 = 0.305)
all clearly yield to reject independence (p-values less than
1072).

1.3 Aim of the study

Our purpose is to price an excess-of-loss reinsurance treaty
where the settlement costs are shared between the reinsurer
and insurer on a proportional basis. Specifically, given a real-
ization of (LOSS,ALAE), the reinsurance indemnity amounts
to

g(LOSS, ALAE) = (1
0 if LOSS <R,
LOSS — R+ L9551 ALAE if LOSS > R.

The pure premium relating to this reinsurance treaty is ex-
pressed in terms of

m = E[g(LOSS, ALAE)].

The pure reinsurance premium is obtained by multiplying m
by the expected number of claims generated by the portfolio.
Clearly, the joint distribution of the pair (LOSS,ALAE) has
to be modelled to compute 7. This is precisely the aim of the
next section.
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Figure 1.

2  Modelling the dependence between LOSS and
ALAE

2.1 Copulas
2.1.1 Definition

The stochastic behaviour of two random variables X; and X
with respective marginal cdf’s F; and F5 (assumed to be con-
tinuous) is appropriately described by their joint cdf

F(z1,22) = P(X7 <21, X2 < x9)

Since F3(X1) and F5(X5) are uniformly distributed between
0 and 1, their joint distribution for every (u1, us) € [0,1]% can
be expressed as

Clui,uz) = PF(X1) <, Fa(X2) < us]
PIXy < Fy Hu), X1 < Fy Hug)] ()

F(Ffl(ul),F{1(1L2))

where the F[l’s, 1 = 1,2, are the quantile functions associ-
ated with the F;’s, i.e.
val

7

(p) = inf{z € R|F;(x) > p}, p<€(0,1).
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Under this construction C' is a distribution function of two
random variables with unit uniform values. Such function is
called bidimensional copula. As it can be seen from (2) the
copula can be recovered from the knowledge of the joint dis-
tribution F' and of its margins F}, j = 1,2. For a more ex-
haustive introduction to copulas we refer the interested reader
to Nelsen (1999), Joe (1997) and for copulas with applications
in actuarial sciences to Frees and Valdez (1998) and Klug-
man and Parsa (1999). Of course, the notion of copula extends
into higher dimensions: n-dimensional copulas are joint dis-
tribution functions of n random variables with unit uniform
marginals.

The interest of the copulas as an statistical tool originates
from the result stated in the following section, referred to as
Sklar’s theorem.

2.1.2 Sklar’s construction

Given a bidimensional distribution function F’, with univariate
margins F; and Fb, there exists a copula C such that for all
(71, 22) € R2,

F(x1,22) = C(Fi(21), Fa(22)). 3)

Conversely, if C' is a copula and F; and F; are distribution
functions then the function F' defined by (3) is a bidimensional
distribution with margins F; and F5. Moreover, if F; and F5
are both continuous, then C' is uniquely defined.

2.1.3  More properties about copulas

It is not difficult to prove that C' is a two-dimensional copula
if and only if it is a function C(u1,uz) : [0,1]> — [0, 1] that
satisfies the following two conditions

- For every uj,us € [0,1], C(u1,0) = C(0,uz) = 0,
C(u1,1) = ug and C(1,u2) = us.

- For every u11 < ug2, u21 < g With uyy, ui, 1, use €
[0, 1], the following inequality holds:

C(u12,u22)—C(u12, u21)—C(u11, u22)+C(u11,u21) > 0

If C'is considered to be a distribution function of two ran-
dom variables U; and U, the first condition ensures that Uy
and Uj have uniform marginal distributions. The second con-
dition, known as the rectangular inequality, simply requires
that C is a valid distribution function, that is P(u1; < U; <
U1, uz1 < Uz < uga) > 0.

Another important property is that copulas capture the de-
pendence between two variables, regardless of the scale in
which each variable is measured. More precisely, given two
arbitrary functions g; and g strictly increasing over the range
of X7 and X, then the transformed variables g;(X;) and
g2(X32) have the same copula than X; and Xs.

