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Abstract: Predicting infections by Puccinia striiformis f. sp. tritici, with sufficient lead times, helps
determine whether fungicide sprays should be applied in order to prevent the risk of wheat stripe
rust (WSR) epidemics that might otherwise lead to yield loss. Despite the increasing threat of WSR to
wheat production in Morocco, a model for predicting WSR infection events has yet to be developed.
In this study, data collected during two consecutive cropping seasons in 2018–2019 in bread and
durum wheat fields at nine representative sites (98 and 99 fields in 2018 and 2019, respectively)
were used to develop a weather-based model for predicting infections by P. striiformis. Varying
levels of WSR incidence and severity were observed according to the site, year, and wheat species.
A combined effect of relative humidity > 90%, rainfall ≤ 0.1 mm, and temperature ranging from 8 to
16 ◦C for a minimum of 4 continuous hours (with the week having these conditions for 5% to 10%
of the time) during March–May were optimum to the development of WSR epidemics. Using the
weather-based model, WSR infections were satisfactorily predicted, with probabilities of detection ≥
0.92, critical success index ranging from 0.68 to 0.87, and false alarm ratio ranging from 0.10 to 0.32.
Our findings could serve as a basis for developing a decision support tool for guiding on-farm WSR
disease management, which could help ensure a sustainable and environmentally friendly wheat
production in Morocco.

Keywords: yellow rust; disease risk; wheat; sustainable agriculture

1. Introduction

Rust pathogens are among the most widespread and important pathogens of wheat which can
cause substantial economic losses if uncontrolled (see for examples [1–5]). For instance, yield losses
resulting from wheat stripe rust (WSR) epidemics, caused by Puccinia striiformis f. sp. tritici, can
reach more than 5.5 million tons per year globally [5,6]. WSR constitutes an increasing threat to wheat
production worldwide, with repeated occurrences [7–10]. During the past decade, a number of WSR
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epidemics were reported in Central and West Asia, and in East and North Africa, with a high disease
pressure observed in countries such as Morocco [11,12] (https://rusttracker.cimmyt.org/). The increasing
threat of WSR worldwide can be attributed to a combination of various factors. They include favorable
climatic conditions conducive to infections [13–17]; long-distance migration capacity [16,18]; high rates
of mutation and existence of recombinant and highly diverse populations [10,19–24].

Wheat is one of the major staple crops of great economic importance in Morocco, the most
consumed cereal crop, with a per capita consumption of 258 kg annually [25–27]. The Moroccan wheat
production is dominated by bread (or common) wheat (Triticum aestivum L.), which represents ~70% of
the total wheat production (durum wheat—Triticum turgidum ssp. durum—representing the remaining
30%) [27]. The average production of bread wheat during 2012–2018 was ca. 4.1 million tons for a
harvested area of ca. 2.1 million ha [27–29]. That of durum wheat over the same period was on average
ca. 1.8 million tons for a harvested area of ca. 958,000 ha [27–29]. Given the importance of wheat
production to the Moroccan economy, the continuous threat posed by WSR each year, particularly
since 2010 [30] could be detrimental to the livelihoods of millions of individuals over time if not well
addressed. Fungicides are typically used to control WSR epidemic outbreaks in Morocco. To help
limiting the potential harmful side effects of these products, while ensuring economic benefits, it is
essential to develop decision-support systems that integrate WSR disease risk model.

Several disease models with variable levels of complexity and data requirements have been
developed to predict WSR progress in wheat [15,31–37]. For example, in Canada, an integrated
model-based forecasting approach for WSR disease risk at the regional scale, which involves weather,
airborne inoculum and satellite-based data, was developed and tested in Alberta [34]. In the U.S.,
meteorological data such as maximum, minimum, and average temperature; total and frequency
of precipitation; consecutive days with and without precipitation; accumulation of negative and
positive degree-days; and number of days with extreme temperature events, were considered for
developing statistical models for predicting WSR severity [35–37]. In Luxembourg, a threshold-based
weather model was developed, and is being used operationally into a warning system for timely
and optimum fungicide sprays in wheat fields [15,38]. The authors denoted that although the
findings were region-specific, the underlying hypothesis and approach are potentially applicable in
different geographical regions [15]. Such approaches have the potential to improve the timeliness and
effectiveness of fungicide applications while minimizing economic costs and environmental impacts, as
well as yield losses [34]. To the best of our knowledge, no such system nor WSR disease risk model has
been applied for Moroccan conditions. Using a similar modelling approach as in El Jarroudi et al. [15],
the main objective of this study was therefore to develop a weather-based model for predicting
WSR infection events at representative wheat-producing areas in Morocco. The reproducibility of
area-specific modelling approaches is often a hurdle for their application in operational disease warning
system. Thus, beside constituting a replicability test of the modelling approach used in [15], the findings
of this study could serve as a basis for improving the management of WSR epidemics in Moroccan
wheat-growing regions, while reducing the potential harmful side effects of fungicide applications.

