
UNICORE: A toolkit to automatically build unikernels
Gain Gaulthier
University of Liege

Belgium
gaulthier.gain@uliege.be

Soldani Cyril
University of Liege

Belgium
cyril.soldani@uliege.be

Mathy Laurent
University of Liege

Belgium
laurent.mathy@uliege.be

ABSTRACT
Recent years have seen the IT industry move massively towards the
use of virtualization for the deployment of applications. However,
the two most prominent virtualization technologies, i.e. virtual
machines (VMs) and containers, both present serious drawbacks.
Full-blown VMs provide a good level of isolation, but are generally
heavyweight. On the other hand, containers are generally more
lightweight, but offer less isolation and thus a much greater attack
surface.

Unikernels have been proposed to virtualize applications in a
way that is both safe, and efficient. They are specialized operating
systems, tailored for a specific application, which allows to build
minimalist VMs with tiny memory footprints. They keep the in-
creased security of VMs, but with performance equivalent to or
even better than equivalent containers. Unfortunately, porting an
application to the unikernel paradigm currently requires expert
knowledge, and can be very time-consuming.

In this paper, we introduce UNICORE, a common code base and
toolkit to automate the building of efficient unikernels from existing
off-the-shelf applications. Although UNICORE is still in the early
stages, we present early results showing that UNICORE images
are able to yield performance similar or better than lightweight
virtualization technologies such as containers.

CCS CONCEPTS
• Software and its engineering→ Virtual machines.

KEYWORDS
Virtualization, unikernels, specialization, operating systems, Xen,
containers, hypervisor, virtual machine.

1 INTRODUCTION
Cloud computing is becoming the core business of the IT industry.
This trend is justified by the fact that network operators and ser-
vice providers need high-performance services to deploy their net-
worked applications to the market. When public clouds appeared,
the basic technology used was hardware virtualization. In this par-
adigm, the virtual machine (VM) is defined as the standard unit
of deployment. Each VM is represented as a self-contained com-
puter, booting a standard OS kernel and then running a specific
application (e.g., a database, a web server, ...). Running multiple
VMs on the same machine significantly reduces costs. Although
VMs strongly reduce the required number of physical machines,
they introduce considerable drawbacks. Indeed, since they require
a full operating system image to run (kernel and applications), they
are heavyweight. Running many of them on the same hardware re-
quires thus a lot of RAM and CPU cycles and impacts performance.

Furthermore, due to their large size, they waste disk space and limit
boot and shut down time.

These drawbacks lead the IT industry to embrace containers to
replace virtual machines. This transition is intended to improve per-
formance, speed-up software deployment and reduce costs. Rather
than virtualizing the underlying hardware like VMs do, containers
virtualize the OS itself, sharing the host OS kernel and its resources
with both the host and other containers. This model considerably
reduces the memory wasted by duplicating OS functionality across
VMs and improves the overall performance.

In recent times, container-based technologies such as Docker [3]
and LXC [8] have gained enormous traction. Large internet com-
panies such as Google and Amazon decided to set aside virtual
machines by running all of their services in containers [20]. The
reasons of this major change are quite clear. In contrast to heavy-
weight VMs, containers provide fast instantiation times, small mem-
ory footprint and reduce size on disk.

Nevertheless, no technology is perfect, and containers are no
exception. Indeed, as they share the host OS kernel and contains
numerous binaries and libraries, the attack surface is large. They
are thus subject to a lot of vulnerabilities [2]. In addition, the kernel
system call API that containers use to interact with the host OS
represents also a serious flaw and is the target of an increasing
number of exploits [9].

At this point, software corporations face a dilemma between
inherently insecure containers and heavyweight but isolated virtual
machines. Could we do better by having a lightweight but isolated
environment? Fortunately, it is possible and a new technique taking
the best of two worlds exists.