Probably the most frequently used copulas are the
Archimedean ones. Copulas in this family can be written in
the following way

Clu,uz) = @71 (P(ur) + P(uz))



where ® is a decreasing convex function called the
Archimedean generator, for reference see Nelsen (1999),
chapter 4. Archimedean copulas are widely used in actuarial
science; see e.g. Frees and Valdez (1998).

2.1.4 Copulas and dependence measures

The traditional measure of dependence, the Pearson correla-
tion coefficient, presents some drawbacks as a measure for
bivariate distributions (see Joe (1997), page 32, as well as De-
nuit and Dhaene in this volume). Measures with better prop-
erties include Kendall 7 and Spearman p. The latter can be
expressed uniquely in terms of the copula. Specifically, the
following representations hold true:

12 /01 /Ol{C(u,v) — uv }dudv

- 4/01 /01 C(u, v)dC/(u,v) — 1.

2.2 Extreme value copulas

In the situation of interest in this paper, the combination of the
copula construction with extreme value theory seems promis-
ing. This is precisely the aim of this section.

2.2.1 Definition

A random vector (X1, X3) is said to conform to an Extreme
Value Distribution (EVD, in short) with unit exponential mar-
gins if,

P[X; > y1] = exp(—y1) and P[Xs > y2| = exp(—y2)

for y1,72 > 0 and the joint survival function F(z1,2) =
P(X1 > z1, X2 > x2) verifies the scaling property,

F™(y1,y2) = F(ny1,ny2)

for any v, y2 and integer n > 1. For more details, see e.g.
Tawn (1988). A random couple obeys to some EVD if and
only if, the survival function can be expressed as

Afw) = / max[(1 — w)q, w(1 - q))dL(q)

F(y1,y2) = exp =

Y1+ y2

[_(yl +y2)A (

for any y;, y2 > 0, where

for some positive finite measure L on [0, 1]. The function A is
called the dependence function.
Expressing this relationship in terms of uniform margins,

we obtain

In(usg)

C(u1,us) = exp {[ln(ul) + In(ug)]A Ln(m)-i-ln(uz)
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for 0 < wuy,ue < 1. This function is known as the extreme
value copula (EV copula, in short) and it allows to model de-
pendence between the components of a random couple which
represent the largest values of two characteristics observed
over the same period of time.
One important property of EV copulas is that they
are max-stable, meaning that, if (X1, Xs1), (X12, X22),
.oy (X1n,Xo,) are iid random pairs from an EV cop-
ula C and M, = max(Xi1,X12,...,X1,) and N,, =
max(Xa1, Xoo, ..., Xay,), the copula associated with the ran-
dom pair (M,,, N,,) is also C.

2.2.2 Properties of the dependence function

The dependence function A involved in an EV copula C' must
satisfy the following properties:

- A(0) = A1) = 1.

- max(w,l —w) < A(w) < 1for 0 < w < 1. Moreover, if
A(w) = 1 then (X1, X5) are independent and if A(w) =
max(w, 1 — w), then (X7, X5) are perfectly dependent (or
comonotonic).

- A(w) is a convex function in the region 0 < w < 1.

2.2.3  Some examples
Gumbel copula The dependence function is
Alt) = (t"+ (1 —t))/
with » > 1. Gumbel copula is the only one that belongs to

both Archimedean and Extreme Value families.

Logistic model The dependence function is

Aw) = [(1 = w)" + ]
with » > 1. The corresponding copula function is given by
C(u1,uz) = exp {7[(flnu1)r + (— IHUQ)T]l/T} .

Independence and complete dependence correspond to r
1 and » = oo respectively. In this model the variables are
exchangeable.

Asymmetric logistic model

A(w) =[07(1 —w)" + "0V + (0 — p)w+1-6

The dependence function is

with @ > 0, ¢ < 1, and r > 1 and the copula function
O(Ul,UQ) =
exp {lnu%_g +Inuy? = [(—=0Inuy)" + (—(i)lnuz)r]l/”} .

This model is very flexible and contains several of the exist-
ing models such as the logistic (¢ = 6 = 1), the biextremal,
the dual of the biextremal, the Gumbel, as well as a mixture
of logistic and independence models. Complete dependence
corresponds to # = ¢ = 1 and r = oo whereas independence
correspondsto =0or¢ =0orr = 1.