2. Materials and Methods

2.1. Study Sites and Weather Data

Wheat-growing areas in Morocco can be classified into six agro-ecological regions [39]. They
range from a typical Mediterranean climate in the northern coasts to continental conditions in the
Central regions and mountainside areas in the West High Atlas, to semi-arid environments in the
southern part of wheat-growing areas (north-western parts of the Sahara desert). Durum and bread
wheats are typically sown around mid-October to mid-November, with harvests taking place during
mid-May to June in the following year.

The surveys for WSR assessment were carried out in nine sites across the wheat-growing regions
in the Saïs plain: Ain Jemâa, Ain Orma, Ain Taoujdate, Bouderbala, Boufekrane, El Hajeb, Hajkadour,
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M‘Haya, and Sebaâyoun (Figure 1). In each site, several commercial bread and durum wheat fields
were observed during April–May 2018 and 2019, a period encompassing generally the growth stages
flowering to physiological maturity. Fields were randomly selected to represent the common wheat
management practices in Morocco. Observation dates along with the growth stages are presented
in Table 1. In 2019 no observation was carried out for durum wheat at Ain Jemâa, Ain Orma, Ain
Taoujdate and El Hajeb because farmers in these areas opted for bread wheat instead of durum wheat.
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Table 1. Agronomic details for bread and durum wheat at all surveyed sites in Morocco during the 2017/2018 and 2018/2019 cropping seasons.

Bread Wheat Durum Wheat

Location Year Observation Date Growth Stage N.F 1 Growth Stage N.F Total N.F

Ain Jemâa 2018 23 May n.a. 2 3 n.a. 3 6
2019 6 May Milk stage–Dough stage 11 0 11

Ain Orma 2018 7–14 May n.a. 3 n.a. 1 4
2019 7 May Milk stage–Dough stage 11 0 11

Ain Taoujdate 2018 24 May n.a. 6 n.a. 9 15
2019 25 April Milk stage–Dough stage 11 0 11

Bouderbala 2018 27 April; 16 May n.a. 5 n.a. 2 7
2019 11-April Heading–Flowering 10 Flowering 1 11

Boufekrane 2018 14–15 May n.a. 8 n.a. 7 15
2019 9-April Booting–Heading–Flowering 10 Heading 1 11

El Hajeb 2018 26 April; 7–9 May n.a. 7 n.a. 13 20
2019 4 April Tillering–Booting/Heading–Flowering 11 0 11

Hajkadour 2018 26 April–7 May n.a. 4 n.a. 6 10
2019 2 April Heading–Flowering 8 Heading—Flowering 3 11

M’Haya 2018 23 May n.a. 6 n.a. 1 7
2019 3 May Milk stage–Dough stage 6 Milk stage—Dough stage 5 11

Sebaâyoun 2018 26 April; 7–9 May n.a. 9 n.a. 5 14
2019 16 April Flowering–Milk stage 10 Milk stage 1 11

Total 2018 51 47 98
Total 2019 88 11 99

1 N.F, Number of fields; 2 data not available.
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The number of fields surveyed per site varied between 3 and 13, depending on the year and
wheat species: there were 98 fields surveyed in 2018 (51 of bread wheat and 47 of durum wheat) and
99 fields in 2019 (88 of bread wheat and 11 of durum wheat) (Table 1). The main cultivars grown in the
surveyed areas were Achtar, Arrehane, Amal, Faiza, Radia, and Rajae for bread wheat, and Karim,
Irid, Kanakis, and Vitrico for durum wheat (http://www.onssa.gov.ma/fr/controle-des-semences-et-
plants/homologation-des-varietes). It is well known that the level of resistance of the cultivar to WSR
influences the level of disease pressure. Given the lack of such information for the different bread
and durum wheat cultivars in Morocco, we assumed in this study that all the cultivars for each of the
wheat species have more or less the same level of resistance to WSR.

