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Abstract: The authors define a new semiparametric Archimedean copula family having a flexible depen-
dence structure. The family’s generator is a local interpolation of existing generators. It has locally-defined
dependence parameters. The authors present a penalized constrained least-squares method to estimate and
smooth these parameters. They illustrate the flexibility of their dependence model in a bivariate survival
example.

Estimation de la dépendance locale sur base de copules archimédiennes semiparamétriques

Résumé : Les auteurs définissent une nouvelle famille de copules archimédiennes semiparamétriques dont
la structure de dépendance est flexible. Le générateur de la famille est une interpolation locale de généra-
teurs existants. Ses paramètres de dépendance sont définis localement. Les auteurs présentent une méthode
de moindres carrés contraints pénalisés permettant l’estimation lisse de ces paramètres. Ils illustrent la
flexibilité de leur modèle de dépendance dans un exemple de survie bivariée.

1. INTRODUCTION

The Archimedean copula family (Genest & MacKay 1986; Nelsen 1999, Chapter 4) is an important class
of dependence functions that can be used to generate joint distributions of random variables X1 and X2

with specified marginal distributions FX1(x1) = P(X1 ≤ x1) and FX2(x2) = P(X2 ≤ x2). Members of this
class are bivariate distributions C with uniform margins on [0, 1]2 constructed from a continuous, strictly
decreasing, and convex function φ such that

C(u, v) = φ[−1]{φ(u) + φ(v)}, u, v ∈ [0, 1].

The function φ is called the generator of the copula. Then,

H(x1, x2) = C{FX1(x1), FX2(x2)}

is the joint distribution of (X1, X2). The strength of dependence between X1 and X2 is a function of the
shape of C.

Genest & Rivest (1993, 2001) derived the distribution function

K(p) = P{C(U, V ) ≤ p}

of the probability integral transformation C(U, V ) associated with a pair (U, V ) of uniform random variables
with Archimedean copula C. For any p ∈ [0, 1], it is equal to

K(p) = p− φ(p)

φ′(p+)
,
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where φ′(p+) denotes the right-derivative of φ at p. One rank-based dependence measure, Kendall’s tau
(Kruskal 1958), is derived from that distribution. When X1 and X2 are absolutely continuous, Genest &
MacKay (1986) showed that

τ = 4E{C(U, V )} − 1 = 1 + 4

∫ 1

0

φ(p)

φ′(p+)
dp. (1)

This global concordance measure has a simple interpretation. It estimates the difference between the
probabilities of concordance and discordance in (X1, X2). With Archimedean copulas, τ is a direct function
of the generator φ.

The class of Archimedean copulas encompasses many well-known bivariate parametric distributions
(see, e.g., Nelsen 1999, pp. 94–97), such as the families of Frank, Clayton or Gumbel–Hougaard given in
Table 1. For these families, the generator φ has a single parameter θ that measures the sign and the
strength of the dependence. In every case, one specific (possibly limiting) value for θ leads to the generator
φ(p) = − log(p) that creates independence, as then, C = exp{log(U)+ log(V )} = UV is the product of the
margins U and V . For each of these families, there is a one-to-one mapping between θ and τ , as given in
Table 1. A three-parameter family including as special cases the various copulas from this table was given
by Genest, Ghoudi & Rivest (1998).

Table 1. Selected bivariate Archimedean copulas having a single dependence parameter θ.

Name φθ(p) Cθ(u, v) Kendall’s tau
θ ∈
Frank − log

e−θp − 1

e−θ − 1
−1

θ
log[1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1
] 1− 4{1−D∗(θ)}/θ

(−∞,∞)/{0}
Clayton (p−θ − 1)/θ max{(u−θ + v−θ − 1)−1/θ, 0} θ/(θ + 2)
[−1,∞)/{0}
Gumbel–Hougaard (− log p)θ exp[−{(− log u)θ + (− log v)θ}1/θ] (θ − 1)/θ
[1,∞)

*: D(x) = x−1
∫ x

0
t

et−1
dt is the Debye function.