Mixed model The dependence function is

Aw) = ow? — 0w + 1
and the corresponding copula function is

Inwu; Inusy

C(uy,u2) :uluQeXp{—G }

with 0 < # < 1. Independence corresponds to # = 0 but we
cannot have complete dependence. In this model the variables
are exchangeable.

In(uquz)

2.2.4 Kendall’s tau

Some important properties of the variables can be formulated
in terms of the dependence function A. The latter plays a role
comparable to the generator of Archimedean families. In par-
ticular Kendall’s 7 is given by

_ ! t(l B t) "
- /0 aw Ao

For the models presented above, 74 is given by

“

1. Logistic model:
TA=1-—1/r.

2. Mixed model:

_ Barctan/0/(4—6) 5

94— 0)

TA

3. Asymmetric Logistic model:

_ ' w(l —w)(r —1)0"¢" (w — w?) 2
TA = /O

(O T

For the asymmetric logistic model, a closed expression for
T4 does not exist. Therefore, one needs to resort to numeri-
cal methods to evaluate 74.

3 Estimation of the copula C' and its probability
integral transform K

3.1 Copula probability integral transform

Genest and Rivest (2000) suggest a general formula for com-
puting the distribution function K of the random variable

V = F(Xy, Xs) = C(Fy (X)), Fa(Xa)).

In contrast to the univariate case, it is not true that V' is uni-
formly distributed over [0, 1]. In fact, any distribution function
K for F(X1, X5) has to fulfill the inequalities

v< K(v) <1

for 0 < v < 1. Moreover, K (v) = v and K(v) = 1 corre-
spond to the two extreme cases where the random variables
X, and X, are in perfect positive dependence (comonotonic-
ity) and in perfect negative dependence (countermonotonic-
ity), respectively.

36

3.2 Computing K for bivariate extreme value copulas

It can be proved that

K(w)=v—A(v)
with ) 00y, 221")
Av) = — /U Tdm
and z3'" the root of the equation
C(z1,25'") = v.

For the EV copulas, we obtain
A(v) = —=(1 = T4)vlog(v)
where 74 is given by (4) so that

K(w)=v—(1—7a)vlog(v). 5)

Obviously, in order to estimate K via (5), only 74 needs to be
estimated from the data.

3.3 Parameter estimation

Given a random sample of size n, (X11, X21), ... (X1n, Xon)
say with copula function C' describing the dependence be-
tween each pair of variables and marginal density functions
f1 and f5, the corresponding joint probability density func-
tion 18

f(x1,22) = fi(z1) fa(z2)C" (Fi(21), Fa(22);p)
where p is a vector of parameters and

82

C"(u1,u2;p) = mc(uhuz;p)

Assuming known margins, only C*” depends on the parame-
ters to be estimated and the function

L(p) = > _1og C” (uri, uai; p)

i=1

(6)

(where u;; = Fj(z;;) for j = 1, 2) must be maximized, using
for example algorithms based on quasi-Newton methods.

3.4 Nonparametric estimation of C'

To check the validity of the parametric models, it would be
desirable to compare them with nonparametric estimators.
In particular, we make use of the one proposed by Scaillet
(2000). This author developed a kernel based approach with-
out putting any particular parametric a priori on the depen-
dence structure between margins.

To estimate the copula function at given points, {u;
(w14, u9:), ©=1,...,n}, with u;; € (0,1), a simple plug-in
method in expression (2) is used, resulting in,

Clur,up) = F(F (ur), Fy ' (uz))



where ﬁ, ﬁl and ﬁg represent estimators of the bivariate dis-
tribution function F' and of the corresponding marginal dis-
tributions I} and F5. In this work, the empirical distribution
function will be used to estimate each of the marginal func-
tions I} and F5, but kernel or parametric estimators (if proper
distributions are found to fit the margins) could also be used.

Note that a kernel estimator, based on the pseudo-
observations

= C(F($1z), F(x2;)),

can be be used to estimate the function K.

