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ABSTRACT: To design reliable structures, extreme pressures and peak factors are required. In
many applications of Wind Engineering, their statistical analysis has to be performed by consid-
ering their non-Gaussian nature. In particular, in the shear layers and where local vortices are
formed, it is commonly observed that measured pressures might exhibit two or more significant
components, which can be modeled with mixture models. Mixing two components with unequal
weight may result in much larger non-Gaussianities (even if the two components are Gaussian)
than a single (non-Gaussian) component. For this reason and some others, it is important to split
a mixed flow into its underlying components [1]. In this paper, we propose a novel de-mixing
method. Unlike existing approaches which are based on a nonlinear least-square fitting of the
probability density function (PDF), the proposed method is supported by the different timescales
of the mixed phenomena. The method is briefly described, and two examples of application are
given.
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1 INTRODUCTION

This work focuses on the statistical analysis of wind pressures, involving significant non-
Gaussianity, in the scope of building roofs. Peak factor estimation is necessary for the prediction
of wind loads and thus the design of structures. The design of cladding and other facade ele-
ments with respect to the local minimum pressures is a major aim of structural design.,

The precision of wind tunnel measurements is necessary to keep important information: high
sampling frequency, fine tap spatial distribution, long samples. With the increasing of pressure
sensors precision in terms of sampling frequency, local effects can be better captured. However,
the question can be raised about the relevance of very local effects, negligible in term of spatial
and time scale compared to the entire structure. Amerio et al. [2] reported pressure coeffcients as
low as -14 and Lin ef al. [3] until -18 near roof corners of flat roof low buildings.

Many research works have been carried about the non-Gaussian statistics analysis of wind
pressure [4, 5, 6, 7, 8]. Their purpose is to estimate peak factors, based on the translation process
[9]. Peak factor can be estimated using the Hermite moment-based model [10] applied to the
Gaussian peak factor of the classical peak factor model [11]. This Hermite moment-based ap-
proach relies on a transformation of a Gaussian into a non-Gaussian softening process (cubic
translation) [7]. For many wind pressures, there is a good correlation between the peak factor g
and high-order statistics (skewness 73 and kurtosis 74).



There exist also more advanced models, such as the modified Hermite model [12] or the re-
vised Hermite model [13] which are able to deal with stronger non-Gaussianity. The former is
quite heavier to solve due to a non-linear system; the latter requires conditions on 73 and 7%.
However, the Hermite moment-based model is less precise when pressures are significantly non-
Gaussian. The cubic translation model requires the process to satisfy the monotone condition
[14]. Peng [15] proposes a mapping of statistics in the (13,%) plane to reach the monotone con-
dition by adjusting their value but the physical interpretation is less easy. Another kind of solu-
tion is a point-to-point distribution function mapping between Gaussian and non-Gaussian pro-
cesses, assuming a Weibull or Gamma distribution [2]. This model allows to obtain an analytical
evaluation of the peak factor but only in the case of a Weibull or Gamma distribution and is not
general enough to handle multiple mode distributions.

Indeed, wind pressure on a low-rise building roof can be highly non-Gaussian and typically
features two distinct and interacting phenomena. In worst cases (of large non-Gaussianity), the
pressure distribution can even become bimodal which immediately calls for a separation of the
two different phenomena and modes: e.g. the turbulent background and a component linked to
the main flow behavior (corner vortices). By studying the probability density function (PDF),
such modes can be highlighted. Traditional peak factor models, such as the cubic translation
model [10] fail to predict peaks of the mixed process, but are much more accurate as soon as the
tail component only is considered. The PDF is however a low rank statistical property and part
of information is lost. The analysis is thus performed together with higher rank properties such
as the autocorrelation, observing that the timescales associated with the two mixed components
are different: (i) the slow turbulent flow and (ii) the fast shedding/flapping of corner vortices
flow. We present a de-mixing operation based on the PDF and autocorrelation, making it possi-
ble to select the process of interest in the tail of the distribution and to restore the good agree-
ment between g and (13,%) by satisfying the monotone condition. This is the option that is fol-
lowed in our study.

