

Landscape patterns and ecosystem service provisioning in a Highland Landscape of northern Ecuador

A.Paulina Guarderas^{*1,2}, Franz Smith³, Marc Dufrêne¹

Université de Liège¹, Universidad Central del Ecuador², Universidad San Francisco de Quito³

Outline

- Context
- Justification
- Research Question
- Methods
- Preliminary results
- Summary

Context

Land Use Change is the most important variable affecting ecological system

Global carbon cycle Global, regional and local climates Hydrologic cycle Ecosystem degradation Biodiversity loss

Degradation of soil and water Overexploitation of native species Land use or land cover change impacts on a very diverse array of environmental systems, properties and processes

Sala et al 2000, Foley et al 2005

LU change affects the physical and biological properties of landscapes and can impact the provision of multiple ecosystem services

flow

regulation

water

quality

regulation

sequestration

flow

regulation

natural ecosystem

intensive cropland

cropland with restored ecosystem services

water

quality

regulation

sequestration

Figure 6.2 The relationship between biodiversity, ecosystem function and human well-being.

Mountain landscapes provide multiple ecosystem services that are continually vulnerable to land-change

- Half of the world population depends on mountain ecosystem resources Millenium Ecoystem Assessment, 2005
- Complex land-change dynamics have been documented in the high-Andean region
- Land use change may affect ecological processes at different scales, affecting ecosystem services
- Qt. assessment of LU changes on the value of ES is one of the research focuses of sustainable development in science

Montane ecosystems of Ecuador have been affected by loss of natural vegetation cover and fragmentation as a result of land use change

- Landscapes of the Ecuadorian highlands are the result of a long-term interaction between people and their natural environment
- Landscape transformation started early on when the Spanish conquered the land to establish different productive systems (agricultural and cattle raising) more than 500 years ago

Montane ecosystems of Ecuador have been affected by loss of natural vegetation cover and fragmentation as a result of land use change

- Mountain native ecosystems in Ecuador are threatened, they are remnant forests in a matrix of agricultural land
- The impact of land use changes on biodiversity and the value of mountain ecosystems in Ecuador has not been evaluated

Pedro Moncayo county →Interesting model system to improve our understanding on LULC change and ES

Pedro Moncayo county \rightarrow Andean landscape with environmental gradients (altitudinal)

Pedro Moncayo county →Andean landscape with a land use intensity gradient – Landscape level

>60% Ecosystem modif. Agric

Native ecosystems Paramo Mountain forests

Agriculture + Pastures + urban areas Monoculture farms cereals tubercules Agroecologic farms

How land use change has influenced landscape patterns and the capacity of ecosystems to provide services in a highland landscape of northern Ecuador?

To contribute to the understanding of the impacts of land use changes towards biodiversity, ecosystem services and benefit transfer for the Andean mountain systems of Ecuador

Methods

How LULC change has influenced the capacity of ecosystems to provide ES in the study area ?

Figure 5: Conceptual framework to assess and quantify landscapes' capacities to provide ecosystem services. The dashed and dotted lines indicate the components presented with examples in this paper.

Burkhard (2009, 2012)

Estimation of land use patterns and dynamics through time

1

LULC typ.

Expert judgement Local stakeholder perception

Green urban areas

Ricefields Vineyards

Sport and leasure facilities Non-irrigated arable land

Permanently irrigated land

Burkhard (2012)

Regulating

L_clim_ reg G_clim_ reg Water purification Soil erosion regulation Water flow regulation

Types of ES

Provisioning

Crops Livestock Fodder Wild food Wood fuel Timber Fresh water

Intrinsic value of biodiversity Recreation & aestethic values

Madrigal-Martinez					
&	Miralles (2019)				

Burkhard (2009, 2012) Burkhard (2012)

Cultural

Test the hypothetical scoring of the capacity of LULC typ. to provide ES of existing data

Quantification of ES based on official statistics for different years

Figure 3: Spatial distribution of the ecosystem service "crop provision" in the year 1990 (left) and 2000 (right) for the region of Leipzig, Halle, and surrounding districts.

Preliminary results

Estimation of land use patterns and dynamics through time

1

Main land uses in the territory are Agricultural areas (C + P) followed by Secondary vegetation (Herbs + Shrubs)

		1990		20	00	20	08	2014		
		Area km ²	%	Area km ²	%	Area km ²	%	Area m ²	%	
1	Developed	13.3272	1.30	36.3411	3.54	54.7587	5.33	90.4554	8.81	
2	Pasture	171.729	16.72	112.8204	10.99	43.7562	4.26	219.0708	21.33	
3	Crops	377.6382	36.77	340.1856	33.12	534.9384	52.09	261.4797	25.46	
4	Herbs, Shrubs & P. F.	270.7848	26.37	334.4724	32.57	217.5489	21.18	289.7694	28.21	
5	Native forests	75.5028	7.35	82.3158	8.01	70.1784	6.83	57.5928	5.61	
6	Paramo	113.8104	11.08	116.6319	11.36	101.7144	9.90	103.653	10.09	
7	N. Water bodies	4.2336	0.41	4.2588	0.41	4.131	0.40	5.0049	0.49	

Dynamic landscape through time: Decreasing Crops, Natural ecosystems, increasing pastures and developed areas 1990 2008 2000 2014 2014-1990 % Developed 5.79 -0.31