4 LOSS-ALAE analysis
4.1 Estimation results

Table 2 summarizes estimations for the three parametric mod-
els discussed in Section 2.3. Not only the value of the ob-
jective function (6) is given, but also an AIC goodness-of-fit
measure,

AIC = =2L + 2n,/n

where L has been defined in (6) and n,, is the number of pa-
rameters.

Model H | TA | | AIC |

Parameters (6)
Logistic 7 =1.406 0.289 | -7,321.3 14,643
Asym. Log. || 6 =0.983, ¢ =0.825, | 0.288 | -7,315.7 | 14,631
7 =1.486
Mixed 9 =0.738 0.289 | -7,327.3 14,654
Table 2. Summary of dependence function estimation.

In Figure 2 the three estimations of the dependence funtion
are represented. It can be seen that the three models provide
similar results and it seems all of them are able to represent the
dependence structure. Also the estimated Kendall 7 is almost
the same for the three models.

In plots of Figures 3 and 4 we represent for each model the
differences between the nonparametric and the constrained es-
timations of the copula function. From the upper left graph,
the difference between the nonparametric estimation of the
copula and its independent counterpart is always positive, in-
dicating a positive dependence between LOSS and ALAE.
The results from all the parametric models are rather simi-
lar, but the mixed model looks slightly better than the others
(since the differences are smaller for this model).

In Figure 5 we compare the parametric estimations of K
with a kernel estimation of this function calculated from the
pseudo-sample &; = C(F}(w1;), Fo(z2;)). Again the inde-
pendent model is rather bad, producing large departures from
the nonparametric estimation. No significant differences are
observed between the three parametric models.

A final possibility to check the model is to compare the
quantiles of the parametric and the nonparametric estimation
of the copula using qqg-plots. The plots corresponding to the
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estimated A(w)

Figure 2.  Parametric estimations of the dependence function A.

independent and the parametric models are shown in Figure
6. Again, independence excepted, the three parametric models
behave well on the data set under study.

4.2 Goodness-of-fit tests

In addition to the graphical tools, some more objective mea-
sures and tests are desirable to complete the goodness-of-
fit analysis. First, we performed a general test proposed by
Ghoudi et al. (1998) to verify whether the copula belongs
to the EV family without specifying a particular dependence
function. It is based on the distribution function of the copula,
K ; more precisely, the hypothesis Hy : K(v) = K, (v) with
K, of the form (5) for some 7 € (0, 1) is checked using the
test statistic

S = — 5 N,
nin —1) ; J
S G,
n(n —1)(n — 2) it
where
bij = 0[(X1s, w21), (X1j, 225)]
and

lifzq > 29 and y; > o
0 otherwise.

O[(z1,31), (22, 10)] = {

The standarized test statistic |S,,|/V ar(S,) is asymptotically
normal and a jackknife method is suggested to estimate the
variance,

n
n—1

Var(S,) = o
=1
Satisfactory results were found with an observed value of S,
equal to 1.016 and the corresponding p-value equal to 0.31.
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After that, we checked the goodness of fit of the different
dependence functions. We used a Kolmogorov-Smirnov type
test to compare the empirical function distribution of the sam-
ple C(Fy(x1;), Fa(2;)) to the estimation of the function K
estimated under one of the parametric models presented in
Section 2.3 and evaluated in the same observations. As we can
see in Table 3, according to the K-S test no model is rejected
with any usual confidence level.

Test H Logistic ‘ Asym. Logistic. | Mixed |

K-S test statistic 0.0121 0.0118 0.0118
p-value 0.61 0.64 0.64

Table 3. Goodness of fit tests.

5 Reinsurance premiums

Let us now analyze the impact of the dependence structure on
premium valuation in reinsurance treaties. We consider a rein-
surance treaty on a policy with unlimited liability and insurer’s
retention R. Assuming a prorata sharing of expenses, the rein-
surer’s payment for a given realization of (LOSS,ALAE) is
described by the function (1).

As it is demonstrated in Joe (1997), any extreme value cop-
ula verifies the association property. This means that if g; and
g2 : R? — R are non-decreasing functions, the inequality

Elg1(X1, X2)g2(X1, X2)] > E[g1(X1, X2)|E[g2(X1, X2)]

holds true. Association is a rather strong dependence property.
In particular it implies positive quadrant dependence, that is

P(Xl > £L’1,X2 > .’EQ) > P(Xl > l'l)P(XQ > .’EQ).

