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Abstract

For several reasons, the flatness problem as originally proposed differs from the flatness problem today, both quali-

tatively and quantitatively; theory, observations, and the recent history of cosmology all play a role in this change.
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Summary

The ‘old flatness problem’ was to explain why Ω + λ ≈ 1 (actually, at the time,

just Ω ≈ 1, since λ = 0 was assumed) within a couple of orders of magnitude.

Inflation was suggested as a solution to the flatness problem (e.g. Guth, 1981).

Belief in the necessity of inflation, for this and other reasons, has made inflation a

popular topic of study, even leading to predictions which have been confirmed. At

the same time, several authors have claimed that the flatness problem is not really

a problem, at least in the context of classical cosmology, though of course this is

not evidence against inflation. It is still widely believed that the flatness problem is

a real problem, perhaps because newer observations provide much better evidence

for a flat universe: Ω+λ ≈ 1 not just to within a couple of orders of magnitude, but

rather at the per-cent level. Whether some of the arguments against the old flatness

problem also solve this ‘new flatness problem’, especially in the more realistic case

of a perturbed Friedmann–Lemaı̂tre–Robertson–Walker model, is not completely

clear. In any case, for a while after the formulation of the old flatness problem,

cosmologists were perhaps right to believe in inflation but at least in part for the

wrong reasons.

Notation

We assume that, at the level of detail necessary, the universe can be described by

the Friedmann–Lemaı̂tre equation

Ṙ2 =
8πGρR2

3
+

ΛR2

3
− kc2 (1)

with the dimensionless constant k equal to −1, 0, +1 depending on spatial curvature

(negative, vanishing, or positive, respectively); R is the scale factor (with dimen-

sion length) of the universe, G the gravitational constant, ρ the density of pressure-

less matter (‘dust’, including both baryonic and non-baryonic components), Λ the

cosmological constant (dimension time−2) and c the speed of light. (Our notation

corresponds to that of Harrison (2000); in other schemes, e.g. that used by Heacox

(2015), various terms can differ by factors of c2.) It is useful to define the following

quantities:

H := Ṙ
R

λ := Λ

3H2

Ω := ρ
ρcrit

≡ 8πGρ
3H2

K := Ω + λ− 1

q := −R̈R
Ṙ2

≡ −R̈
RH2 ≡ Ω

2
− λ

which are all dimensionless except that H has the dimension time−1. H is the

Hubble constant, λ the normalized cosmological constant, Ω the density param-

eter, k = sign(K) and q is the deceleration parameter. For λ = 0 and k = 0,

ρ = ρcrit = 3H2

8πG
. This density is ‘critical’ in the sense that, for λ = 0, a greater

(lesser) density implies a positive (negative) curvature and a universe—observed to

be expanding now—which will collapse in the future (expand forever); similarly,

for k = 0, a greater (lesser) density implies a negative (positive) cosmological con-

stant and a universe—observed to be expanding now—which will collapse in the

future (expand forever). However, in the general case (λ 6= 0 and k 6= 0), ρcrit
doesn’t have any special meaning, though Ω remains a useful parameter. Equa-

tion (1) can be rearranged, using the definitions above, to give

R =
c

H

sign(K)
√

|K|
, (2)

thus R is positive for k = +1 and negative for k = −1; for k = 0, R can be defined

as c
H

. (Note that k and K have the same sign; the latter parameter, often written Ωk,

is sometimes defined with the opposite sign.)

It can be useful to express equation (1) with the values of the parameters as

observed now, denoted by the suffix 0. This leads to

Ṙ2 = Ṙ2

0
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In general, H, λ and Ω all change with time. Note that since

λ = λ0





H0

H
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, (4)

the change in λ with time is due entirely to the change in H with time, since Λ is

constant. Also, since the density ρ is inversely proportional to the cube of R,

Ω = Ω0
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; (5)

thus the variation in Ω is due both to variation in H and to the decrease in density

as the universe expands.

In general, λ and Ω evolve with time. (They do not for the (λ,Ω) values of (0, 0)

(Milne model), (0, 1) (Einstein–de Sitter model), (1, 0) (de Sitter model) and for

the static Einstein model (in which λ and Ω are infinite (though Λ and ρ are not;

Λ = 4πGρ) since H is 0).) Thus, the history of model universes can be visualized

as trajectories in the λ–Ω plane (see Fig. 1). For an excellent discussion of the

evolution of λ and Ω (though expressed in the older notation using σ = Ω

2
and

q = σ − λ), see Stabell & Refsdal (1966).