Natural Water bodies

0.18

0.28

0.07

Land-change dynamics through time demonstrate different trajectories

Land use	
transition	
matrix	

Madrigal-Martinez					
& Miralles (2019)					

Lange-change	Type of change	1990 to 2000		2000 to 2008		2008 to 2014		1990 to 2014 💌	
dynamic	Type of change	km	%	km	%	km	%	km	%
	Shr to C	156.15	19.17	474.86	43.48	57.59	7.88	104.66	7.73
	NF to C	31.52	3.87	100.12	9.17	7.78	1.06	31.78	2.35
Agricultural	Pr to C	19.64	2.41	75.65	6.93	0.00	0.00	19.05	1.41
expansion	Shr to P	0.00	0.00	7.20	0.66	42.64	5.83	159.28	11.77
	NF to P	15.68	1.92	28.21	2.58	73.65	10.07	110.02	8.13
	Pr to P	24.36	2.99	12.14	1.11	0.00	0.00	43.98	3.25
	C to Shr	287.88	35.34	77.89	7.13	162.04	22.17	183.87	13.59
	C to Pr	17.01	2.09	2.52	0.23	1.83	0.25	7.58	0.56
Agricultural de-	P to Shr	76.67	9.41	67.81	6.21	80.76	11.05	89.04	6.58
intensificacion	P to Pr	6.50	0.80	3.19	0.29	0.00	0.00	1.76	0.13
	C to NF	14.83	1.82	2.75	0.25	2.29	0.31	6.35	0.47
	P to NF	7.49	0.92	10.02	0.92	1.01	0.14	5.85	0.43
	NF to Pr	1.57	0.19	0.00	0.00	12.67	1.73	13.23	0.98
Deforestation	NF to Shr	27.02	3.32	60.18	5.51	118.58	16.22	164.30	12.14
	Pr to Shr	4.82	0.59	57.19	5.24	1.32	0.18	67.57	4.99
	P to D	57.43	7.05	55.56	5.09	95.80	13.10	205.97	15.22
	C to D	26.75	3.28	37.89	3.47	60.79	8.32	88.10	6.51
Urbanization	Shr to D	14.18	1.74	12.49	1.14	3.70	0.51	38.96	2.88
	NF to D	0.00	0.00	1.50	0.14	0.07	0.01	0.45	0.03
	Pr to D	0.00	0.00	0.20	0.02	0.18	0.02	0.37	0.03
	Shr to NF	21.16	2.60	3.32	0.30	3.38	0.46	8.29	0.61
Natural process	Shr to Pr	3.03	0.37	1.33	0.12	4.97	0.68	1.96	0.15
	Pr to NF	1.01	0.12	0.00	0.00	0.00	0.00	1.01	0.07
Total change		814.704	100	1092.01	100	731.062	100	1353.45	100.00

1 Developed	LULC Type	L_clim_ reg	G_clim_ reg	Water purificati	Soil erosion	Soil quality	Water flow
2 Pasture	1	0.0	0.0	0.0	0.0	0.0	0.0
	2	2.0	0.0	1.0	2.0	3.0	1.0
o Crops	3	1.7	1.7	0.0	1.7	1.0	0.5
4 Herbs, Shrubs & P. F.	4	2.6	2.6	1.3	3.4	2.3	1.3
5 Native forests	5	5.0	4.0	4.0	5.0	5.0	4.0
6 Paramo	6	5.0	5.0	5.0	5.0	5.0	5.0
7 N. Water bodies	7	3.8	2.2	3.6	0.6	3.0	4.4

LULC Type	Crops	Livestock	Fodder	Wild foods	Wood fuel	Timber	Fresh water
1	1	1.0	1.0	0.0	0.0	0.0	0.0
2	2	2.8	3.0	2.0	0.0	0.0	1.0
3	5	2.3	2.5	1.0	1.0	0.0	1.0
4	0	0.4	0.4	1.6	2.6	3.0	1.3
5	0	0.0	0.0	4.0	5.0	4.0	4.0
6	0	0.0	0.0	4.0	3.0	1.0	5.0
7	0	0.0	0.0	0.4	0.6	0.6	2.0

LULC Type	Intrinsic value of biodiversity	Recreation & aestethic values
1	0.1	0.7
2	1.0	2.0
3	1.0	2.7
4	1.9	2.0
5	5.0	5.0
6	5.0	5.0
7	3.0	4.4

1990

2014

Prov

Cul.

- Cultural capacity \rightarrow ELA

17.8000 - 23.4000 23.4000 - 29.0000

- Regulation capacity \rightarrow ELA

- Provisioning capacity \rightarrow ELA

16.6 - 20.0

Summarizing

- This case study demonstrates that highlands landscapes in the northern region of the Ecuadorian Andes present dynamic land patterns through time with different trajectories along the years.
- Specifically agricultural expansion, agricultural de-intensification, urbanization and deforestation
- Land use dynamics appear to show a geographic pattern
- Supply of ecosystem services associated to different Land use typologies would change along with the land-change dynamics observed at geographic and temporal scales

Next steps

Analyze Landscape patterns and dynamics Altitudinal gradient Administrative geographic administration

Analyze Landscape configuration Fragmentation Connectivity

Include expert knowledge where there are gaps of information

Thanks

A. Paulina Guarderas

apguarderas@uce.edu.ec AP.Guarderas@doct.uliege.be

