Which flatness problem does inflation solve?

Phillip Helbig.1 and James Overduin3,4,5

1. Thomas-More Str. 5, 69477 Marburg, Germany
2. 3. Department of Physics, Astronomy and Geosciences, Towson University, Towson, Maryland, USA
3. 4. Department of Physics, Astronomy and Geosciences, Johns Hopkins University, Baltimore, Maryland, USA
5. Jewett Rd. 20, Broadlands, Virginia 22033, USA

Abstract

For several reasons, the flatness problem as originally proposed differs from the flatness problem today, both qualitatively and quantitatively; theory, observations, and the recent history of cosmology all play a role in this change.

Summary

The 'old flatness problem' was to explain why $\Omega_\Lambda = 0$ (actually, at the time $\Omega_\Lambda = 1$) was maintained within a couple of orders of magnitude. inflation was suggested as a solution to this flatness problem (Guth, 1981). Related to the necessity of inflation, for this and other reasons, has made inflation a popular topic of study, even leading to predictions which have been confirmed. At the same time, several authors have claimed that the flatness problems is not a real problem at all, at least in the context of classical cosmology, though of course it is still a real problem in quantum cosmology. It is still widely believed that the flatness problem is a real problem, perhaps because few observers provide much better evidence for a flat (or near-flat) universe than a universe in which the curvature is zero. However, in recent years, the variation in Ω_Λ has been significantly reduced, thus the variation in Ω_Λ is much smaller now—which will collapse in the future (expand forever); similarly, Ω_m is much smaller now—which will expand forever. However, in the general case ($\Omega_\Lambda = \Omega_m = 0$), see Stabell & Refsdal (1966). Thomas-Mann-Str. 9, 63477 Maintal, Germany.

The old flatness problem was to explain why $\Omega_\Lambda = 0$ (actually, at the time $\Omega_\Lambda = 1$) was maintained within a couple of orders of magnitude. Inflation was suggested as a solution to this flatness problem (Guth, 1981). Related to the necessity of inflation, for this and other reasons, has made inflation a popular topic of study, even leading to predictions which have been confirmed. At the same time, several authors have claimed that the flatness problem is not a real problem at all, at least in the context of classical cosmology, though of course it is still a real problem in quantum cosmology. It is still widely believed that the flatness problem is a real problem, perhaps because few observers provide much better evidence for a flat (or near-flat) universe than a universe in which the curvature is zero. However, in recent years, the variation in Ω_Λ has been significantly reduced, thus the variation in Ω_Λ is much smaller now—which will collapse in the future (expand forever); similarly, Ω_m is much smaller now—which will expand forever. However, in the general case ($\Omega_\Lambda = \Omega_m = 0$), see Stabell & Refsdal (1966). Thomas-Mann-Str. 9, 63477 Maintal, Germany.

The old flatness problem was to explain why $\Omega_\Lambda = 0$ (actually, at the time $\Omega_\Lambda = 1$) was maintained within a couple of orders of magnitude. Inflation was suggested as a solution to this flatness problem (Guth, 1981). Related to the necessity of inflation, for this and other reasons, has made inflation a popular topic of study, even leading to predictions which have been confirmed. At the same time, several authors have claimed that the flatness problem is not a real problem at all, at least in the context of classical cosmology, though of course it is still a real problem in quantum cosmology. It is still widely believed that the flatness problem is a real problem, perhaps because few observers provide much better evidence for a flat (or near-flat) universe than a universe in which the curvature is zero. However, in recent years, the variation in Ω_Λ has been significantly reduced, thus the variation in Ω_Λ is much smaller now—which will collapse in the future (expand forever); similarly, Ω_m is much smaller now—which will expand forever. However, in the general case ($\Omega_\Lambda = \Omega_m = 0$), see Stabell & Refsdal (1966). Thomas-Mann-Str. 9, 63477 Maintal, Germany.

The old flatness problem was to explain why $\Omega_\Lambda = 0$ (actually, at the time $\Omega_\Lambda = 1$) was maintained within a couple of orders of magnitude. Inflation was suggested as a solution to this flatness problem (Guth, 1981). Related to the necessity of inflation, for this and other reasons, has made inflation a popular topic of study, even leading to predictions which have been confirmed. At the same time, several authors have claimed that the flatness problem is not a real problem at all, at least in the context of classical cosmology, though of course it is still a real problem in quantum cosmology. It is still widely believed that the flatness problem is a real problem, perhaps because few observers provide much better evidence for a flat (or near-flat) universe than a universe in which the curvature is zero. However, in recent years, the variation in Ω_Λ has been significantly reduced, thus the variation in Ω_Λ is much smaller now—which will collapse in the future (expand forever); similarly, Ω_m is much smaller now—which will expand forever. However, in the general case ($\Omega_\Lambda = \Omega_m = 0$), see Stabell & Refsdal (1966). Thomas-Mann-Str. 9, 63477 Maintal, Germany.