The main contribution of the paper is to propose a solution for the treatment of significantly
non-Gaussian pressure processes, thanks to a new way to separate the different contributions in
the wind flow and to estimate peak factors based on long time wind pressure measurements. This
paper first summarizes the algorithm for pointwise pressure data de-mixing based on the PDF
and the autocorrelation [16]. High-order and rank statistics are studied, and instead of adjusting
skewness and kurtosis through mapping, we suggest dealing with these processes by first de-
mixing the wind pressure process, and then applying a cubic translation model to the tail compo-
nent. By doing so, the peak factor predicted by the model (after de-mixing) is not only computa-
ble with the model but also in much better agreement with the peak factor obtained with statisti-
cal treatment of long data series. The general methodology that is proposed to decompose the
wind pressure. The developed methodology will be illustrated with the analysis of wind pressure
measurement on a square low-rise building flat roof, with a 45° wind orientation but can be ap-
plied to other practical cases of wind around buildings that require an estimate of wind loads on
areas. After understanding the kind of flow involved and basic pressure statistics, the de-mixing
methodology is explained. Then, processes with bimodal distributions are simulated to deduce
statistical parameters violating the monotone condition. A parallel between autocorrelation and
probability distribution decomposition is applied to decompose the pressure into simple compo-
nents. Finally, it is shown that usual peak factor formulations are sufficiently accurate to model
extreme values and their application in cladding design is discussed.
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2 METHODOLOGY
2.1 Cubic translation and peak factor estimation

A usual way to estimate peak factors from pressure measurement uses cubic translation from a
Gaussian process u to a non-Gaussian (softening) one x [10], and the Hermite moment-based
model:

X=K|u+

oo
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where « is a scale factor that ensures x has unit variance and Hx is the »™ Hermite polyno-
mial. A softening process is characterized by a wider tail in the distribution compared to a
Gaussian one (i.e. with % =7 —3>0 ). Most of wind pressure measured on buildings and roofs
are softening processes. The mean peak factor is computed by Kareem et al. [4],
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where h3, ha, X are coefficients of moment-based Hermite model [7], the Euler’s constant is
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where Vo is the mean zero up crossing rate of process y (standardized non-Gaussian process
obtained from a non-Gaussian process x, Y= (x—E[x])/ Ox), T is the duration, m; is the ;®
spectral moment of y, Sy(n) is the one-sided power spectral density of y, n is the frequency in
Hz. The validity range of the application of Hermite model is defined in a monotonic region, i.e.
corresponding to a monotone transformation of x(u), requiring dx/du > 0. Practically, this condi-
tion satisfies [7, 14],

hy =

% > (1.25%) (4)

Choi [21] studied the different regions and monotone limits of Hermite-based model (for sof-
tening and hardening processes). Strong negative wind pressures measured on buildings and
roofs are mostly softening processes. In our case, taps falling outside the monotone limit are in
region III of Figure 1(a). Choi [21] proposes to overcome this limit by taking a softening-
hardening-softening transformation (Figure 1(b)) in order to keep an increasing (monotone)
transformation x(u) and cross the decreasing part of the softening process. This technique re-
quires making a hybrid model depending on the value of x and deform the nature of the process.

Another methodology to deal with these processes is proposed in the next section, based on
physical interpretation in the case of bimodal processes.
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Figure 1. (a) Regions of Hermite model applicability, (b) Region III of Figure 1a: softening-hardening-softening
truncation for monotone transformation x(u) (Choi (2010)).

2.2 Autocorrelation-aided de-mixing algorithm

Pressure processes in the corner vortices region are highly non-Gaussian and bimodal. Based on
this physical interpretation, instead of using the whole PDF in a non-monotone transformation,
we propose to use only the mode of interest in the cubic model: the one containing the tail. Each
PDF has thus first to be decomposed.

Cook [20] proposed to model the wind pressure data as a sum of several components, the
Skew Gaussian Exponential Mixture Model (SGEMM). Inspired by this model, we suggest
modeling the wind pressure as a mixture of two skew-Gaussian (SG) distributions. The skew-
gaussian (SG) is given by

psota) =20 (5 )@ (™) )

where ¢ and & are the standard gaussian PDF and cumulative density distribution (CDF), &
a location parameter, w a scale parameter and o« a skewness parameter. It is also possible to
use another distribution, the skew-hyperbolic secant, to fit only the tail but we keep only two SG
distributions thanks to the physical interpretation: (i) mode 1 corresponding to the turbulent
background flow (as the one present on the roof region without vortex) and (ii) mode 2 to the
corner vortices fluctuation (separated flow). The resulting PDF is the weighted combination of
those distributions,