Offering a great trade-off between performance and isolation,
a new model has been designed to replace virtual machines and
containers: unikernels. Also known as lightweight VMs, they are
specialized VMs that include only the minimum feature(s) to run
a specific application. Unikernels [23] are thus the smallest light-
weight virtual machines that can be created. They can run directly
on top on a hypervisor or bare metal, eliminating the need for a
host operating system. In a unikernel, the application is compiled
only with the necessary components of the operating system (e.g.,
memory allocators, schedulers, device buses, ...). Their size are thus
considerably reduced, resulting in better performance and attack
surface. Finally, because unikernels are minimalist, they are also
easier to verify, not only for quality but also for safety and security.
Many unikernels have been developed already such as ClickOS [13],
LightVM [12], IncludeOS [1]... They all offer great performance and
low memory footprint for their chosen task. Figure 1 illustrates the
major differences between VMs, containers and unikernels.

The fundamental drawback of this paradigm is that it is nec-
essary to manually port existing application(s) to the underlying
unikernel. For example, a web server can be ported as a unikernel

GDD’19, November 22, 2019, Namur, BE Gain Gaulthier, Soldani Cyril, and Mathy Laurent

Hardware

Hypervisor

Kernel
Libs
App

Kernel
Libs
App

Kernel
Libs
App

Unikernel

Hardware

Hypervisor

Kernel

Libs

App

Kernel

Libs

App

Kernel

Libs

App

Virtual Machine (VM)

Hardware

Kernel

Libs

App

Libs

App

Libs

App

Container

Figure 1: Comparison of virtual machine, container and
unikernel system architecture.

by selecting and extracting the right operating system components
and primitives (e.g., network stack, network drivers, ...) while re-
specting a given API. Porting legacy applications is in general not
trivial. Indeed, several factors such as incompatible or missing li-
braries/features, complex build infrastructures, lack of developer
tools (debuggers/profilers), and unsupported languages prevent
unikernels to gain significant traction from developers. Further-
more, the migration represents only a small portion of the work.
Indeed, other processes such as verification and optimization are
necessary to obtain a fully operational and optimized unikernel
for a particular platform and architecture. All these manual steps
involve significant resources and complex operations which are
tedious for developers. These challenges prevent unikernels from
being widely used by the software industry.

To circumvent costly operations related to unikernel develop-
ment and deployment, a new research project is being studied and
developed: UNICORE. Themain objective of UNICORE is to develop
an open-source toolkit to automatically build minimalist operating
systems targeting a single (or multiple) existing application(s) that
is/are optimized to run on different architectures (e.g., x86, ARM,
MIPS) and platforms (e.g., bare metal, KVM, Xen, ...). In this way,
the resulting unikernel(s) will have small image size, fast boot time,
and low amount of memory used.

The rest of this paper is organized as follows. Section 2 describes
the unikernel architecture and discusses its general principles. Sec-
tion 3 reviews related work. Section 4 introduces UNICORE, its
main concepts and objectives. Section 5 gives an overview of our
actual research and work on UNICORE. Section 6 presents early
results. Section 7 discusses future work and any shortcomings that
have been identified. Finally, Section 8 concludes the paper.

2 UNIKERNEL ARCHITECTURE
Unikernel is a relatively new concept in which an application is
directly integrated with the underlying kernel. In other words,
software is compiled against bits of OS functionality that it needs
(e.g., only the required system calls and drivers) into an executable
image using a single address space. Single address space means that
in its core, the unikernel does not have separate user and kernel
address spaces and all threads and the kernel use the same page
table.

Therefore, unikernels can only run a single process at a time.
As a result, they do not support forking. Nevertheless, they can

fully support multi-threaded applications and multi-core VMs [5].
The first advantage of this approach concerns the reduced attack
surface and exploitable operating system code. In contrast to virtual
machines and containers which offer solutions that are packed with
more tools and libraries than required by the running application,
unikernels only contain the necessary operating system functions.
Furthermore, such a paradigm allows also to exclude shells. Indeed,
a number of attacks try to invoke a shell to alter the system they
are attacking. Without a shell, an attacker does not have this op-
portunity. This forces the attacker to use machine code to subvert
the system which decreases the chances of successfully completing
the attack.