Hourly weather data (average near surface air temperature (T), relative humidity (RH), and
rainfall (R)) for the selected sites from January 2018 to June 2019 were used in this study. These weather
data were computed using the regional climate model Modèle Atmosphérique Régional (MAR) version
3.9 [40,41]. Here, we used the first 24 h from the daily forecast run of the global weather forecast
model Global Forecast System as boundary conditions for MAR. The MAR model was run at a 7.5 km
horizontal resolution over a domain extending from the Atlantic Ocean off the Moroccan coast in the
North-West to the Atlas Mountains in the South-East. For each selected site, the time series of weather
data were then extracted from the nearest grid point of the model domain.

2.2. Wheat Stripe Rust Incidence and Severity Assessment

WSR incidence (proportion of plants with disease symptoms) and severity (percent leaf area
diseased) were assessed on 15 plants at each of the selected fields in a given cropping season. Plants
were selected randomly in different places across the field, with a minimum distance of 10 m from field
borders to avoid any border effect. For each plant, the visual disease severity estimates were made
on the three upper leaves (L3 to L1, L1 being the flag leaf) using a modified Cobb scale for rusts [42];
the average value of disease severity was then considered for the plant. WSR was identified based on
yellow to orange, round to ovoid, erumpent uredinia that were 1.0 to 1.5 mm in diameter, scattered on
both the upper and the lower leaf surfaces. Additionally, there were random observations every 8 to
12 km along the roads to inspect any wheat fields, wherever available, and assess the spread of the
disease across the surveyed site.

For each site, WSR incidence for a given observation date was calculated as the proportion of
diseased plants out of the 15 observed. WSR severity was calculated as the average of the 15 plants
observed. The overall disease prevalence for each wheat species during each of the cropping seasons
was calculated as the ratio between the total number of fields where WSR was observed and the total
number of fields surveyed.

An analysis of variance (ANOVA) using general linear modelling (PROC GLM procedure; SAS®

v.9.01; SAS Institute Inc., Cary, NC) was carried out to assess the influence of year, site, and wheat
species (considered as independent variables) on WSR severity (dependent variable). A Tukey’s HSD
post hoc means separation test (α = 0.05) was used to compare the means.

2.3. Development of the Weather-Based Model for Predicting WSR Infection Events

We followed the approach used by El Jarroudi et al. [15] to develop a weather-based model for
simulating the occurrence of WSR at the selected Moroccan sites during the 2017/2018 and 2018/2019
cropping seasons. A schematic flowchart of the approach is presented in Figure 2.

http://www.onssa.gov.ma/fr/controle-des-semences-et-plants/homologation-des-varietes
http://www.onssa.gov.ma/fr/controle-des-semences-et-plants/homologation-des-varietes
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stripe rust caused by Puccinia striiformis.

First, we determined the frequencies of classes of weather variables conducive to infections by
P. striiformis during each of the weeks for the end of March-May period. This period was chosen because
any infections by P. striiformis and subsequent development of WSR occurring during this period could
adversely affect the final grain yield. The classes of weather variables used in the frequency analysis
(Table 2) were based on the ranges of plausible weather conditions (T, RH and R) influencing WSR,
as reported in the literature [14,15,32,43], and on the average climate conditions (i.e., air temperature
and relative humidity) as observed at the surveyed sites. Historical climate data were used to determine
the ranges of selected climate variables over the year and over the wheat cropping season. Given the
potential difference in response to temperature of WSR pathotypes, it was important to consider local
climate conditions while defining the classes of weather variables.

Table 2. The classes of air temperature (T), relative humidity (RH) and rainfall (R) considered with
hourly data in the frequency analysis for each week during the March–May period.