P(x) = wip1(x) +wap2(x) (6)

where Wi are weighted parameters. Standard adjustment methods would recommend pro-
ceeding to a non-linear least-squares fitting to find appropriate estimates of 8§ model parameters,
under the constraint wi+w2 = 1 In the case of a bi-modal PDF, the mean and the variance of the
total PDF can be linked to those of its components 1 and 2,

U=wil; +watlr, withw; +wy =1 (7)

02 = w167 + w203 +wiwa (W — )’ (8)

When bumps are clearly identifiable, initial guesses for the location and scale parameters
(£, ®) are easy to choose and the fitting converges quickly
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2.3 Slow and fast time scales

Standard adjustment methods work well when the modes are easy to identify but can be ill-
conditioned in some limit cases (e.g. same average and/or standard deviation for two modes). In
this case, a more robust method is necessary. The idea comes from a physical interpretation of
the modes from a timescale point of view. Close to edges of buildings, two phenomena are in-
volved in the pressure, a mixture between a slow background turbulence (mode 1) and a fast
shedding (mode 2), which is visible in the autocorrelation function of the mixed process, ex-
pressed as,

oo 9
R(11,12) =/ (x1 — ) (x2 — ) Py (x1,x2,11,1) dxydxp ©)

where Pr(x1,%2,11,12) is the probability to have the pressure coefficient x=x1 at #1 and
x=x2 at . In a mixture model, the random variable is either in mode 1 or mode 2. The pres-
sure coefficient can be represented by,

ep(t) = wi()epa (1) +wa(t)epa (1), with ¢, = 2L (10)
2pUS

where Wi(t) =1 if ¢p is in mode 1, and 0 otherwise. The weight has thus also a certain dy-
namics, and probability distribution Pw, (i,J:11,22) where i at time ?1 and j at time % are equal
to 0 or 1. We have Pw,(1,0,11,12) = Py, (0,1,11,12), The signal being stationary, we can rewrite the
autocorrelation depending on T =11 —1,
R(t) = Py (1,1, 7)R1(7) + Py (0,0,7)Ra(7) + Py, (1,1,7) (W — 20411 + P, (0,0,7) (113 —2pp12) (1)
+2P,, (1,0,7) (a2 — 4 (11 + M2)) +

The general expression of the autocorrelation is thus based on the sum of two decreasing ex-
ponentials, the autocorrelation of each mode,

Ri(t) = ofe /¥ (12)
where 7 is the characteristic time of mode i (i = /,2). Two limit cases are interesting to ana-

lyze:
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where Wi is the mean of Wi(t). Equation 13 is consistent with Equation 8.

Thl?oR( T) = WiR; (T — ) + W3Ry (T — ) =0 (14)

When the mean pressures in both modes are close to each other (standard methods are ill-
conditioned), the third term in Equation 13 is negligible and by identifying the two components
in the autocorrelation function, it is possible to extract the weighted variance of each mode and
use them as an additional constraint in the fitting. Figure 2 summarizes the autocorrelation-aided
de-mixing methodology in two modes.

One the bi-modal distribution is properly de-mixed, the peak factor estimation is performed
using the model of Kareem and Zhao [4] on Mode 2 only (the one associated to the most nega-
tive pressures).
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Figure 2. Autocorrelation-aided de-mixing methodology.

L~ =
T Ti(slow) T T2 (fast) T

3 CASE STUDY

The setup made by Blaise ef al. [16] consists of a square plan-form low-rise building (sides of 45
m and a height of 25 m), uniformly instrumented by 121 pressure taps in a quarter of its roof
(see Figures 1 and 2), sampled at fs =500 Hz. The model is placed at an incidence of 45° in the
atmospheric boundary layer test section of the wind tunnel (WT) of the University of Liege. This
direction is fixed to obtain a symmetry in the complex nature of the corner vortices developed at
the edges [17].

The atmospheric boundary layer test section creates a turbulent wind of category III according
to the Eurocode [18], with 20 =0.3 m and zZmin = 0.5 m. The mean velocity (Equation (15)) and
turbulence intensity (Equation (16)) profiles are presented in Figure 4.