In practical problems, one can estimate easily the dependence parameter by equating the sample-based
estimate of Kendall’s tau to its population version from Table 1. As τ is a function of the first moment of K
(see Equation 1), the estimation can be seen as a moment-based method. Other methods such as inversion
of Spearman’s rho or pseudo-maximum likelihood (ML) are also possible; the latter was studied by Genest,
Ghoudi & Rivest (1995) and by Shih & Louis (1995). See, for instance, Vandenhende & Lambert (2000)
for an application.

The selection of an Archimedean family is often arbitrary and rarely automated. Genest & Rivest
(1993) provided a graphical method allowing the comparison of different parametric distributions K with
the empirical counterpart. In Vandenhende & Lambert (2000), copula selection was done using Akaike’s
information criteria from the ML fit of several copula models having the same marginal components. In
the two cases, only a limited set of families are investigated.

In this paper, we overcome this selection problem by defining flexible semiparametric Archimedean cop-
ulas. The distribution K is estimated using local polynomials whose coefficients quantify the dependence
locally. The layout is as follows. As a preamble, in Section 2, we relate Archimedean copulas to univariate
quantile functions. In Section 3, we define the semiparametric Archimedean copula family. Dependence
properties of parameters are discussed in Section 4. The estimation and smoothing of parameters are
presented in Section 5. The practical usefulness of the semiparametric copula is illustrated in Section 6.
Section 7 contains a discussion of key results.

2. ARCHIMEDEAN COPULAS AND QUANTILE FUNCTIONS

Theorem 1 shows a simple way to create univariate continuous distributions from any copula in the
Archimedean family. It also summarizes a list of log-linear composition rules of Archimedean genera-
tors to enrich the bivariate Archimedean family (Genest, Ghoudi & Rivest, 1998).

2



Theorem 1. Let φ(p) be the generator of an Archimedean copula. For p ∈ [0, 1], let

S(p) = − log{φ(p)} and Q(p) = c + θS(p), (2)

for any c ∈ R and θ > 0. Then,

a) S and Q are valid univariate quantile functions for a continuous random variable Z in R.

b) If φ is strict, i.e., if φ(0) = +∞, then the domain of Z is unbounded in R; otherwise it is bounded
to the left.

c) If the mean µS and variance vS of S exist, the mean and variance derived from Q are equal to
µQ = c + θµS and vQ = θ2vS, respectively.

d) exp(−Q) is an Archimedean generator when θ ≥ 1. It generates the same copula as exp(−S) when
θ = 1 (whatever c ∈ R).

The construction in (2) can be applied recursively to create new quantile functions Q from a
series S1, . . . , Sn of log-generators. Then, exp(−Q) is an Archimedean generator when all θi ≥ 1.

3. SEMIPARAMETRIC ARCHIMEDEAN COPULAS

Instead of combining multiple log-generators Si on the whole [0, 1] range, one can assemble several
functions Si, each being defined locally on a sub-interval [ti, ti+1) from a partition of [0, 1]. The
result Q is a local linear combination of the Si. Under some conditions, it is such that exp(−Q)
generates an Archimedean copula. That copula is indeed a semiparametric (or highly parameter-
ized) Archimedean copula, having parameters that quantify the dependence locally. In this section,
we detail how to accomplish this.

Theorem 2. Let t1, . . . , tn be n knots such that 0 < t1 < · · · < tn < 1. Two additional knots are
defined at t0 = 0 and tn+1 > 1. Let S = − log(φ) with φ being any Archimedean generator. We
define the local polynomial Q as

Q(p) =
n∑

i=0

{θ0,i + θiS(p)}I(ti ≤ p < ti+1). (3)

Then exp(−Q) is an Archimedean generator whenever

(i) for i = 1, . . . , n, θ0,i =
∑i

k=1 S(tk)(θk−1 − θk), and

(ii) 1 ≤ θn ≤ · · · ≤ θ0.

The resulting copula has the following properties:

a) The same copula is generated whatever θ0,0. One can thus set θ0,0 = 0, arbitrarily.

b) exp(−Q) is a strict generator if and only if exp(−S) is strict.

c) The semiparametric copula has n +1 dependence parameters θ0, . . . , θn, supplementing those
from S. Each parameter θi quantifies locally the dependence in [ti, ti+1).

d) Q is almost surely twice differentiable, except at the knots t1, . . . , tn, where it is continuous.

e) Q is differentiable at the knot ti when θi−1 = θi.
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Figure 1. The generator φ = exp(−Q) with Q defined in (3) based on S(p) = − log{− log(p)},
n = 1, and t1 = 0.4 is convex when θ0 = 4 and θ1 = 1 (dotted line). It is not convex when (θ0, θ1)
equals (1, 4) (solid line) or (2, 0.3) (dashed line).