The old flatness problem

In the original formulation of the flatness problem, Dicke & Peebles (1979) claimed

that Ω must have been very close to 1 in the early universe, since otherwise it would

not be of order 1 today. Helbig (2012) pointed out that there are two distinct issues:

(1) Should we be puzzled that Ω was very close to 1 in the early universe? (2)

Should we be puzzled that, given that Ω was close (not necessarily very close) to

1 in the early universe, it is still of order 1 today (Ω0 being the present value)? It

is important to remember that when Dicke & Peebles (1979) claimed that there

is a flatness problem, Ω0 was thought to be somewhere between 0.01 and 10 or

so (e.g. Kolb & Turner, 1990) and λ was not mentioned at all (assumed to be

0, as was often the case then). Also, this ‘old flatness problem’ occurs in the

context of ideal Friedmann–Lemaı̂tre–Robertson–Walker models (which does not

mean that it does not occur in perturbed Friedmann–Lemaı̂tre–Robertson–Walker

models). The original flatness problem thus sought an explanation for why Ω was

equal to 1 within a couple of orders of magnitude, and was often discussed with the

assumption that λ = 0 and usually in the context of ideal Friedmann–Lemaı̂tre–

Robertson–Walker models.
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Figure 1: Evolutionary trajectories in the λ–Ω plane. The thick vertical line cor-

responds to λ = 0; the thick diagonal line corresponds to k = 0 with k = −1

below it and k = +1 above it. The thick curve near the vertical line separates

models which will collapse (to the left) from those which will expand forever

(to the right). Collapsing models retrace their trajectories in the opposite

direction during the collapsing phase. Models on the curve start arbitrarily

close to the Einstein–de Sitter model (like all non-empty big-bang mod-

els) and asymptotically approach the static Einstein model. The other thick

curve separates big-bang models (to the left) from non–big-bang models

(to the right); the latter contract from an infinite to a finite size then expand

forever, retracing the same trajectory in the opposite direction (the initial

and final points being arbitrarily close to the de Sitter model). Models on

the curve (Eddington models) start at the static Einstein model and asymp-

totically approach the de Sitter model (the latter feature is shared with all

models which expand forever and have λ > 0, except those, mentioned

above, which asymptotically approach the static Einstein model). For non-

empty models, trajectories between the two thick curves start arbitrarily

close to the Einstein–de Sitter model and reach the de Sitter model (an at-

tractor) after an infinite time. Empty models behave similarly, except that

the Einstein–de Sitter model (a repulsor) is replaced by the Milne model (a

saddle point). Due to time symmetry, big-bang models which expand for-

ever have the same trajectories as big-crunch models which contract from

infinity.

Many (e.g. Evrard & Coles, 1995; Coles & Ellis, 1997; Adler & Overduin, 2005;

Helbig, 2012) have pointed out that the first problem is not really a problem at

all, but simply a feature of the Friedmann–Lemaı̂tre–Robertson–Walker model:

all non-empty big-bang models start off arbitrarily close to the Einstein–de Sit-

ter model (λ = 0 and Ω = 1). This is essentially an artifact of the mathematical

definition of the critical density. One can ask why the universe is described by

a Friedmann–Lemaı̂tre–Robertson–Walker model, but that is a different question.

(Note that in this respect the flatness problem differs from the horizon problem:

the latter can be solved, though unsatisfactorily, simply by demanding that the uni-

verse be described by a Friedmann–Lemaı̂tre–Robertson–Walker model; the for-

mer claims that there is a problem even given than the universe is described by

a Friedmann–Lemaı̂tre–Robertson–Walker model, namely, an ‘unlikely’ value of

the cosmological parameter Ω.) For any value of Ω at any time in a non-empty

big-bang model, we can always find an earlier time when Ω differed from 1 by

an arbitrarily small amount, so the fact that Ω was almost exactly 1 in the ‘early

universe’ is not a problem at all, especially since there is no timescale in classical

cosmology which could be used to define the ‘early’ universe (hence the value of

Ω at the time of big-bang nucleosynthesis, say, is irrelevant).

Nevertheless, the second issue remains: Ω can become arbitrarily large (or small),

so shouldn’t we be puzzled that it is of order 1 today? No.

Consider first λ ≤ 0 (of which the original formulation with λ = 0 is a special

case, though not qualitatively different), which implies that the universe will col-

lapse in the future (though for λ = 0, only if Ω > 1; for Ω < 1 see below). While

Ω becomes arbitrarily large, this happens for only a relatively short time near the

time of maximum expansion, so it is not puzzling that a typical observer does not

observe a large value of Ω (Helbig, 2012).