In addition to security, unikernels also allow to improve per-
formance. They use a single address space, without distinction
between kernel-space and user-space. Consequently, system calls
become equivalent to regular function calls, avoiding the overhead
of context switches and data copies between user and kernel spaces.

Single address space means running application in kernel mode.
This model implies that software bugs will critically break the
running unikernel. Due to this design, unikernels are also harder to
debug since they usually do not provide their own sets of debugging
tools. To use existing tools, it is necessary to cross-compile them.
Additionally, third party libraries used by the debugging tools must
be included into the image, ballooning the size of the unikernel.
Any debugging tools based on multiple parallel processes can not
work in a unikernel by design.

3 RELATEDWORK
There exist plenty of related work showing that unikernels bring
great benefits and impressive performance compared to traditional
VMs and containers. It is possible to divide research-related area
into two main categories: (1) Development of minimalist operating
systems that are POSIX-compliant. These can run existing and legacy
application by using cross-compiling techniques. Generally, they
are based on a custom kernel and use a larger code base since they
require more resources. Nevertheless, these platforms provide an
easier way to migrate traditional software (running on virtual ma-
chines and containers) into unikernels, since the application only
needs to be recompiled. OSv [5] is an example of this type of system.
It is designed to run unmodified Linux applications on the KVM [6]
hypervisor. In the same family, Rumprun [21] provides reusable
kernel-quality components which allow to build highly customized
images with minimal footprint. (2) Development of minimalist oper-
ating systems with custom API. Unlike the previous approach, this
model does not try to optimize existing code, but instead focus on a
set of tools to quickly assemble new components without having to
deal with underlying services (e.g., memory allocators, drivers, ...).
The downside of this concept is that it provides code base which
are generally incompatible with existing applications. Therefore,
they require to rewrite the legacy code using the defined platform’s
API. For example, MirageOS [11] written in OCaml, is based on this
architecture. It is designed as a complete clean-slate set of protocol
libraries with which to build specialized unikernels that run over
the Xen [27] hypervisor.

Both approaches require significant expertise (often missing in
application developer’s toolkit) and development time to port an

UNICORE: A toolkit to automatically build unikernels GDD’19, November 22, 2019, Namur, BE

existing application as a unikernel. The adversity of compiling
unikernels may significantly hamper their widespread adoption by
the software industry. Fortunately, the UNICORE project’s objective
is to change this status quo by providing a highly configurable
unikernel code base being agnostic to the underlying hardware or
virtualization technology.

4 UNICORE
The high-level goal of UNICORE is to be able to build unikernels tar-
geted at specific applications without requiring the time-consuming,
expert work that building such a unikernel currently requires. In
order to achieve this objective, UNICORE will provide a code base
with library pools (Section 4.1) as well as a toolkit (Section 4.2)
comprising a set of tools to automatically build images of operat-
ing systems targeting a single (or multiple) applications that are
optimized to run on bare metal or as virtual machines. UNICORE
will thus reduce several critical metrics such as image size, boot
time, and the amount of memory used and ensure strong isolation,
and performance comparable to containers. The main concept of
UNICORE is shown in Figure 2.

App

AppUNICORE
toolchain

3rd party
libraries

OS
libraries

OS
kernel

Figure 2: UNICORE high-level concept.

Since UNICORE will greatly ease the porting of existing applica-
tions, already contains an increasing number of supported libraries,
and is fully open-source, we hope it will gain traction in the com-
munity, contrary to anterior attempts requiring more development
effort [23].