The condition on the intercepts ensures the continuity of Q at the knots. As illustrated in
Figure 1, the decreasing ordering condition 1 ≤ θn ≤ · · · ≤ θ0 is necessary to ensure the convexity
of the resulting generator.

The function Q defined in (3) uses a single function S across all intervals. Thus, its inverse

Q−1(x) =
n∑

i=0

S−1

(
x− θ0,i

θi

)
I{Q(ti) ≤ x < Q(ti+1)}

has an explicit form when S−1 is itself explicit.
Then, the bivariate copula having exp(−Q) as generator is

C(u, v) =
n∑

i=0

S−1

(
x− θ0,i

θi

)
I{Q(ti) ≤ x < Q(ti+1)}, (4)

where

x = − log

[
exp

[
−

n∑

i=0

{θ0,i + θiS(u)} I(ti ≤ u < ti+1)

]

+ exp

[
−

n∑

i=0

{θ0,i + θiS(v)} I(ti ≤ v < ti+1)

]]
.

It has a closed-form expression when the copula generated by exp(−S) has an analytical form.
One particular but important choice is when exp(−S) generates independence, namely S(p) =

− log{− log(p)}. Then,

exp{−Q(p)} =
n∏

i=0

[
e−θ0,i{− log(p)}θi

]I(ti≤p<ti+1) (5)

is locally, on [ti, ti+1), a Gumbel–Hougaard (θi) generator (see Table 1). The resulting bivariate
copula has a simple closed-form expression. It generates independence when all θi = 1.
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4. DEPENDENCE PROPERTIES

We now study dependence properties of the semiparametric Archimedean copula defined in
Section 3. With the copula defined in (4), Kendall’s tau from (1) becomes

τ = 1− 4
n∑

i=0

1
θi

∫ ti+1

ti

1
S′(p+)

dp.

Since it must be that θi ≥ 1 for all 0 ≤ i ≤ n, the larger any local parameter θi, the larger τ
will be. When S does not contain any dependence parameter, the integral part can be seen as a
weight factor associated to each θi in the sum.

With the locally Gumbel–Hougaard copula discussed previously, i.e., when S = − log(− log),
Kendall’s tau becomes

τ =
n∑

i=0

wi
θi − 1

θi
,

with
wi = {t2i+1(1− 2 log ti+1)− t2i (1− 2 log ti)}

with w0 + · · ·+ wn = 1. It is a weighted sum of locally-defined parameters

τi =
θi − 1

θi
. (6)

Each τi is indeed equal to Kendall’s tau for the Gumbel–Hougaard (θi) copula defined on [ti, ti+1)
(See Table 1). A local dependence interpretation of parameters is thus possible in this particular
case.

The weights wi depend on the location of the knots. The larger the size of an interval, the
larger the corresponding weight. With equidistant knots, the wi have a bell-shaped curve having
a maximum in the unit interval. The location of this maximum depends on the distance between
knots in a non-algebraic way. Numerical procedures can also help to determine the series of n + 1
knots that produces equal weights wi = 1/n. For instance, with n = 10, weights are equal with
interior knots at {0.14, 0.22, 0.30, 0.36, 0.43, 0.50, 0.58, 0.66, 0.77}.

5. ESTIMATION PROCEDURE

In this section, we first observe that the distribution K of our new copula is linear in the (inverse)
dependence parameters. This enables the estimation of parameters using a fast (constrained)
least-squares procedure. We also show how to reduce, and even optimize the effective number of
parameters, by smoothing the dependence over successive sub-intervals. Finally, we approximate
the distribution of parameters using a bootstrap method.