If λ > 0, then, as pointed out by Lake (2005) (though he concentrated on the case

that the universe expands forever), large values of Ω (and λ) are possible only in the

case of fine-tuning between Ω and λ, namely α = 27Ω2λ
4K3 must be ≈ 1 (this assumes

K > 0 and hence k = +1, i.e. positive spatial curvature, but for other values of

k, both Ω and λ are restricted to the interval [0, 1], so the question of large values

does not arise). (There is a small portion of parameter space with λ > 0 and Ω > 1

in which the universe has a maximum extent (for α = 1 this is the static Einstein

universe, which is reached after an infinite time; for α < 1, the universe collapses

in the future). For α ≈ 1, Lake’s fine-tuning argument applies; for α ≈ 0, the same

collapsing-universe argument applies as for λ ≤ 0.) This is in marked contrast to

the claim of the old flatness problem (which implicitly assumed that λ = 0) that

fine-tuning is required to avoid large values of Ω. As mentioned above, this claim

is misleading, since the fine-tuning is built into the model, but for λ > 0, large

values never arise at all unless (another type of) fine-tuning is present. Related

to this is the fact that in the original flatness problem with λ = 0, a nearly flat

universe now nevertheless has arbitrarily large (or small) values of Ω in the future.

In Lake’s case, a ‘solved flatness problem’ (no fine-tuning, i.e. α is not of order 1)

now implies that it is solved for all time in the sense that |K| is never very large.

This demonstrates a qualitative difference, compared to the λ = 0 case, in the

flatness problem if λ > 0 and k = +1. (Most discussions of the flatness problem

do not take the theoretical progress in classical cosmology since the initial claim

by Dicke & Peebles (1979) into account.) For λ < 0 (which implies that the

universe will collapse after a period of expansion) and Ω < 1 (now), the behaviour

is also different: instead of asymptotically approaching 0, Ω evolves to a minimum

(which always occurs at q = Ω/2−λ = 1/2 (Stabell & Refsdal, 1966)) then evolves

to infinity (and then, during the contracting phase, back to the Einstein–de Sitter

model along the same trajectory in the λ–Ω plane). However, except for the period

when Ω < 1, the behaviour is roughly the same as in the λ = 0 case with Ω > 1

(where Ω increases monotonically during expansion and decreases monotonically

during contraction). For λ > 0 and Ω < 1 and for λ < 0 and Ω > 1 (at all times),

the behaviour of Ω with time is similar to the λ = 0 case.

Except for the case studied by Lake (2005) (λ > 0, k = +1), for λ 6= 0 the

behaviour of Ω is thus by and large qualitatively similar to the λ = 0 case. The

behaviour of λ is similar to that of Ω, except that for λ < 0 (‘corresponding’ to

Ω > 1) it evolves to −∞ instead of +∞ and for λ > 0 (‘corresponding’ to Ω < 1)

it evolves to 1 rather than 0 (which is the ultimate value of Ω if the universe expands

forever, except for the Einstein–de Sitter model and those which asymptotically

approach the static Einstein model). (Again, there is a small portion of parameter

space with λ > 0 and Ω > 1 where the final-state model is not the de Sitter model

and the behaviour is similar to Lake’s case or the λ = 0 case depending on the

value of α, as mentioned above.) Also, the behaviour of K is similar to that of

Ω, though here the special value is 0 instead of 1: if K = 0 exactly at any time,

then K = 0 exactly at all times, otherwise |K| can become arbitrarily large (K can

be positive or negative), though if λ > 0 and k ≤ 0, it is restricted to the interval

[−1, 0]; for k = +1 and λ > 0, like λ and Ω, K can become large only in the

case of fine-tuning. However, even if K = 0 exactly, Ω and λ individually have

qualitatively similar behaviour to the K 6= 0 case.

The original flatness problem with λ = 0 was concerned not only with Ω > 1 and

hence arbitrarily large values of Ω, but also with Ω < 1 and hence arbitrarily small

values of Ω. However, the limit Ω = 0 is reached only after an infinite time, so there

is an obvious weak-anthropic argument as to why such extremely small values are

not observed. (If the universe lasts forever, why are we near the beginning?) This

is also the case for λ > 0. See Helbig (2012) for more details.