Variable Class

Temperature (◦C) T <0 0< T ≤ 4 4< T ≤ 8 8< T ≤ 12 12< T ≤ 16 16< T ≤ 20 T > 18
Relative

humidity (%) RH ≤ 60 60 < RH ≤ 75 75 < RH ≤ 85 85 < RH ≤ 90 RH > 90

Rainfall (mm) R = 0 0 < R ≤ 1 1 < R ≤ 5 R > 5

Then, the dominant classes of T and R over uninterrupted hours (4 and 8 h) where such conditions
were met, were determined; they were then associated with each interval of RH to determine the
optimum combination of weather variables based on a given threshold frequency, i.e., frequency of
this class over a week. At the completion of each latency period an occurrence of WSR was simulated.
The latency period was calculated as follows [44]:

P = (1005 + 11.3 T)/(2.5 + 5.65 T) (1)

where P is the latency period (days), and T is the average daily temperature (◦C).
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In our study, starting from each day of infection, the latency period was calculated at a daily time
step, as well as its inverse. The day when this sum of the inverses reaches 1 (i.e., 100% of latency
achieved) corresponds to the date when WSR symptoms become visible.

Finally, different proportions (5% to 35%, in 5% steps) of weekly frequency of each class of
combined weather variables were assessed in relation to the observed WSR occurrences, and those
resulting in good accuracy (i.e., highest scores of forecast probability) were selected as thresholds for
consideration into the weather-based model for predicting WSR infections. A WSR infection event was
considered to have occurred when symptoms appear after the disease latency period and significantly
increase in incidence and severity.

2.4. Model Calibration and Evaluations

Data for the 2017/2018 cropping season for both bread and durum wheat fields of six sites (Ain
Jemâa, Ain Orma, Ain Taoujdate, Boufekrane, El Hajeb, and M’Haya) were used for calibrating the
model. A first model evaluation was then performed using data of the remaining sites (Bouderbala,
Hajkadour and Sebaâyoun) for the same cropping season which were not considered in the calibration
step. Further, data of all the nine sites for 2018/2019 cropping season were used for a second model
evaluation. Since these were cross-sectional data, we used this double-evaluation process to better
test the robustness of the model. Weather conditions affecting wheat growth during the two cropping
seasons were variable and different between seasons [25,45]. Moreover, given the absence of observation
for durum wheat at four sites in 2019, considering only 2019 for evaluating the model would have not
provided the overall picture of the model performance.

Three statistical scores derived from a contingency table analysis were used to assess the accuracy
of the weather-based model at the different stages of its development. They were the probability of
detection (POD), the false alarm ratio (FAR), and the critical success index (CSI). These scores were
calculated as follows:

POD =
SO

SO + NSO
(2)

FAR =
SNO

SO + SNO
(3)

CSI =
SO

SO + SNO + NSO
(4)

where SO, SNO and NSO refer to infections simulated and observed, infections simulated but not
observed, and infections observed but not simulated, respectively [46,47].

POD corresponds to the probability of forecasting correctly the observed event. It varies between
0 and 1, with 1 being the perfect score. FAR is the number of times an event is forecast but is not
observed, divided by the total number of forecasts of that event. Its perfect score is 0. CSI takes into
account both false alarms and missed events. It ranges from 0 to 1, with 1 being the perfect score.

3. Results and Discussion

3.1. Weather Conditions during the Study Period

The weather was generally dry in the surveyed sites during March-May 2018 and 2019, with 2019
being the driest (Figures S1–S3). In 2018 the dominant weekly ranges of rainfall and temperatures
were R = 0 mm and 8 ◦C < T ≤ 12 ◦C, respectively. The relative humidity mostly varied between 60
and 85%. In 2019, more weeks without rainfall, associated to temperatures > 16 ◦C and RH < 60%,
were recorded during March–May in the majority of the sites (Figures S1–S3).

3.2. Incidence and Severity of Wheat Stripe Rust during the Survey

During the two cropping seasons, WSR occurred predominantly in bread wheat fields (Figure 3A).
The ANOVA of the mean disease severities revealed a statistically significant difference between sites
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(P < 0.001; F-value = 16.77), between years (P < 0.001; F-value = 71.28), and between wheat species
(P < 0.001; F-value = 50.17) (Table S1). This confirms that the difference of weather conditions between
sites, as well as the difference of wheat species, has an influence on WSR severity.
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Figure 3. Observed incidences (A) and severities (B) of wheat stripe rust in bread and durum wheat
fields at the surveyed sites in Morocco during the 2017/2018 and 2018/2019 cropping seasons.