Un(2) = UpekyIn (2/20) 1 Kr = 0.19 (2020) "7 (15)
1
L(z) = @ (16)

Pressure taps are linked to the scanner using pneumatic connection (vinyl tubes) of internal di-
ameter of 1.32 mm and length 600 mm. The static pressure is well measured but unsteady com-
ponents have to be dynamically corrected, thanks to the theoretical formulation of Bergh and
Tijdeman [19] and the experimental apparatus of Rigo [20]. Figure 5 presents the transfer func-
tion, in amplitude and phase, necessary to correct measurements, until the sampling frequency of
500 Hz.
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Figure 4. (a) Mean velocity Uw(2) and (b) turbulence intensity Us(2) profiles of the atmospheric boundary lay-
er: measurements and comparison with suburban category III terrain, from [16, 18].
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Figure 5. Transfer function of the pressure tubes, in amplitude and phase of corrected pressure as a function of the
frequency [19, 20].

3.1 WT results: First rank statistics

The geometric scaling is Az = 1/100, The Reynolds condition would require a velocity scaling of
Ay =2, " =100, which would impose WT speed of about 1000 m/s, impossible. The Reynolds
dependency is more critical for smooth and mainly circular shapes such as cylinder or sphere.
When the flow is completely separated and turbulent, the Strouhal scaling is preferred. Because
of WT ferformances, the velocity scaling is chosen as Au =1/3.5 The Strouhal condition im-
poses Ar =2Ar/Au =1/28.6 (time). Every measurement is converted in full scale. A total of 13 h
of measurement has been taken in the WT, corresponding to 371.8 h full scale. This long infor-
mation allows to compute precise PDF tail, necessary to study the extreme values. In the follow-
ing, statistics are presented in a non-dimensional way: position (§,1) = (x/L,y/L) and pressure
coefficient (Equation (10)).

The Reynolds number of the WT model is 6.8 x 10°. The flow around this low-rise building is
characterized by corner vortices, that roll in a cone shape. The pressure is mainly negative be-
cause of the separated nature of the flow (X(Cp) in Figure 6(a)) and is the most negative where it
starts to separate, just after the edges, on the corner. The two cones on both corners have a main



axis, recognizable by the ridgelines of the standard deviation of the pressure coefficient 0(Cp),
in Figure 6(b). The non-Gaussianity happens in the corner vortices boundaries, where ¥3(Cp)
and %(Cp) are the highest. For a Gaussian process, 3 =0 and % =3. The excess
Ye =Y+ —3=0_On Figure 6, a lower right triangle appears systematically, with low statistics val-
ues. This region is mainly Gaussian, with a low dispersion and mean pressure value. Physically,
the flow in this region is the case of a simple turbulent flow on a flat plate. This region is not
studied here, since it has smaller extreme values and represents less interest compared to the
complex flow in corner vortices.
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Figure 6. Map of (a) mean, (b) standard deviation, (c) skewness and (d) kurtosis (excess).

As suggested by Kawai [14], there is one main vortex at the corner, but a secondary small one
develops just next to the edge, below the main vortex. Pressure taps in this setup were not close
enough to the edge to capture well this secondary vortex. Nevertheless, in Figure 6, ¥3(Cp) in-
creases just next to the edge, at (§,7) = (0.05,0.4) suggesting the presence of another vortex. By
looking at skewness and kurtosis values, each pressure distribution in the corner vortices has a
negative skewness (negative extreme pressure events) and a positive excess kurtosis (called sof-
tening process, the PDF has a flatter shape compared to a Gaussian process). Figure 7 shows a
typical pressure coefficient signal (at tap 4): with local negative extreme pressures (13 < 0) and
wide range of distributed values, no concentrated values around the mean. Moreover, the two
modes are identifiable with two principal levels at around ¢p = —0.9 and -2.1.
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Figure 7. Pressure signal at tap 4 and PDF (log-scale).

Figure 8 allows to have a quick qualitative view of the PDF. Each PDF is represented in log-
scale at all 121 pressure tap locations. The same scaling is used to represent them and have a
quick comparative view of the dispersion and asymmetry of PDFs. Those in the corner vortices
are highly non-Gaussian and two modes (two bumps) are clearly identifiable. This motivates the
discussion of Section 4.
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Figure 8. Map of all PDFs.

3.2 Extreme values

As done for the pressure coefficient signal, it is also possible to compute statistics and draw
probability density functions for peak pressures. Based on time series, the peak value of cp over
a time window T (conventionally 10 min full-scale) is taken. This operation is repeated for the
whole signal so that the peak pressure is not unique and has a distribution. Figure 9 shows PDF
of extreme pressures for taps 56 to 60, which cross the corner vortices region: (i) close to the
edge (56), the pressure is significantly negative, (ii) in the corner vortices region (from tap 57 to
59), the extreme distribution is wider, (iii) after the corner vortices, where only background tur-
bulence remains, the peak pressure is less negative and its distribution quite narrow.
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Figure 9. PDF of peak pressures (10 min window) of taps inside corner vortices region.