4.1 Library pools
In order to develop fully specialized and customized unikernels,
UNICORE will first decompose operating system primitives and
libraries into fine-grained modules called micro libraries or µlibs.
Such decomposition will allow to select and include only the nec-
essary µlibs that applications require to run. Therefore, resulting
images will be extremely thin and optimized. Using µlibs will also
ensure modularity and code reusability by providing a common
code base for unikernels development. UNICORE will thus provide

pools of various libraries which can be selected to build unikernels.
These pools of libraries thus constitute a code base for creating
unikernels. UNICORE libraries are divided into three pools illus-
trated in Figure 3: (1) Main lib pool contains libraries that provide
basic pieces of functionality. Libraries can be arbitrarily small or as
large as standard libraries like libc. These libraries are themselves
divided into internal and external libraries: Internal lib pool provides
functionality typically found in operating systems (e.g., memory
allocators, schedulers, device buses, ...) and are part of the UNI-
CORE core. External lib pool consists of existing software projects
external to UNICORE. For example, these include libraries such
as musl [14], but also language environments such as Golang [4]
and Javascript/v8 [25]. (2) Platform lib pool contains all libraries
for a particular target platform such as Xen, KVM and bare metal.
(3) Architecture lib pool provides libraries dedicated to a specific
computer architecture (e.g., x86, ARM, MIPS, ...). In addition to
these categories there exist also applications that can be ported to
the UNICORE project. They correspond to standard applications
such as MySQL [15], Nginx [16] or PyTorch [19], to name a few.

One important thing to point out regarding internal libraries is
that for each category, UNICORE defines (or will define) an API
that each library under that category must comply with. In this
way, it is possible to easily plug and play different libraries of a
certain type (e.g., using a cooperative scheduler or a preemptive
one). An API consists of a header file defining the actual API as
well as an implementation of some generic/compatibility functions,
if any, that are common to all libraries under a specific category.

unicore_bare
x86_64

unikernel binaries

API

unicore_bare
ARM32

unicore_xen
x86_64

unicore_xen
ARM32

unicore_kvm
x86_64

unicore_kvm
ARM32

libx86_64arch.o libarm32arch.o libmipsarch.o

libbareplat.o libxenplat.o libkvmplat.o

arch lib pool

platform lib pool
internal lib pool

liblwip.o libvfs.o libc.o
libnewlibc.olibfat.olibtcpip.o

libnetback.o

libnetfront.o

libbuddy.o

libheap.o

libpython.o

libgolang.o

drivers memory alloc. runtimes

network stack filesystems standard libs

external lib pool

App

main lib pool

build

Figure 3: The UNICORE library pools.

GDD’19, November 22, 2019, Namur, BE Gain Gaulthier, Soldani Cyril, and Mathy Laurent

4.2 Toolchain
The UNICORE toolchain will provide a set of tools to automati-
cally build images of operating systems targeting applications. In a
general way, the toolchain will build unikernels by extracting OS
primitives and selecting the right micro libraries and third party
libraries. In order to be able to build secure and reliable unikernels,
several tools will be integrated to the toolchain: (1) Decomposition
tool to assist developers in breaking existing monolithic software
into smaller components. (2) Dependency analysis tool to analyze ex-
isting, unmodified applications to determine which set of libraries
and OS primitives are absolutely necessary for correct execution.
(3) Automatic build tool to match the requirements derived by the
dependency analysis tool to the available libraries. (4) Verification
tool to ensure that the functionality of the resulting, specialized
OS+application matches that of the application running on a stan-
dard OS. (5) Performance optimization tool to analyze the running
specialized OS+application and to use this information as input to
generate even more optimized images.

The combination of these tools is shown in Figure 4 and rep-
resents a unikernel toolchain able to automatically build efficient,
customized, verifiable and secure specialized operating systems and
virtual machine images. The toolkit will ensure that applications
become independent of the platforms and the architectures against
which they are built.

Dependency
analysis

Libs

Optimize

Build

Verify
Kernel

App Depend
encies

APIs

VM

µlib µlib

µlib µlib

UNICORE
code repo

TestReconfig

De
co

m
po

se

Figure 4: UNICORE tool flow during application construc-
tion.

Figure 4 represents the workflow for users of UNICORE. First, the
dependency analysis tool will examine and extract dependencies
from existing and unmodified applications. Then, the automatic
build tool will use the dependencies as input to select the relevant
micro libraries (see Section 4.1) from a library pools, link them
against the application, and produce a minimalist UNICORE image
for one ormultiple target platform(s) and architecture(s). This image
can then be deployed using standard provisioning tools such as
OpenStack [18]. In parallel, the verification tool will ensure that
µlibs are correctly implemented and that the newly built application
is equivalent to the initial one. Finally, the resulting unikernel will
be automatically profiled and the configuration parameters for the
µlibs updated to improve performance, in an iterative process driven
by the optimization tool.

