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SUMMARY:
The wake-oscillator model of Tamura for Vortex induced vibration (VIV) under free vibration conditions is deeply
analysed for parameters identification through a perturbation methods analysis. In the slow phase model of VIV, a
simple analytic solution for the amplitude of motion and phase is derived. The model is proved to be accurate for
the estimation of the maximum amplitude and lock-in range. Results show that the phase between the displacement
and the wake variable plays a key role in the lock-in mechanism and needs to be measured experimentally in further
studies. The proposed parameter identification is direct thanks to analytical expressions and will be used in further
experiments involving other shapes and tandem cylinders.
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1. INTRODUCTION
The two dimensional model of Tamura (Tamura, 1981) has been widely used and has the advantage
of a direct physical interpretation of each term. This set of two equations relies on Birkhoff’s
concept about the oscillating wake. The main outputs of the VIV study are (i) the maximum
displacement amplitude and (ii) the size of the lock-in region to predict entirely the instability.
Instead of solving numerically the system, the aim of this study is the derivation of an analytical
solution which is useful to obtain directly these two outputs and understand driving mechanisms
of VIV.

2. METHODS
2.1. Mathematical modelling
The wake-oscillator model for a circular cylinder is expressed as (Tamura, 1981):
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The meaning of all symbols is given in Appendix. Instead of solving this system numerically, a
perturbation method is used. This requires the identification of small numbers in the physical quan-
tities. Experimentally, the dimensionless transverse amplitude Y is limited to small oscillations,
typically 0.1-0.3 (2S vortex shedding regime (Williamson and Roshko, 1988)). This motivates to
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express Y = εỸ , where ε � 1 and Ỹ ∼ 1. The mechanical damping is also small in structures sub-
mitted to VIV (typically in the range 0.1−1%), it is then expressed as ξ = εξ0. The fluid to solid
ratio for light steel structures submitted to air is typically very small (mr ∼ 10−4−10−3) and can
be expressed as mr = ε2mr,0. The bifurcation parameter of the system is the airspeed, expressed as
a ratio of speeds or frequencies with Ω. The system is solved to obtain the VIV response, thus in
the lock-in range and close to the critical speed Ω∼ 1 and it can be expressed as a small mistuning
around 1: Ω = 1+ξ δ because ξ is a small parameter, δ being the mistuning parameter of order 1.
Assuming a small coupling, terms in the righthand side are of the order of ε . The wake coordinate
α is expressed as α̃ = α/α∗ with α∗ =CL0/2 f to simplify the nonlinear term in Eq. (2). The total
damping ξt is the sum of the mechanical (ξ ) and aerodynamic damping (ξa = mr( f/CD)Ω/4πSt).
Noting that Eq. (2) is a Van der Pol type equation, the small parameter ε multiplies the non linear
term and ε is chosen as ε = 2β . The short and compact version of the governing equations is:
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where M0 = −mrCL0
8π3ε2

(
Ω

St

)2
= −CL0ξ Ω2π

2ε2SG , A0 = − λ f
CL0

and A1 = −2πSt f
CL0

. These equations are now
expressed using two variables of order 1 (Ỹ and α̃) and physical/experimental coefficients (A0, A1
and M0). By using a multiple scale approach (averaging), a solution is sought with two time scales
t1 = τ (fast) and t2 = T = ετ (slow). An Ansatz is used for both variables: Ỹ = Ỹ0 + εỸ1 +O(ε2)
and α̃ = α̃0 + εα̃1 +O(ε2) and injecting it into Eq. (3)-(4) gives, at leading order:

Ỹ0 = Ry(T )cos(τ +φ(T )) (5)
α̃0 = Rα(T )cos(τ +φ(T )+ψ(T )) (6)

For both degrees of freedom, the solution at leading order is a fast oscillation modulated by a slow
envelope. Solving the system for the envelopes Ry, Rα and the phase ψ , secularity conditions read:
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In steady-state condition, all lefthand sides vanish and solving for ψ gives:
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ξ SG (always positive). Knowing physical parame-
ters and constants in D0 and D1, the phase can be directly computed as a function of the mistuning
δ by solving the third order algebraic Eq. (10). Then, the envelope of the displacement is deduced
from Eq. (11) and presented in section 3.