5.1. Least-squares estimation.

Let (X1, X2) be a bivariate random vector for which m observations are available. Genest & Rivest
(1993) showed that their joint empirical distribution at (X1,k, X2,k) is Vk (k = 1, . . . , m), where

Vk = #{(X1,j , X2,j) ≤ (X1,k, X2,k)}/m. (7)

Therefore, the empirical counterpart of K is the step function Km(V ), such that for all V ∈ R,

Km(V ) = #(Vj ≤ V )/m.

Wang & Wells (2000) derived the corresponding estimator for bivariate censored data.
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With the semiparametric bivariate copula (4), K becomes

K(p) = p +
1

S′(p+)

n∑

i=0

1
θi

I(ti ≤ p < ti+1).

It is linear in the inverse dependence parameters 1/θi, whatever the choice of S. For instance, with
the locally Gumbel–Hougaard generator (5),

K(p) = p− p log(p)
n∑

i=0

1
θi

I(ti ≤ p < ti+1).

As discussed by Genest & Rivest (1993), a graphical comparison of the plot of K(p)− p versus
p to its empirical counterpart is informative to assess whether the dependence has an Archimedean
structure. In the Archimedean class, K(p) − p is always positive and has a first order derivative
greater than or equal to −1 on all [0, 1]. That plot can also assess if a particular model fits well to
the data. See Figure 3(a) for an example of good Archimedean fit.

Using a simple reparameterisation βi = 1/θi, parameters can then be estimated based on the
comparison of Km to K across all observed joint proportions V1, . . . , Vm. An L2–norm comparison
yields estimates

β̂i = arg min
m∑

k=1

{
Km(Vk)− Vk − 1

S′(V +
k )

n∑

i=0

βiI(ti ≤ Vk < ti+1)

}2

with β0 ≤ · · · ≤ βn ≤ 1.
In matrix notations, we define the pseudo-observation m-vector

Y = {Km(Vk)− Vk, j = 1, . . . , m}
and the m× (n + 1) design matrix

X = {1/S′(V +
k )I(ti ≤ Vk < ti+1), i = 0, . . . , n, k = 1, . . . , m}.

The n + 1 inequality constraints β0 ≤ · · · ≤ βn ≤ 1 can be expressed as A>β ≥ 0 for an appro-
priate choice of A. The estimation problem becomes a simple constrained least-squares estimation
procedure

argβ min(Y −Xβ)>(Y −Xβ),

with A>β ≥ 0.

5.2. Smoothing and optimizing the dependence.

Our copula model has as many parameters as there are knots. Furthermore, the location of the
knots has an influence on the parameter estimates. With no interior knot (n = 0), a single and
constant dependence parameter is estimated, and the least-squares method becomes an alternative
to the moment-based estimator presented in Section 1. When knots are placed at all distinct
V1, . . . , Vm, this becomes a (constrained) interpolation problem. The level of smoothing of the fit
increases as the number of knots decreases. It also increases when the estimates of parameters
corresponding to successive knots are constrained to be similar.

Here, we propose to consider many equidistant knots and to control the smoothness of the
fit by adding a penalty term to the least-squares problem. We follow Eilers & Marx (1996) and
minimize the constrained penalized least squares

(Y −Xβ)>(Y −Xβ) + λβ>∆>
r ∆rβ, subject to A>β ≥ 0, (8)
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with ∆rβ that contains the rth order finite differences between successive parameters. It builds
up recursively from ∆1β = (β1 − β0, . . . , βn − βn−1)> to create ∆rβ = ∆(∆r−1β). The penalty
λ determines the level of smoothing that is desired in the fit. A value λ = 0 corresponds to the
constrained interpolation case with no smoothing. The correction r = 1 is a first-order correction
as it tends to penalize any linear change in successive dependence parameters. When λ → +∞, a
constant dependence parameter is estimated (one degree of freedom is left). With r = 2, quadratic
changes are penalized, so that when λ → +∞, only a linear change of dependence is possible over
the sub-intervals. The effective number of parameters is at most 2 in that case. It can actually be
lower than 2, when constraints are activated. Although higher-order penalties are possible, taking
r = 2 seems in general appropriate for most practical problems.