In 2018, 57% of the total surveyed fields (49 fields) infected by P. striiformis were of bread wheat
(Table S2). The majority of bread wheat fields reached 100% of WSR incidence in that specific cropping
season; the only exception was M’Haya where up to 80% of incidence was recorded (Figures 3A and
4). Similar patterns were observed in 2019. In durum wheat, higher WSR incidences were recorded
in 2018 compared to 2019. In that latter year, the maximum incidence was 67% and was recorded at
M’Haya (Figures 3A and 4). WSR was more severe in bread wheat fields at all surveyed sites (Figures
3B and 4). The severity rates were up to 90% and up to 49% in 2018 and 2019, respectively, with highest
proportions observed at Bouderbala and Ain Jemaâ in 2018 (82% and 90%, respectively). In 2019,



Agronomy 2020, 10, 280 9 of 18

increased proportions of WSR severities were observed in five locations out of nine, with the maximum
severity (49%) recorded at Ain Taoujdate. Note these variations of WSR incidence and severity by site
must be interpreted cautiously given the lack of information about the resistance level to WSR of the
Moroccan cultivars.
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Figure 4. Maps of maximum percentages of wheat stripe rust incidence and severity (%) in bread and
durum wheat at the surveyed sites in Morocco during the 2017/2018 and 2018/2019 cropping seasons.
The position of the circle corresponds to the site coordinates as presented in Figure 1.

The levels of incidence and severity in bread wheat as observed in this study were similar to those
reported across the study region. Indeed, Hodson [48] reported that in 2013 WSR was detected in
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40% of the bread wheat fields surveyed in in the Saïs plain, with severities often > 50%. A reason of
varying levels of WSR severity during the surveys could be the presence of other fungal diseases such
as brown rust (caused by Puccinia triticina) and Septoria tritici blotch (caused by Zymoseptoria tritici).
The decrease in WSR severity from 2018 to 2019 at two of the sites with the highest disease rate in the
first growing season (Ain Jemaâ and Bouderbala, from 90% to 8%, and 82% to 21%, respectively) or the
relatively low severities recorded at some sites in 2019 suggest that changes in management practices,
e.g., crop rotation, fungicide composition (use of active chemical ingredients such as propiconazol
in combination with azoxystrobin), and the use of resistant cultivars [49], were probably adopted to
minimize the adverse effects of the disease pressure. Moreover, wheat fields with no disease symptom
might have received fungicidal applications as this practice has become more common in the Saïs plain.
It is worth noting that the resistance of current wheat cultivars in the study areas is increasingly being
weakened due to the occurrence and rapid spread of a new virulent race of P. striiformis, temporarily
designated PstS14 [virulence pattern: Yr-,2,3,-,-,6,7,8,9,-,-,17,-,25,-,32,Sp,AvS,-] [30].

3.3. Weather Conditions Conducive to Infections by Puccinia Striiformis at the Moroccan Sites

The analysis of classes of dominant R and T intervals associated to each RH interval over a
minimum of four or eight uninterrupted hours when such conditions were met, showed that WSR
infection events were predicted with good accuracy for combined effect of RH > 90%, R ≤ 0.1 mm, and
8 ◦C < T < 16 ◦C (class C1 in Table 3). From the defined weekly frequencies of the combined weather
variables classes, the 5% and 10% thresholds were those resulting in better scores (Table 3). POD values
for class C1 were all 1.00. FAR and CSI were 0.20 and 0.80, respectively, when a minimum period of
four uninterrupted hours was considered. The corresponding values for a minimum period of eight
uninterrupted hours being 0.30 to 0.70, respectively (Table 3). At thresholds ≥ 15% infection events by
P. striiformis were poorly simulated, regardless of the class of combined weather variables or category
of consecutive hours (POD and CSI were very close to, or equal to 0; Table 3). Consequently, in the
surveyed Moroccan sites, a combined effect of RH > 90%, R ≤ 0.1 mm, and 8 ◦C < T < 16 ◦C during
a minimum of four continuous hours at the 5% or 10% threshold over a given week of March–May,
the probability of infection by P. striiformis and subsequent development of WSR is very high.