5 CURRENT STATUS
At the time of writing, the project is still at an early stage. A first
version of the code base as well as some libraries have already
been written. Similarly, a first prototype of the toolchain has been
developed.

Concerning code base and library pool, it was decided to fol-
low the Unikraft [24] work. Unikraft includes some base libraries
and relies on two existing tiny operating systems to support re-
spectively the Xen and KVM hypervisors. These lightweight OSes
interact with the hardware abstraction exposed by the hypervisor
and form platforms for building language runtime environments
and applications. Xen comes with MiniOS [28], a toy guest operat-
ing system which implements all of the basic functionality needed
to run a lightweight image on Xen. This OS has a single address
space, no kernel/user space separation, and a cooperative scheduler.
To support KVM, we based ourselves on Solo5 [26]. In addition
to Xen and KVM platforms, we also support the Linux userspace
platform especially for debugging purpose.

A decomposition work has then been performed. As explained
previously, UNICORE is based on a simple concept: everything is a
library. Existing monolithic software was thus broken down into
micro libraries according to their respective platform and architec-
ture. For instance, memory allocator libraries and boot management
libraries have been developed, providing low-level APIs to man-
age hardware abstraction. Subsequently, higher-level libraries have
been implemented using underlying APIs. For instance, minimalist
implementation of libc functionality such as nolibc but also larger
micro libraries like newlib [22] or lwip [10].

In parallel to µlibs development, we are also working on the
toolchain and two of its tool can already be used: the dependency
analysis tool and the automatic build tool.

The first one aims to break down a binary application and anal-
yses its symbols, its system calls and its dependencies. The tool
relies on static and dynamic analysis and has been designed to
examine binary files. Indeed, source code is not always accessible.
Moreover, this approach allows to remain completely independent
of the programming language. Finally, gathering data of binary is
also useful for binary rewriting techniques [17], i.e., changing the
semantics of a program without having the source code.

First, a static analysis (which does not require program execution)
is performed on the binary file of the application. By disassembling
the application and analyzing its assembly code, we can recover
various information. To recover all functions and system calls, we
examine and parse the ELF’s symbols table1. Similarly, it is possible
to recover shared libraries from a dynamic executable by parsing
program headers and the dynamic section. Although, we obtain in-
teresting results, this approach can have some flaws. Indeed, results
of this analysis can be limited if binaries are stripped or obfus-
cated. Furthermore, some shared libraries can be omitted if they
are dynamically loaded by the dlopen function. A second analysis
is thus performed on the application. This one is dynamic since it
requires running the program. It allows to collect additional entries
on previous data (system calls, library calls and shared libraries).
The optimal approach to gather all symbols and dependencies is

1An ELF’s symbol table holds information needed to locate and relocate a program’s
symbolic definitions and symbolic references.

UNICORE: A toolkit to automatically build unikernels GDD’19, November 22, 2019, Namur, BE

to explore all possible execution paths of the running application.
Nevertheless, exploring all execution paths is in general infeasible.
Fortunately, we can approach this scenario, by using a heuristic
approach which requires high application code coverage. Tests with
expected input and fuzz-testing techniques have been used in order
to find the most possible symbols, system calls and dependencies.
To gather symbols and system calls, we wrote several configuration
files which contain various configurations to test (e.g., different
ports numbers for web servers, background mode, ...) but also test
files (e.g., SQL queries for database servers, DNS queries for DNS
servers, ...). These configuration and tests files are then provided
as input to the analyzer which monitors application’s output by
using the strace, ltrace and lsof [7] utilities. Once the dynamic
analyzer finished its task, its results are compared and added to the
ones of the static analyzer. Finally, all data is persisted on the disk
and is used as input by the automatic build tool.