The optimization problem (8) can be solved using a quadratic programming algorithm with lin-
ear inequality constraints (Gill, Murray & Wright, 1981). We used the dual method of Goldfarb &
Idnani (1983), implemented by Andreas Weingessel in the R language (Ihaka & Gentleman, 1996)
to estimate the β parameters for several values of λ. We also calculated the effective number of
parameters for each fit, as in Wood (2000), and the generalized cross-validation (GCV) measure
(Wahba, 1990) in the usual way. The best λ value and the corresponding β̂ estimates were then
selected to minimize the GCV (λ) criterion.

5.3. Variability estimation.

The constrained penalized least squares (PCLS) estimation algorithm does not tell us anything
about the distributional properties of the parameter estimates. The availability of variance esti-
mates for the parameter estimators and for the predictions enables to assess the quality of the fit,
and to evaluate the adequacy of any parametric proposal for the Archimedean copula. We esti-
mate the distribution of β̂ using the resampling-cases algorithm (Davison & Hinkley 1999, p. 264).
Given the speed of the PCLS estimation algorithm, it is not too hard to use bootstrap methods to
estimate variability of the parameter estimators. The procedure is as follows.

For a large number R of replicates,

1. Sample (X∗
1,1, X

∗
2,1), . . . , (X

∗
1,m, X∗

2,m) randomly with replacement from {(X1,k, X2,k), k =
1, . . . ,m}.

2. Compute the empirical joint distribution of that sample V ∗
1 , . . . , V ∗

m using (7).

3. Apply the PCLS to V ∗
1 , . . . , V ∗

m using the original knots and λ value, giving parameter esti-
mates β̂∗r .

When R is large, the covariance matrix and standard error of β̂ can be estimated using the
corresponding estimates from the series of β̂∗r , r = 1, . . . , R. Non-parametric confidence limits for
the predicted values Ŷ are also available using selected quantiles (2.5% and 97.5%, usually to get
95% confidence bands) in the series Ŷ ∗

1 , . . . , Ŷ ∗
R.

An alternative and possibly more efficient bootstrap method is possible. It consists of sampling
in Step 1 directly from the predicted bivariate copula, whereas the empirical joint distribution was
used in the initial proposal. Steps 2 and 3 are then unchanged.

6. ILLUSTRATION IN A LIFETIME STUDY OF DANISH TWINS

The illustration is a large and non-censored cohort of 2872 pairs of Danish twins born 1870-1900.
See Herskind, McGue, Holm, Sorensen, Harvald & Vaupel (1996) for more details on the data.
Our interest is in the analysis of the dependence between the lifetimes of twins. A few subjects
died prior to 60 years of age. The death rate of individuals is rather low and uniform in the 20
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Figure 2. Joint survival time of pairs of Danish twins. Predicted contour of the joint survival
distribution using a semiparametric Archimedean copula with log-log quantile basis (λ = 10).

to 60 years interval with most deaths occurring between 60 and 90 years old. Kendall’s tau (0.11)
suggests an overall moderate positive dependence between the paired survival times.

Hougaard, Harvald & Holm (1992) have applied bivariate parametric survival models to these
data. Their models showed some disagreement on the way the dependence was changing with age.
A scatterplot of survival times is displayed in Figure 2. That display also presents the predicted
joint distribution based on our semiparametric copula model and the empirical margins. A visual
inspection of Figure 2 reveals a denser cloud of points on the main diagonal from 70-years old,
onwards. This might indicate that the dependence increases with joint survival times. Our formal
semiparametric analysis of the dependence will confirm that observation.

Since our main interest is in the joint survival analysis of the twins, we fit the Archimedean
copula models to the survival functions, instead of the distributions. To that end, we replace (7)
with the joint empirical survival function

Vk = #{(X1,j , X2,j) ≥ (X1,k, X2,k)}/m

and follow the same estimation procedure as proposed above with that function. We set n = 100
equidistant knots and use the quantile function S(p) = − log{− log(p)} of independence. A second-
order (r = 2) penalty is chosen.

