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Abstract  

In this paper, a nonlinear active damping strategy based on force feedback is 

proposed. The proposed device is composed of a pair of collocated actuator and 

force sensor. The control law is formed by feeding back the output of the force 

sensor, through one single, one double integrator and another double integrator of 

its cube. An equivalent mechanical network which consists of a dashpot, an inerter 

and a cube root inerter is developed to enable a straightforward interpretation of the 

physics behind. Closed-form expressions for the optimal feedback gains are 

derived. Numerical validations are performed to demonstrate the proposed control 

strategy.    
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1. Introduction 

Flexible structures such as beams, cables and rods are commonly seen in engineering applications. 

The associated vibration problems have drawn the attention of many researchers as they often 

exhibit low damping characteristics. In some cases, especially when the flexible structures are 

excited around their resonant frequencies, nonlinear vibrations may occur due to, for example, 

nonlinear properties of materials, geometric nonlinearities, and nonlinear external forces [1].  

Traditional linear solutions based on tuned absorbers via passive means [2] or active means [3] are 
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no longer effective. This is because the resonant frequency of the nonlinear oscillations depends 

intrinsically on the motion amplitudes [4]. In order to recover their control effectiveness, 

mechanisms that can deliver nonlinear reacting forces should be added in these linear approaches. 

Habib et al. [5] and Sun et al. [6] proposed to use nonlinear tuned vibration absorbers (NLTVAs) 

for vibration mitigation of nonlinear resonances. Although this concept is promising, it may 

become cumbersome and expensive to realise NLTVAs in practice using passive means for 

complex nonlinear primary systems.  

On the other hand, active approaches might be appealing which might lead to a less complex 

solution. Zhao et al. [7] applied the same tuning strategy as proposed in [5] on a nonlinear positive 

position feedback (NPPF) controller aiming to optimally damp a Duffing oscillator based on the 

ℋ∞ criterion. However, the stability of this active control system is not unconditionally guaranteed, 

which might be problematic in practical engineering applications. Zhao et al. [8] proposed an 

unconditionally stable controller using force feedback for linear applications. The stability is 

presumed given idealised force sensors and actuators are employed. In fact, the realised active 

system is equivalent to a pure mechanical system consisting of an inerter and a damper.  

This work is built upon the previous developments [7,8] to investigate the potential of using an 

active nonlinear inerter damper (ANLID) for vibration mitigation of a Duffing oscillator (primary 

structure). More specifically, a cubic nonlinear term is added in the original linear controller [8] in 

order to counteract the nonlinear dynamics of the primary structure. The added nonlinear term plays 

the same role as a cube root inerter in the equivalent mechanical network. The optimal nonlinear 

control gain is derived such that the control effectiveness achieved with the linear controller-linear 

primary structure is maintained for a nonlinearly coupled system. It is shown that the ANLID 

further outperforms the previously proposed NPPF controller for suppressing the occurrence of the 

detached resonance curves (DRC) which may limit the practical application of the NPPF approach. 

As the ANLID may be alternatively realized with passive means, the optimal tunings derived in 

the paper can be also used to guide the design of its equivalent passive counterpart.   

The paper is organised as follows. In the next section, the mathematical model of the system under 

consideration is developed, based on which the optimal nonlinear control gain is derived. In Section 

3, numerical analysis is performed in order to validate the derived formulae and to examine the 

control effectiveness of the ANLID. Conclusions are drawn in Section 4. 

2. Mathematical modelling and parameter optimisation  

A Duffing oscillator is considered as the primary structure which is shown in Fig. 1(a). It is defined 

through a lumped mass 1m , a linear spring 1k  and a cubic spring 3k . A harmonic excitation force 

 cosdF F t  is applied. An actuator is placed in parallel to the suspension of the Duffing 
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oscillator, whose stiffness is denoted by 
ak . A collocated force sensor which measures the 

transmission force represented by 
sF  is installed. The active control loop is implemented by 

feeding the output of the force sensor 
sF  through a nonlinear controller  sC F  to drive the 

actuator. 