The automatic build tool is also divided into two subcomponents:
a controller that uses shared libraries (gathered from the depen-
dency analysis process) to select the right micro libraries (from
library pools), and a build system to compile and link the unikernel
into target VM images.

The controller subsystem performs a first matching based on
shared libraries and µlibs nomenclatures. A second check is carried
out based on symbols’ names. In order to accomplish this task,
each micro library publicly exports2 its symbols into a special file.
For each micro library, the controller reads this special file from
the library pool, saves symbols and then updates (if necessary)
the matching. Once this process is done, it calls the internal build
system. This component is in charge of compiling the application
and the selected libraries together to create a binary for a specific
platform and architecture. The tool is currently inspired by Linux’s
kconfig system and consists of a set of Makefiles.

6 EARLY RESULTS
It is possible to present early results in terms of memory sizes and
boot up times of UNICORE images. We developed a very simple
unikernel that only prints "Hello world!" and then exits. This uniker-
nel depends on several µlibs from library pools and is build with
the automatic build tool. As shown in Figure 5, we build3 three
(uncompressed) images on different virtualization technologies:
Xen, KVM and Linux userspace. Once built, we parse each resulting
images (more specially the symbols table) and figure out which
library contributed with which symbol(s).

As it can be observed, resulting images are extremely small.
Unikernel for the Xen platform has a size of only 27 kB. Images for
KVM and Linux userspace are respectively 34 kB and 14 kB. Bigger
µlibs are related to platforms and nolibc. This is justified by the
fact that platform related libraries contain all code needed to run
a unikernel on a particular underlying platform. Similarly, nolibc
uses a very minimalist libc implementation which contains a higher
number of symbols than other µlibs such as memory allocator or
time conversion µlibs.

2By default, there are separate namespaces for each library. In other words, every
function and variable will only be visible internally.
3Built on: Debian 9; Linux 4.19.0; Intel®Xeon®E3-1231v3 3.40 GHz, 4 MB RAM for
guests.

Xen PV QEMU/KVM Linux Userspace
0

5

10

15

20

25

30

K
il

ob
y
te

s

libukalloc.o

libukboot.o

apphelloworld.o

libnolibc.o

libukallocbbuddy.o

libukargparse.o

libuktimeconv.o

platform

alignments

Figure 5: Contribution ofminimalmicro libraries set to .text,
.rodata and .data sections for a simple "Hello World!" guest
(uncompressed).

We also measure the total life cycle (create, boot, run, shutdown,
and destroy times) of this same program on different platforms. As
represented on Figure 6, the Linux userspace image is the fastest
(only 0.32 ms) since it does not rely on any hypervisor. The total
life cycle of Xen and KVM images is respectively 502.34 ms and
615.46 ms.

100 101 102

Time (ms)

Lin
ux

 U
se

rs
pa

ce
 Q

EM
U

 K
VM

 X

en PV

0.
32

m
s

50
2.

34
m

s
61

5.
46

m
s

Figure 6: Total time to create, boot, shutdown, and destroy
the "Hello world!" guest on different platforms.

These results show that UNICORE images have impressive per-
formance compared to traditional VMs. For instance, a 1 GB Debian
virtual machine has a total life cycle of several seconds. Compared
to containers, the difference tends to be less pronounced. Indeed,
since containers share the underlying kernel, their total life cycle
can also reach hundred of milliseconds [12].

7 FUTUREWORK
As mentioned UNICORE is in analysis and development stages.
There is a considerable work to be done concerning scientific re-
search and implementation. Both on micro libraries development,
APIs and toolchain design.

GDD’19, November 22, 2019, Namur, BE Gain Gaulthier, Soldani Cyril, and Mathy Laurent

Although a large portion of micro libraries development con-
cerns software engineering, there exist many research topics to
consider and that can be exploited. Particularly, about how pro-
cesses work. A traditional UNIX program uses specific primitives
such as fork and exec to support multi-processing. In the context
of unikernels, the classical paradigm of processes should be adapted.
Indeed, unikernels are dedicated to run only a single application at
a time and thus strip off the process abstraction from its monolithic
appliance. In the same way inter-process communication can no
longer be done using the traditional IPC. Can we update the classic
paradigm of process creation by using a thread model? Does this
design have a significant impact on performance? This is just one
of the many possible areas of research for micro libraries. Indeed,
by working at this low-level of abstraction, we can redefine mostly
everything.