Table 3. Model calibration: statistical contingency scores for different classes of combined weather
variables according to defined thresholds. These thresholds correspond the frequencies over a week
during the March–May period. All combinations of weather variables included rain ≤ 0.1 mm. Data
for occurrence of wheat stripe rust (WSR) for six study sites (Ain Jemâa, Ain Orma, Ain Taoujdate,
Boufekrane, El Hajeb, and M’Haya) were pooled.

Minimum of 4 Continuous Hours Minimum of 8 Continuous Hours

Threshold 1 Combination
Class 2 POD 3 FAR 4 CSI 5 POD FAR CSI

5% C1 1.00 0.20 0.80 1.00 0.30 0.70
C2 1.00 0.48 0.52 1.00 0.57 0.43
C3 1.00 0.83 0.17 1.00 0.85 0.15
C4 1.00 0.95 0.05 1.00 0.97 0.03
C5 0.00 1.00 0.00 0.00 1.00 0.00

10% C1 1.00 0.30 0.70 1.00 0.40 0.60
C2 1.00 0.63 0.37 1.00 0.75 0.25
C3 1.00 0.88 0.12 1.00 0.92 0.08
C4 1.00 0.97 0.03 1.00 0.98 0.02
C5 0.00 1.00 0.00 0.00 1.00 0.00

15% C1 1.00 0.45 0.55 1.00 0.55 0.45
C2 1.00 0.78 0.22 1.00 0.93 0.07
C3 1.00 0.93 0.07 1.00 0.95 0.05
C4 0.00 1.00 0.00 0.00 1.00 0.00
C5 0.00 1.00 0.00 0.00 1.00 0.00
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Table 3. Cont.

Minimum of 4 Continuous Hours Minimum of 8 Continuous Hours

Threshold 1 Combination
Class 2 POD 3 FAR 4 CSI 5 POD FAR CSI

20% C1 1.00 0.57 0.43 1.00 0.67 0.33
C2 1.00 0.88 0.12 1.00 0.98 0.02
C3 1.00 0.97 0.03 1.00 0.97 0.03
C4 0.00 1.00 0.00 0.00 1.00 0.00
C5 0.00 1.00 0.00 0.00 1.00 0.00

25% C1 1.00 0.67 0.33 1.00 0.73 0.27
C2 1.00 0.97 0.03 1.00 0.98 0.02
C3 1.00 0.97 0.03 1.00 0.98 0.02
C4 0.00 1.00 0.00 0.00 1.00 0.00
C5 0.00 1.00 0.00 0.00 1.00 0.00

30% C1 1.00 0.73 0.27 1.00 0.75 0.25
C2 1.00 0.98 0.02 1.00 0.98 0.02
C3 1.00 0.97 0.03 1.00 0.98 0.02
C4 0.00 1.00 0.00 0.00 1.00 0.00
C5 0.00 1.00 0.00 0.00 1.00 0.00

35% C1 1.00 0.78 0.22 1.00 0.78 0.22
C2 1.00 0.98 0.02 1.00 0.98 0.02
C3 0.00 1.00 0.00 0.00 1.00 0.00
C4 0.00 1.00 0.00 0.00 1.00 0.00
C5 0.00 1.00 0.00 0.00 1.00 0.00

1 For example, for all cases where 5% of weather class C1 were observed during a given week of March–May, the
forecasted and observed disease infection events during that period were used to calculate the contingency scores
POD, FAR and CSI. 2 C1-C5: classes of combined weather variables 8 ◦C < T < 16 ◦C associated, respectively, with
RH > 90% (C1), 80% < RH < 90% (C2), 70% < RH < 80% (C3), 60% < RH < 70% (C4), and RH < 60% (C5). T refers to
air temperature and RH is the relative humidity. 3 POD: probability of detection. It corresponds to the probability of
forecasting correctly the observed event. Perfect score = 1. 4 FAR: false alarm ratio, is the number of times an event
is forecast but is not observed, divided by the total number of forecasts of that event. Perfect score = 0. 5 CSI, critical
success index, takes into account both false alarms and missed events. Perfect score = 1.