Figure 10(a) shows a map of the mean value of peak factor of the pressure coefficient Hg(Cp),
the highest values happening were the vortex cone touches the roof, similarly to % and 7.
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Figure 10. Map of peak factor (a) mean and (b) standard deviation.

4 RESULTS AND APPLICATIONS
4.1 De-mixing algorithm

Figure 11 shows the decomposition in modes of the PDF at pressure tap 4. The two modes are
easy to identify by looking at the two bumps in the PDF (Figure 11(a)). Figure 11(b) show that
the de-mixing algorithm and modes identification is not susceptible to the duration of measure-
ment, only the tail is limited to probability of 10~% While the computation of peak factor direct-
ly from data requires long measurements, the peak factor estimation from de-mixing is quicker.

Figure 12(a) show the PDF at tap 11, modes are almost superimposed and less easy to identi-
fy. The autocorrelation (Figure 12(b)) is decomposed in two modes and the weighted variance of
each mode is extracted from the value at the origin to constrain the PDF fitting.
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Figure 12. Tap 11: (a) PDF decomposition in mode 1, 2, tail (log-scale) and (c) autocorrelation decomposition in
modes 1 and 2.

4.2 Extreme values estimation

Figure 13 compares results (a) before and (b) after de-mixing. The boundary of Equation (4) is
shown in Figure 13(a), where pressure taps belonging to the lower region are not eligible (with-
out de-mixing). These taps a represented on the right in Figure 13(a), precisely in the corner vor-
tices region. The taps outside the monotone limit (before de-mixing) are used in the de-mixing
methodology and the skewness-kurtosis map of each mode is reproduced. The monotone criteri-
on is fulfilled for all taps after de-mixing: (i) Mode 1 represents the background turbulence and
is almost Gaussian (low 7 and 7) while (ii) Mode 2 associated to corner vortices and peak
pressure is more non-Gaussian but still inside the monotone region. Figure 13(c) shows the peak
factor estimation compared to the measured one without and with de-mixing. Thanks to the de-
composition, the statistics used from mode 2 allows to satisfy the monotone limit and improve
the peak factor estimation.
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Figure 13. De-mixing methodology results: (a) skewness-kurtosis monotone region (a) before de-mixing (e taps
inside the limit and x outside, and location on the roof) and (b) after de-mixing of taps that were outside in (a) for
the two modes, (c) peak factor estimation improvement.

4.3 Dynamic response of a cladding

In structural design, the peak pressure is usually statically applied on the whole cladding surface.
Often, this leads to a too conservative design because the fagade element response might react in
a dynamic manner to fast loadings. Indeed, a very large negative peak occurring during a very
short period of time will less affect the structure (depending on its natural frequency); the severi-
ty of such an impulsive load depends on its momentum (dashed part of the time signal in Figure
14). The dynamic response is computed by applying the pressure excitation on a simple mass-
spring-damper system. The response spectrum is sketched in Figure 14 (right) by reporting the
ratio between the maximum dynamic response over the maximum static one for each natural fre-
quency (by varying its stiffness). When the PDF is bimodal, the shock response spectrum pre-
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sents also an envelope with two modes: the slow turbulent background (high characteristic time,
low frequency) and the fast shedding (lower time, higher frequency). Thanks to the decomposi-
tion, the response in each mode can be estimated very efficiently: momentum for the fast vorti-
ces and power spectral density for the turbulence.

T4,
Cp DAF = dyn
T ¢ Tst
Mode 2
Vortex
2 Mode 1
Turbulence
Cp(t) Tty Quasi-static
Dynamics
E 1 fTQ

1

Figure 14. Dynamic response of a cladding and shock response function.

5

CONCLUSIONS

In conclusion, in order to correct peak factor estimations based on cubic translation model,
strong non-Gaussian pressure processes that are not inside the monotonic region have been cor-
rected by decomposing their PDF into two competing sources of wind pressure, associated to
different known physical phenomena : (1) the fast shedding in separated regions (corner vorti-
ces) and (2) the slow background turbulence. Mode 2 is responsible for large negative peaks and
is therefore the relevant one to estimate peak factors using Hermite moment-based model. Doing
so provides a much better agreement with long time series.
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