The new flatness problem

As explained above, it is not puzzling at all that Ω0—or, more appropriate today,

K—is observed to be between 0.1 and 10 or so. However, we now have much

stricter bounds: K = 0.003 ± 0.004 from WMAP (Bennett et al., 2013; Hinshaw

et al., 2013) and |K| < 0.005 from Planck (Planck Collaboration, 2016) (CMB and

other constraints in both cases). Should we be puzzled that |K| is this small? If

the universe were to collapse in the future, yes. In that case, the arguments above

cannot explain the fact that the universe is flat to this degree of precision. If the

universe will expand forever (as observational data indicate), the situation is less

clear. Lake (2005) showed that the universe is ‘nearly flat’ as long as α is not fine-

tuned to be of order 1. But how different from 1 must α be to avoid the impression

of fine-tuning? 10? 100? 1000? Should we be surprised if α is much larger? The

current constraints on λ0, Ω0, and K imply that |α| is larger than 3 million or so.

At first glance, K = 0 seems unlikely since the sum of λ and Ω must add up

to exactly 1. If these are ‘random’ quantities, then of course K = 0 is a space

of measure 0. However, λ and Ω in general change with time in a non-random

way, which makes this probability measure less intuitive. Alternatively, K = 0

corresponds to an infinite radius of curvature, and of course a ‘random’ number

between 0 and ∞ is likely to be very large, so seen this way K ≈ 0 appears

likely. Of course, both can’t be right and, like λ and Ω, the (comoving) curvature

radius in general also evolves with time. This aspect is avoided by using α as a

parameter to distinguish models, since by construction it is a constant of motion.

(Thus, a contour plot of α demonstrates trajectories in the λ–Ω plane; Fig. 1 shows

contours for α = {0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500}.) Like the radius

of curvature, it can be anywhere in the interval between −∞ and ∞. So does

the fact that a ‘random’ value of α is probably very large automatically solve this

‘new flatness problem’ as well as the old? (Note that for k = +1 and thus a finite

universe, α corresponds, up to a constant factor, to the ratio of Λ (Λ = 3H2λ) to

the square of the mass of the universe.) It does if one considers the observed value

of α to be large enough so that it cannot be considered to be fine-tuned to be ≈ 1,

at least in the limit of a completely homogeneous and isotropic universe; whether

Lake’s argument solves the flatness problem in a perturbed Friedmann–Lemaı̂tre–

Robertson–Walker model is less clear.

Of course, this does not mean that inflation cannot occur, and does not mean that

it did not occur. However, it means that the observed flatness of the universe cannot

be used as an argument in favour of inflation (though of course it is compatible with

it), at least in the case of pure Friedmann–Lemaı̂tre–Robertson–Walker models.

Today, though, this argument is no longer needed, since there is other evidence for

inflation, in particular, the robust prediction that the spectral index n describing

fluctuations seen in the CMB power spectrum is slightly, but definitely, less than 1:

ns = 0.968± 0.006 (e.g. Planck Collaboration, 2016).

Historical aspects

When the old flatness problem was first formulated, constraints on Ω were weak;

the problem was to explain why Ω + λ ≈ 1 (or, then, just Ω ≈ 1, since λ = 0

was assumed) within a couple of orders of magnitude, not the much flatter universe

observed today. Due to the assumption λ = 0, at that time belief in a flat universe

meant belief in the Einstein–de Sitter universe. Mainstream cosmologists in the

period 1980–1995 or so tended to believe (a) that inflation makes the universe flat

and (b) that the Einstein–de Sitter model (which is flat, but has λ = 0) is correct

(e.g. Sandage, 1995). Current observations (e.g. Planck Collaboration, 2016)

indicate that the universe is much flatter than was known during that period and also

that the Einstein–de Sitter model is not correct. Although it took some time, the

Einstein–de Sitter model is no longer considered a viable model for our universe,

even though not that long ago it was considered almost crackpot to question it

(e.g. Overbye, 1991; Kolb, 1998). At the same time, it is still widely believed

that the old flatness problem is a real problem. Why the difference? Probably the

main reason is that observations directly rule out the Einstein–de Sitter model while

the flatness problem is more of a conceptual issue. Also, the observation that the

universe is flat—even much flatter than was suspected 40 years ago—has tended to

strengthen belief in the necessity of inflation, even though it is not needed to solve

the old flatness problem, and, at least assuming that λ > 0 and that the universe

will expand forever, might not be needed to solve the new flatness problem. There

are, of course, other reasons to believe that inflation occurred, and this has tended

to obscure the fact that one of the main reasons for interest in it in the past 40

years—namely that it can solve the old flatness problem—was actually not really

there, though this belief played an important role in keeping the concept of inflation

alive. So it turns out that in some respects cosmologists were right for the wrong

reasons.
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