The favorable weather conditions conducive to infection by P. striiformis found in the surveyed
Moroccan sites are in line with reported studies [14,15,31,50,51]. Indeed, in Luxembourg, El Jarroudi et
al. [15] found that a combination of RH > 92%, R ≤ 0.1 mm, and 4 ◦C < T < 16 ◦C over a minimum of
four consecutive hours were favorable to the development of WSR epidemics. De Vallavieille-Pope et
al. [31] reported that in controlled conditions (i.e., air-filtered chamber experiment inside a greenhouse)
the optimal air temperatures favoring infections by P. striiformis under non-limiting wetness duration
ranged from 5 ◦C to 12 ◦C. Air temperatures during the February–June period were the most influential
factor for noticeable WSR severity and damaging epidemic [14].

3.4. Performance of the Weather-Based Model for Predicting WSR Infection Events

Several periods of WSR infection events were predicted in 2018 using the weather-based model,
with proportions varying according to site (Figures 5 and 6). In 2019 fewer infection events were
predicted (Figure 7). The results of the model performance are presented in Table 4. Overall, the model
performed well for bread wheat compared to durum wheat. In the calibration phase, POD values
were equaled 1.00 for both wheats, while the higher FAR (0.40) and lower CSI (0.60) were found for
durum wheat. While evaluating the model using independent data from the 2018 cropping season (i.e.,
data for the three sites not considered in the model calibration step), the same pattern of performance
was observed (model evaluation #1; Table 4). For the 2019 cropping season, in addition to the good
performance observed for bread wheat (POD = 0.92, FAR = 0.10, CSI = 0.86), the model improved in
predicting WSR infection events in durum wheat with POD = 1, FAR = 0.17, and CSI = 0.83 (Table 4).



Agronomy 2020, 10, 280 12 of 18

Agronomy 2020, 10, x FOR PEER REVIEW 12 of 18 

 

Table 4. Performance of the weather-based model for predicting infections by Puccinia striiformis in 
bread and durum wheat fields in Morocco. Data of the 2017/2018 cropping season were used in the 
calibration step (six sites) and model evaluation #1 (three remaining sites). The model evaluation #2 
was carried out using data of the 2018/2019 cropping season. For durum wheat, only infections greater 
than 2 per day were considered. 

  SO 1 SNO 2 NSO 3 POD 4 FAR 5 CSI 6 
Calibration Bread wheat 57 17 0 1.00 0.23 0.77 

 Durum wheat 27 18 0 1.00 0.40 0.60 
Model evaluation 

#1 
Bread wheat 40 6 0 1.00 0.13 0.87 

 Durum wheat 28 13 0 1.00 0.32 0.68 
Model evaluation 

#2 
Bread wheat 24 2 2 0.92 0.10 0.86 

 Durum wheat 5 1 0 1.00 0.17 0.83 
1 Simulated and observed. 2 Simulated but not observed. 3 Not simulated but observed. 4 POD: 
probability of detection. Perfect score = 1. 5 FAR: false alarm ratio. Perfect score = 0. 6 CSI: critical 
success index. Perfect score = 1. 

 
Figure 5. Model calibration phase: simulated infection events per day (bars) and number of completed 
latency periods (lines) during March–May 2018. The calibration was performed using data of 
2017/2018 cropping season for six sites (Ain Jemâa, Ain Orma, Ain Taoujdate, Boufekrane, El Hajeb, 
and M’Haya). 

Figure 5. Model calibration phase: simulated infection events per day (bars) and number of completed
latency periods (lines) during March–May 2018. The calibration was performed using data of 2017/2018
cropping season for six sites (Ain Jemâa, Ain Orma, Ain Taoujdate, Boufekrane, El Hajeb, and M’Haya).

Table 4. Performance of the weather-based model for predicting infections by Puccinia striiformis in
bread and durum wheat fields in Morocco. Data of the 2017/2018 cropping season were used in the
calibration step (six sites) and model evaluation #1 (three remaining sites). The model evaluation #2
was carried out using data of the 2018/2019 cropping season. For durum wheat, only infections greater
than 2 per day were considered.