From Denuit, Dhaene and Ribas (2001), it is known that the
premium 7 computed under the independence hypothesis for
(LOSS,ALAE) will be smaller than the premium computed
under an extreme value copula.

The results in Table 4 provide the premiums the reinsurer
would have assessed to cover LOSS and ALAE charges ac-
cording to various insurer’s retention. Three situations have
been considered:

1. Assuming independence, an estimator of the premium 7 is

7= % > g(LOSS;, ALAE,).
t=1t'=1
Since g is supermodular, this value is a lower bound to the
unknown 7 under positive quadrant dependence for LOSS
and ALAE. It is worth to mention that Figure 3 (upper left
panel) suggested such a positive dependence.
2. Applying the classical comonotonic approximation for
(LOSS,ALAE) we obtain,

7= % En: 9 (LOSS:, Fitap |Fross(LOSS)] ).

t=1
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Because of the supermodularity of g, this value is an upper
bound 7.

3. If we consider the dependence structure, we have two pos-

40

sibilities,
a.- either we do not specify any model for the dependence,
i.e. we compute the empirical analogue of 7 given by

__1¢

= > 9(LOSS:, ALAE);

t=1

b.- or we estimate 7 under one of the copula models pre-
sented in Section 2.3. Under these models, the pure pre-
mium can be estimated by

7 = E[g(LOSS, ALAE)] =
fz?,ooo fooo q(l, a)fLoss,ALAE(l, a) dl da;

where

J?LOSS,ALAE(lv a) =
fross(l) farag(a) C/m[ﬁLoss(l), ﬁALAE(a)]-

Since no parametric models have been posed for the mar-
gins, the marginal densities are estimated using kernel
methods. Having an estimator of the bivariate density func-
tion available, the double integral is then calculated using
numerical procedures. Since the integrand is a rather com-
plicated function, a powerful software to perform analytical
calculations is necessary; in this case MathCad 2000 has
been used. Although the procedure is not complicated, it is
rather time consuming, mainly due to the evaluations of the
kernel estimators of the density and distribution functions.
The code is available from Ana Cebridn upon request.

The 7 values for R =25000, 50000, 100000, 500000,
1000000 estimated under the different models are shown in
Table 4. We see that substantial mispricing could result from
the independence hypothesis, while the comononotic approx-
imation is too conservative. Thus, as expected, independence
generates lower premiums than those taking into account de-
pendence in the data, which themselves are smaller than those
based on the comonotonic assumption. Two estimators con-
sidering dependence are shown, the one based on the empiric
dependence of the data and the one based on the extreme value
copula with the mixed model, that provided the best fit to the
bivariate sample. Comparing both estimators, we observe that
they are rather similar for small R values, but differ substan-
tially for higher values of R. It must be remembered that, in
fact, the main drawback of nonparametric estimation for 7 is
that for high R values the sample size is not large enough to
get reliable estimations.

6 Conclusions

To conclude we can say that the results show the importance
to consider the dependence structure of the two variables: sub-
stantial mispricing can result from the independence assump-
tion, while the comonotonic approximation seriously overes-
timates the premium.



|| 25,000 ‘ 50,000 | 100,000 | 500,000 | 1,000,000

R

Independence 46,365.7 | 25,6423 | 12,785.5 1,247.1 230.3
empirical 48,350.6 | 27,639.1 13,8423 1,336.6 244.7
(#0bs. LOSS> R) (3901) (1516) (470) an 3)
Mixed model 48,357.5 | 27,804.6 | 14,1883 1,431.6 269.3
Comonotonicity 50,318.8 | 29,760.7 | 15,374.9 1,570.6 302.1

Table 4. Pure premiums for a reinsurance treaty with retention R.

Given the characteristics of the analyzed variables, the use
of EV copulas is intellectually satisfying. Moreover, the SOA
medical large claims database supported these models. There-
fore, EV copulas should be considered for bivariate reinsur-
ance pricing in the future.
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