Concerning the toolchain, it is also possible to consider many
research aspects. For instance, we can try to automatically decom-
posing existing software into working components and µlibs. In
order to obtain lighter and more secure images, additional research
on dead-code elimination must be performed. In addition, the ver-
ification tool represents also an important topic of research. In-
deed, we must be able to ensure the correctness and the security of
unikernels and µlibs. Finally, we will investigate the use of machine
learning techniques to identify a set of guest OS and virtualization
parameters and automatically test the given application with differ-
ent parameters (e.g., how big should the page size be, ...) in order
to obtain best performance.

8 CONCLUSION
We have taken a look at the exciting new paradigm of unikernels.
While they have great potential in terms of performance, tiny boot
times and small memory consumption, developing and deploying
unikernels requires significant expert resources. Without an spe-
cialized infrastructure, they are not ready to be widely used by the
software industry.

Fortunately, we are changing this status quo with a first pro-
totype of UNICORE, a common code base and toolkit to deploy
secure and reliable virtual execution environments for existing ap-
plications. UNICORE relies on two main components: library pools
which provide a common code base for unikernels, ensuring a large
degree of code reusability and a toolchain to automatically build
and optimize unikernels.

Although UNICORE is at an early stage, we present early results
in terms of memory sizes and boot up times of UNICORE images
showing impressive numbers that cannot be reached by virtual
machines and even containers.

ACKNOWLEDGMENTS
This work received funding from the European Union’s Horizon
2020 Framework Programme under agreement no. 825377.

REFERENCES
[1] Alfred Bratterud, Alf-Andre Walla, Hårek Haugerud, Paal E. Engelstad, and Kyrre

Begnum. 2016. IncludeOS: A minimal, resource efficient unikernel for cloud
services. IEEE 7th International Conference on Cloud Computing Technology and
Science, CloudCom 2015 (2016), 250–257. https://doi.org/10.1109/CloudCom.2015.
89

[2] CVE Details 2018. Docker: Security Vulnerabilities. https://www.cvedetails.
com/vulnerability-list/vendor_id-13534/Docker.html

[3] Docker [n. d.]. The Docker Containerization Platform. https://www.docker.com/
[4] Golang [n. d.]. The Go Programming Language. https://golang.org
[5] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don Marti,

and Vlad Zolotarov. 2014. OSv—Optimizing the Operating System for Virtual
Machines. In 2014 USENIX Annual Technical Conference (USENIX ATC 14). USENIX
Association, Philadelphia, PA, 61–72. https://www.usenix.org/conference/atc14/
technical-sessions/presentation/kivity

[6] KVM [n. d.]. Kernel Virtual Machine. https://www.linux-kvm.org/page/Main_
Page

[7] Linux Man page [n. d.]. Index of /linux/man-pages/man1. http://man7.org/
linux/man-pages/man1/

[8] LinuxContainers.org [n. d.]. Linux Containers. https://linuxcontainers.org
[9] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, An-

ders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User Space.
In 27th USENIX Security Symposium (USENIX Security 18). USENIX Association,
Baltimore, MD, 973–990. https://www.usenix.org/conference/usenixsecurity18/
presentation/lipp

[10] lwIP [n. d.]. lwIP - A Lightweight TCP/IP stack. https://savannah.nongnu.org/
projects/lwip/

[11] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj
Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. 2013.
Unikernels: Library Operating Systems for the Cloud. Proceedings of the eighteenth
international conference on Architectural support for programming languages and
operating systems - ASPLOS’13 48, 4 (2013), 461. https://doi.org/10.1145/2451116.
2451167

[12] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit
Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017. My VM is Lighter
(and Safer) than your Container. In Proceedings of the 26th Symposium on Oper-
ating Systems Principles - SOSP ’17. 218–233. https://doi.org/10.1145/3132747.
3132763