The governing equations of the coupled system read: 

  3

1 1 3 cosd sm x k x k x F t F      (1) 

  s s aF C F k x    (2) 

The nonlinear controller  sC F  is modified from the linear controller proposed in [8] by including 

a cubic term in order to counteract the nonlinear dynamics of the primary structure. The controller 

 sC F  reads: 
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Fig. 1 (a) The sketch of the coupled system under investigation and (b) its equivalent mechanical 

model.  

The following parameters are introduced to normalise the system governing equations:  
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The governing equations with normalised parameters are written as:  

  3

1 1 1 2 cosy y y y Ω       (5) 

 
3

2 2 2 2 1 0sn dny g y g y y y          (6) 

where Ω  is the normalised frequency defined as 1Ω=  . As suggested by Eqs. (5) and (6), the 

proposed system can be alternatively realised by a pure mechanical network composed by a spring, 
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a dashpot, an inerter and a cube root inerter connected in series. This equivalent mechanical scheme 

is shown in Fig. 1(b). 

It has been shown that there exists two fixed points for the linearly coupled system ( 0   and 

0  ) [8]. The optimal control parameters 
sng and dng  have been derived based on the equal peak 

method. For the nonlinearly coupled system, the optimal nonlinear control gain is sought to 

maintain the equal peak property with the presence of primary structure’s nonlinearity. However, 

it is difficult to derive the explicit expression of the performance index i.e. 1y  from Eqs. (5) and 

(6). Instead, a pair of one-term harmonic balance approximation is assumed as the solutions as in 

[7]: 

        1 11 12 11 12cos siny A A Ω B B Ω         (7) 

        2 21 22 21 22cos siny A A Ω B B Ω         (8) 

where the coefficients of  cos Ω  and  sin Ω  are expanded into series with respect to the primary 

nonlinear coefficient  .  

Substituting Eqs. (7) and (8) into Eqs. (5) and (6), and applying the approximations 

   3cos 3 4cosΩ Ω   and    3sin 3 4sinΩ Ω  , a set of polynomial equations can be obtained 

by balancing cosine and sine terms and collecting the resulting expressions with respect to the order 

of the parameter  . After omitting the expressions whose orders are higher than 1 , one obtains:  

 2

11 11 21 1A Ω A A      (9) 

 
2 3 2

12 12 22 11 11 113 / 4 03 / 4A Ω A A A A B       (10) 
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11 11 21 0B Ω B B     (11) 

 
2 2 3

12 12 22 11 11 113 / 4 03 / 4B Ω B B A B B       (12) 

   2

11 21 21 21 0sn dnA A Ω g B Ω g A       (13) 

    2 3 2

12 22 22 21 21 21 221/ 4 3 03sn dnA A Ω g B Ω A A B g A         (14) 

   2

11 21 21 21 0sn dnB B Ω g A Ω g B       (15) 

    2 2 3

12 22 22 21 21 21 221/ 4 3 03
sn dnB B Ω g Ω A B BA g B         (16) 

Solving for ijA  and ijB  ( 1,2i  , 1,2j  ) from Eqs. (9)-(16), the resulting solutions are found to be 

in terms of 
sng  , dng ,   and Ω . Due to the complexity, these expressions are not given here. The 

modulus of the normalised receptance  1y Ω  can be expressed as:  

      2 2 2 2 2

1 1 11 11 11 12 11 122Q Ω A B A B A A B B          (17) 

An additional condition is imposed in order to derive the optimal coefficient of the nonlinear 

compensator  , which is sought to ensure the equal peak property at the fixed points:  
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    1 2f fQ Ω Q Ω   (18) 

where 1fΩ  and 2fΩ  denote the location of the fixed points of the linearly coupled system. 

The expressions for 1fΩ  and 2fΩ  as well as the optimal values for 
sng  and dng  are given as [8]: 

 
1 21 2, 1 2 , 1 23 2,sn dn

opt opt f fg g Ω Ω           (19) 

Substituting Eq. (19) as well as the solutions of Eqs. (9)-(16) for ijA  and ijB  ( 1,2i  , 1,2j  ) into 

Eq. (18), one obtains 

 
2

2

16 512

56 256
opt

 

 


 


   (20) 

3. Discussion 

Numerical studies are performed to validate and examine the control effectiveness of the ANLID 

controller. The governing equations are computed using a path-following algorithm combining 

harmonic balance and pseudo-arclength continuation [9]. A modal damping of 1% is added to the 

primary structure. 