The old flatness problem was to explain why $\Omega_\Lambda = 0$ (actually, at the time $\Omega_\Lambda = 1$) was maintained within a couple of orders of magnitude. Inflation was suggested as a solution to this flatness problem (Guth, 1981). Related to the necessity of inflation, for this and other reasons, has made inflation a popular topic of study, even leading to predictions which have been confirmed. At the same time, several authors have claimed that the flatness problem is not a real problem at all, at least in the context of classical cosmology, though of course it is still a real problem in quantum cosmology. It is still widely believed that the flatness problem is a real problem, perhaps because few observers provide much better evidence for a flat (or near-flat) universe than a universe in which the curvature is zero. However, in recent years, the variation in Ω_Λ has been significantly reduced, thus the variation in Ω_Λ is much smaller now—which will collapse in the future (expand forever); similarly, Ω_m is much smaller now—which will expand forever. However, in the general case ($\Omega_\Lambda = \Omega_m = 0$), see Stabell & Refsdal (1966). Thomas-Mann-Str. 9, 63477 Maintal, Germany.

The old flatness problem was to explain why $\Omega_\Lambda = 0$ (actually, at the time $\Omega_\Lambda = 1$) was maintained within a couple of orders of magnitude. Inflation was suggested as a solution to this flatness problem (Guth, 1981). Related to the necessity of inflation, for this and other reasons, has made inflation a popular topic of study, even leading to predictions which have been confirmed. At the same time, several authors have claimed that the flatness problem is not a real problem at all, at least in the context of classical cosmology, though of course it is still a real problem in quantum cosmology. It is still widely believed that the flatness problem is a real problem, perhaps because few observers provide much better evidence for a flat (or near-flat) universe than a universe in which the curvature is zero. However, in recent years, the variation in Ω_Λ has been significantly reduced, thus the variation in Ω_Λ is much smaller now—which will collapse in the future (expand forever); similarly, Ω_m is much smaller now—which will expand forever. However, in the general case ($\Omega_\Lambda = \Omega_m = 0$), see Stabell & Refsdal (1966). Thomas-Mann-Str. 9, 63477 Maintal, Germany.

The old flatness problem was to explain why $\Omega_\Lambda = 0$ (actually, at the time $\Omega_\Lambda = 1$) was maintained within a couple of orders of magnitude. Inflation was suggested as a solution to this flatness problem (Guth, 1981). Related to the necessity of inflation, for this and other reasons, has made inflation a popular topic of study, even leading to predictions which have been confirmed. At the same time, several authors have claimed that the flatness problem is not a real problem at all, at least in the context of classical cosmology, though of course it is still a real problem in quantum cosmology. It is still widely believed that the flatness problem is a real problem, perhaps because few observers provide much better evidence for a flat (or near-flat) universe than a universe in which the curvature is zero. However, in recent years, the variation in Ω_Λ has been significantly reduced, thus the variation in Ω_Λ is much smaller now—which will collapse in the future (expand forever); similarly, Ω_m is much smaller now—which will expand forever. However, in the general case ($\Omega_\Lambda = \Omega_m = 0$), see Stabell & Refsdal (1966). Thomas-Mann-Str. 9, 63477 Maintal, Germany.

The old flatness problem was to explain why $\Omega_\Lambda = 0$ (actually, at the time $\Omega_\Lambda = 1$) was maintained within a couple of orders of magnitude. Inflation was suggested as a solution to this flatness problem (Guth, 1981). Related to the necessity of inflation, for this and other reasons, has made inflation a popular topic of study, even leading to predictions which have been confirmed. At the same time, several authors have claimed that the flatness problem is not a real problem at all, at least in the context of classical cosmology, though of course it is still a real problem in quantum cosmology. It is still widely believed that the flatness problem is a real problem, perhaps because few observers provide much better evidence for a flat (or near-flat) universe than a universe in which the curvature is zero. However, in recent years, the variation in Ω_Λ has been significantly reduced, thus the variation in Ω_Λ is much smaller now—which will collapse in the future (expand forever); similarly, Ω_m is much smaller now—which will expand forever. However, in the general case ($\Omega_\Lambda = \Omega_m = 0$), see Stabell & Refsdal (1966). Thomas-Mann-Str. 9, 63477 Maintal, Germany.

The old flatness problem was to explain why $\Omega_\Lambda = 0$ (actually, at the time $\Omega_\Lambda = 1$) was maintained within a couple of orders of magnitude. Inflation was suggested as a solution to this flatness problem (Guth, 1981). Related to the necessity of inflation, for this and other reasons, has made inflation a popular topic of study, even leading to predictions which have been confirmed. At the same time, several authors have claimed that the flatness problem is not a real problem at all, at least in the context of classical cosmology, though of course it is still a real problem in quantum cosmology. It is still widely believed that the flatness problem is a real problem, perhaps because few observers provide much better evidence for a flat (or near-flat) universe than a universe in which the curvature is zero. However, in recent years, the variation in Ω_Λ has been significantly reduced, thus the variation in Ω_Λ is much smaller now—which will collapse in the future (expand forever); similarly, Ω_m is much smaller now—which will expand forever. However, in the general case ($\Omega_\Lambda = \Omega_m = 0$), see Stabell & Refsdal (1966). Thomas-Mann-Str. 9, 63477 Maintal, Germany.