[13] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda,
Roberto Bifulco, and Felipe Huici. 2014. ClickOS and the Art of Network Function
Virtualization. (2014), 459–473. https://www.usenix.org/conference/nsdi14/
technical-sessions/presentation/martins

[14] Musl [n. d.]. musl libc. https://www.musl-libc.org
[15] MySQL [n. d.]. MySQL. https://www.mysql.com/
[16] Nginx [n. d.]. NGINX High Performance Load Balancer, Web Server, and Reverse

Proxy. https://www.nginx.com
[17] Pierre Olivier, Daniel Chiba, Stefan Lankes, ChangwooMin, and Binoy Ravindran.

2019. A Binary-Compatible Unikernel. (2019), 15.
[18] Openstack [n. d.]. Build the future of Open Infrastructure. https://www.

openstack.org
[19] PyTorch [n. d.]. PyTorch: from research to production. https://pytorch.org
[20] RightScale 2018. State of the Cloud Report. http://assets.rightscale.com/uploads/

pdfs/RightScale-2018-State-of-the-Cloud-Report.pdf
[21] Rumprun [n. d.]. The Rumprun unikernel and toolchain for various platforms.

https://github.com/rumpkernel/rumprun
[22] The Newlib Homepage [n. d.]. The Newlib Homepage. https://sourceware.org/

newlib/
[23] Unikernel.org [n. d.]. Unikernels: Rethinking Cloud Infrastructure. http:

//unikernel.org/projects/
[24] Unikraft [n. d.]. Unikraft - Xen Project. https://xenproject.org/developers/teams/

unikraft/
[25] V8 JavaScript engine [n. d.]. V8 JavaScript engine. https://v8.dev
[26] D. Williams and M. Lucina. [n. d.]. Solo5. https://github.com/Solo5/solo5
[27] Xen Project [n. d.]. The Hypervisor (x86 and ARM). https://xenproject.org/

developers/teams/xen-hypervisor/
[28] Xen Project [n. d.]. Mini-OS, Xen Project. https://wiki.xenproject.org/wiki/

Mini-OS

https://doi.org/10.1109/CloudCom.2015.89
https://doi.org/10.1109/CloudCom.2015.89
https://www.cvedetails.com/vulnerability-list/vendor_id-13534/Docker.html
https://www.cvedetails.com/vulnerability-list/vendor_id-13534/Docker.html
https://www.docker.com/
https://golang.org
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page
http://man7.org/linux/man-pages/man1/
http://man7.org/linux/man-pages/man1/
https://linuxcontainers.org
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://savannah.nongnu.org/projects/lwip/
https://savannah.nongnu.org/projects/lwip/
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/3132747.3132763
https://doi.org/10.1145/3132747.3132763
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
https://www.musl-libc.org
https://www.mysql.com/
https://www.nginx.com
https://www.openstack.org
https://www.openstack.org
https://pytorch.org
http://assets.rightscale.com/uploads/pdfs/RightScale-2018-State-of-the-Cloud-Report.pdf
http://assets.rightscale.com/uploads/pdfs/RightScale-2018-State-of-the-Cloud-Report.pdf
https://github.com/rumpkernel/rumprun
https://sourceware.org/newlib/
https://sourceware.org/newlib/
http://unikernel.org/projects/
http://unikernel.org/projects/
https://xenproject.org/developers/teams/unikraft/
https://xenproject.org/developers/teams/unikraft/
https://v8.dev
https://github.com/Solo5/solo5
https://xenproject.org/developers/teams/xen-hypervisor/
https://xenproject.org/developers/teams/xen-hypervisor/
https://wiki.xenproject.org/wiki/Mini-OS
https://wiki.xenproject.org/wiki/Mini-OS

	Abstract
	1 Introduction
	2 Unikernel Architecture
	3 Related Work
	4 Unicore
	4.1 Library pools
	4.2 Toolchain

	5 Current Status
	6 Early results
	7 Future work
	8 Conclusion
	Acknowledgments
	References