 

Fig. 2 The performance index 
1

y  for (a): the optimal ANLID with the nonlinear gain   varying 

with respect to its optimal value and (b) the ANLID when control is off; The system parameters 

0.1   and 0.003   (: fold bifurcation)  

The first study is focused on the validity of Eq. (20) which describes the optimal coefficient of the 

nonlinear compensator  . Fig. 2 (a) plots the frequency response of the performance index 1y , 

where the nonlinear coefficient   is set to 0.003, the stiffness ratio   is set to 0.1, the linear 

control gains 
sng  and dng are calculated as in Eq. (19), and the parameter   varies with respect to 

its optimal value as opt  : 1/4, 1/2, 1, 2 and 4. It is seen that the response at the first resonance 

frequency increases with an increase of the parameter   and an opposite trend is observed for the 
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second resonance peak. Peaks of equal amplitudes are obtained with the optimal setting of the 

parameter   as given in Eq. (20). Fig. 2 (b) shows the performance index when the control is set 

off, which clearly indicates the system is in the regime of nonlinear motions. With the proposed 

ANLID, the system response can be substantially suppressed as shown in Fig. 2 (a). 

For the second study, the control effectiveness of ANLID is investigated and compared with that 

of the linear inerter-damper [8] (ANLID for 0  ). Fig. 3 (a) compares the resonance peaks 

associated with the two controllers. The loci of resonant peaks are computed using the method 

proposed in [10]. As can be seen, the linear inerter-damper gets rapidly detuned and a clear 

nonlinear dependence with respect to the nonlinear forcing coefficient  is observed i.e. non-

unique peak values are captured when 0.0088 0.01  . The underlying dynamic mechanism is 

as follows: there is a DRC, also termed an isola, coexisting with the main frequency response 

function curve and it merges with the main curve at the second resonance when   approaches 

0.01. On the contrary, the equal peak property is still maintained when the nonlinear controller is 

applied for the value of  up to 0.02. Fig. 3 (b) continues to show the evolution of the resonance 

peaks for the case of the ANLID by extending   to unity. It can be seen that the difference between 

the two peaks monotonously increases with an increase of  up to 0.2. When the nonlinearity is 

more pronounced i.e. in the extremely strong nonlinear regime ( >0.2), the distance of the two 

peaks seems to keep constant. Unlike the linear controller or the NPPF controller, there is no 

occurrence of isolas when the ANLID is used for damping the Duffing oscillator. Although the 

equal peak property does not hold for large values of  , ANLID remains more effective compared 

to its linear counterpart in terms of the resonance peak difference. Interestingly, it has been noticed 

that the nonlinearly coupled system i.e. the Duffing oscillator and the active nonlinear inerter 

damper exhibit a dynamic behaviour similar to that of its linearly coupled counterpart in a large 

range of forcing amplitudes. In order to further improve the control performance, a stiffer actuator 

can be used as illustrated in [8] for the linear active inerter damper. 
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Fig. 3 (a) comparison of the resonance peaks between the linear inerter-damper and ANLID; (b) the 

resonance peaks for the ANLID when  is extended to unity 

4. Conclusion 

A nonlinear active damping strategy based on force feedback has been proposed. The equivalent 

mechanical representative, i.e. ANLID, has been derived to better understand the working principle 

of the active control system. Closed-form expressions of the control parameters have been derived. 

A Duffing oscillator has been considered to illustrate the proposed tuning of the optimal control 

gains. It was shown that the control effectiveness of ANLID can be maintained for a relatively 

large range of forcing amplitudes. More interestingly, the optimally configured ANLID can also 

suppress the presence of isolas which occurs for the linear inerter-damper or the NPPF controller. 

Experimental validation and further theoretical investigations are left for a future work. 
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