2.2. Wind tunnel set-up
The wind tunnel set-up consists in a circular cylinder suspended horizontally and free to oscillate
vertically. This aluminium cylinder has an external diameter of D = 5 cm, a thickness of 1.5 mm
and a length of 1440 mm. It is supported by extension springs connected to a rigid frame attached to
the ceiling of the test section of the Wind Tunnel Laboratory of University of Liège. The stiffness in
flexion in the vertical direction is equal to 6155 N/m, elastomers are added and a wind-off analysis
showed a natural frequency of f0 = 9.59 Hz and a damping ratio of ξ = 0.04%. The set-up is
instrumented with one accelerometer measuring the vertical acceleration (acquisition frequency
is set to 201.03 Hz). A cobra probe is installed in the wake of the model to measure the flow
velocity (acquisition frequency of 250 Hz). A vane anemometer measures the wind velocity seen
by the model. The Reynolds number is in the range Re = 3 ·103−3 ·104. Moreover, taps around
the cylinder measure unsteady pressure signal at 250 Hz, synchronized with the accelerometer, to
obtain the phase between the displacement and the lift.

3. RESULTS
The perturbation method presented in section 2.1 showed the key role of the phase ψ in the results.
Eq. (10) is solved in Fig. 1 to obtain the cotangent of the phase cotψ as a function of the mistuning
δ for different values of the constants D0 and D1. The case D1 = 0 is shown to make the link
with other kind of VIV models that use only one coupling term in the fluid equation (only the
acceleration (Denoël, 2020; Facchinetti et al., 2004) or the velocity (Hartlen and Currie, 1970)).
When cotψ = 0, the phase ψ = π/2, leading to a high energy transfer and resulting in transverse
vibration (critical speed when δ = 0). For cotψ close to 0, the phase is still close to π/2 and the
structure vibrates as well, in an interval of airspeed called the lock-in range. It is observed from
Fig. 1 that D1 = 0 (black lines) gives a symmetric lock-in. The critical value of D0 is 8 (from
Cardano formula): there is an hysteresis (three real roots in Eq. (10)) in cotψ for D0 > 8 meaning
that: (i) two stables branches are present depending of an increasing or decreasing δ and (ii) one
unstable branch is present between the two others. The effect of D1 is an asymetrisation of the
lock-in range with respect to δ = 0, that grows with D1. For a sufficiently high D1, the hysteresis
for δ < 0 created by D0 > 8 can disappear.

Figure 1. Phase vs mistuning: effect of D0 and D1 on the
solution of Eq. (10)

Figure 2. Amplitude vs mistuning: comparison of analytic
(black) and numerical (red, blue) results (D0 = 1, D1 = 8)



Figure 2 shows the envelope of the transverse displacement Ry as a function of the mistuning δ

for D0 = 1 and D1 = 8. These values where chosen to have only one hysteresis in the right part of
the VIV curve and a case study for comparison with simulations. Black lines are analytical results
obtained by substituting cotψ in Eq. (11). The blue and red lines are the transient numerical
solutions of the full model by slowly ramping up or down the mistuning. The blue dots and red
crosses are numerical results from the full model (Eq. (1)-(2) or (3)-(4)) representing the steady
state solution, using initial conditions chosen as steady state solution of the previous one. The
bifurcation parameter δ is ramped up or down.

4. CONCLUSIONS
An analytical solution of the wake-oscillator model has been derived thanks to a perturbation
method analysis. The value of f (in D0 and D1) can be estimated thanks to the fitting of the model
on experiments, presented in the full paper. The importance of the phase in the VIV behaviour
has been stated and its identification will be carried out in further experiments, from separation
points identification and from phase measurement between displacement and lift. The parameter
identification will allow to extend the study to other shapes and tandem cylinders.
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NOMENCLATURE
CD drag force coefficient
CL0 amplitude of oscillation of the lift coefficient
D0 = πλ f Ω2/2ξ SG parameters related to physical characteristics
D1 = π2St f Ω2/ξ SG and experimentally identified coefficients
f lift coefficient per unit rotation of the

equivalent wake coordinate (Magnus effect)
f0 natural frequency of transverse vibration (Hz)
fvs vortex shedding frequency (Hz)
D cylinder diameter (m)
L∗ dimensionless half length of wake-oscillator
m mass per unit length of the oscillating

body (kg/m)
mr = ρπD2/4m fluid to solid mass ratio
Ry,Rα ,ψ slow dynamics state variables (displacement,

wake and phase)
Re = ρUD/µ Reynolds number

Sc = π2ξ/mr Scruton number
SG = 4π2St2Sc Skop-Griffin number
St = f0D/U Strouhal number
U airspeed (m/s)
Ur =U/ f0D reduced airspeed
Ucr = f0D/St critical VIV speed (m/s)
y transverse displacement of the oscillating cylinder (m)
Y = y/D dimensionless transverse displacement of the cylinder
α inclination of the wake (rad)
β = f/2

√
2π2L∗ damping ratio of wake oscillator

λ = 1/(0.5+L∗) constant
µ air dynamic viscosity (kg/m/s)
ρ air density (kg/m3)
Ω ratio of U to Ucr (or fvs to f0)
ξ mechanical damping ratio
(·)′ = d(·)/dτ derivative with respect to dimensionless time τ = 2π f0t
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