SO 1 SNO 2 NSO 3 POD 4 FAR 5 CSI 6

Calibration Bread wheat 57 17 0 1.00 0.23 0.77
Durum wheat 27 18 0 1.00 0.40 0.60

Model
evaluation #1 Bread wheat 40 6 0 1.00 0.13 0.87

Durum wheat 28 13 0 1.00 0.32 0.68
Model

evaluation #2 Bread wheat 24 2 2 0.92 0.10 0.86

Durum wheat 5 1 0 1.00 0.17 0.83
1 Simulated and observed. 2 Simulated but not observed. 3 Not simulated but observed. 4 POD: probability of
detection. Perfect score = 1. 5 FAR: false alarm ratio. Perfect score = 0. 6 CSI: critical success index. Perfect score = 1.

The performance of the weather-based model in Moroccan conditions were comparable to that of
a model developed for winter wheat in Luxembourg using similar approach [15], supporting thus
the replicability of the modelling approach used. Indeed, in case of Luxembourg, the POD were
≥ 0.90; FAR values were ≤ 0.38 on average; and CSI values ranged from 0.63 to 1 [15]. With more
WSR monitoring data becoming available in Morocco, opportunities for improving this weather-based
model and/or developing wheat species-specific models (i.e., two separate models) are expected.

In drier conditions as it was observed in 2019 at all the surveyed sites in Morocco, which resulted
in low WSR severities, the model was able to predict WSR infection events satisfactorily for both
wheats (Table 4, Figure 7). Such a feature can be exploited for managing fungicide sprays. Providing
favorable weather conditions are met, the progress of WSR under field conditions is also affected by
factors such as topography, the presence of inoculum in sufficient amount, the cultivar’s susceptibility
to WSR, and management practices (fungicides, crop rotation). All these factors can influence the
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The likelihood of WSR epidemic outbreaks is crucial to farmers for a better management of the
disease. Yield losses caused by fungal pathogens in fields across the study region are on average up
to 20% and 10% on bread and durum wheats, respectively [6]. With the variations in P. striiformis
populations [10,18], which increases the susceptibility of current wheat cultivars, especially bread
wheat cultivars [30], farmers are increasingly relying on agrochemicals to mitigate the adverse effects of
WSR epidemics on yield. Thus, the weather-based model can help guide fungicide sprays throughout
the cropping season. During pre-season, the model could be used for simulating the potential WSR
infection events based on seasonal climate forecasts. Providing such data are readily available for the
study region, the outputs of the weather-based model can guide the choice of the cultivars to sow (i.e.,
resistant cultivars if weather forecasts are conducive to more WSR infection events and subsequent
epidemics). Growing of resistant cultivars is considered as an efficient, economic, and environmentally
friendly approach to control WSR [52,53]. Other alternatives include shifting to more durum wheat
cultivation given the low prevalence of WSR as it was observed in this study.

In this study we assumed, for a given wheat species, that all the cultivars had similar response
to WSR. The actual level of resistance may have influenced the incidences and severities observed
during the study period. With different growth stages recorded at the selected sites, and often between
fields at a given site (Table 1), WSR may have also developed differently. Regular visits of the selected
sites for a better assessment of the disease progress were difficult to carry out due to logistic issues.
Improving the weather-based model developed in this study will involve the consolidation of a good



Agronomy 2020, 10, 280 15 of 18

dataset, along with further researches on the susceptibility to WSR of the main cultivars grown in the
study area and the impact of WSR on grain yield.

4. Conclusions

Interactions between weather conditions and WSR pathogen Puccinia striiformis and wheat plants
determine whether infection occurs and the disease develops to destructive epidemic levels that
may cause significant economic loss. We developed a weather-based model for predicting WSR
infection events at representative sites in Moroccan wheat-growing regions. The optimum ranges of
favorable rainfall, relative humidity, and air temperature conditions, conducive to WSR epidemics
were determined and used for building the model. Overall, WSR infection events during the 2017/2018
and 2018/2019 cropping seasons were satisfactorily predicted for both bread and durum wheats during
the most critical infection period (March–May) using the weather-based model. As a first of its kind
for Morocco in terms of WSR disease risk model, our findings are very promising and encouraging.
With background knowledge of the region and levels of resistance of wheat cultivars to WSR, along
with solid field monitoring data, such a weather-based model could be improved, and ultimately be
embedded within a decision support tool for an improved management of WSR epidemics in wheat
across Morocco.
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