Figure 3(a) presents a PCLS fit of the semiparametric copula to Km(Vj)− Vj . The penalty in
that fit (λ = 10) was chosen arbitrarily. It gives an effective number of dependence parameters of
10.3. Indeed, the GCV estimate for that model (2.7e − 6) was not much larger than the optimal
model (GCV = 1.6e − 6; λ = 2e − 4; 47.2 parms). But the drop in number of parameters was
big enough to be considered. The model predictions completely overlap the empirical estimates
in the plot and the confidence bands (95%) for our model cover the data everywhere. Bands were
computed using the resampling-cases bootstrap method with R = 500. As expected, computation
was very fast. Given the very large sample size (N = 2872), the standard error of all parameters
was less that 5.8% of their mean and confidence bands were rather narrow. Despite this, the
fit of the semiparametric Archimedean copula was good. With this bootstrap method, we make
no assumption about variance homogeneity and dependence structure of parameters. This proves
useful to put the lights on the increasing variability of model predictions with increasing probability.
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Figure 3. Empirical function Km(Vj) − Vj for the Danish twins data, superimposed with a)
constrained penalized (λ = 10) least-squares fit of the semiparametric Archimedean copula with
log-log quantile basis. b) fit of selected 1-parameter Archimedean copulas with dependence pa-
rameter estimated from Kendall’s tau.

In Figure 3(b), the dependence parameter is estimated by equating the population version of
Kendall’s tau to its sample-based estimate. The three models fit differently to the data. The
larger deviation is seen in the middle of the plot (from 0.2 to 0.4). The fit of Clayton’s family is
better in the other parts of the plot, although it slightly underestimates the curve at low survival
probabilities.

The goodness of fit of the Archimedean models was assessed using the Pearson chi-square test
as implemented by Genest & Rivest (1993). The 2872 bivariate survival times were first pre-
grouped into a (10x10) categorical table having interior limits at 44, 59, 67, 72, 75, 79, 82, 85,
89 years of age in each dimension. These thresholds were selected to balance frequencies among
cells (mean count=28.7, range=[11, 56]). The test statistics are reported in Table 2. Our flexible
semiparametric Archimedean construction fits very well the data. Among the families of Table 1,
Clayton’s copula provides the best one-parameter description of the bivariate dependence.

Table 2: Goodness of fit of the Archimedean models to the Danish twins survival times.

Archimedean model χ2 statistic df (81−#parms.) P -value
Frank 103.4 80 0.04
Clayton 90.0 80 0.21
Gumbel–Hougaard 136.5 80 < 0.01
Semi-parametric (10.3 parms.) 83.2 70.7 0.15

The local value of Kendall’s tau predicted from the PCLS fit of the semiparametric locally
Gumbel–Hougaard Archimedean copula are in Figure 4. That model was also estimated without
penalty (by setting λ = 0 instead of λ = 10) and without any monotonicity constraint on the
θi. The unconstrained fit does not necessarily produce an Archimedean copula anymore. Instead,
every parameter θi is “freely” adjusted on [ti, ti+1), giving rise to the “empirical” τi estimates
shown in Figure 4 (dotted line). The adequacy of the smoothed semiparametric Archimedean fit
was then assessed in comparison to the empirical plot. In the illustrated example, the fit of the
Archimedean model was very good. Indeed, despite its instability at low p (i.e., when relatively
few pairs are still alive), the dependence decreases with increasing survival probability. The impact
of smoothing and constraining the dependence parameters was thus minimal. The global Kendall
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Figure 4. Local dependence τ(p) =
∑

i
θi−1

θi
I(ti ≤ p < ti+1) for the semiparametric Archimedean

model (λ = 10) having log-log quantile basis.

tau estimate (dashed line) is close to the mean of the local dependencies, indicating that knots
were well chosen to balance weights wi.

Another graphical method can be used to study the local dependence properties of our estimated
copula model. Following Shih & Louis (1995), we have plotted the local correlation coefficients
r(t, t) of Prentice & Cai (1992) when the two survival times t1 = t2 = t are uniform on [0, 1] (see
Figure 5). All curves confirm what our local dependence measure had detected: the dependence
increases with survival time, or, equivalently, it decreases with survival probability. Furthermore,
the dependence curve from Figure 4 has a similar shape as the correlation curve for our semi-
parametric model, when plotted versus time t = 1 − p, instead of probability. The comparison of
correlation curves r(t, t) between the parametric and semiparametric models confirms the superior
fit of Clayton’s copula among the one-parameter families. Our semiparametric model estimates a
lower dependence than Clayton’s model at large survival times. This illustrates the flexibility of
our new copula to capture any local dependence structure.

7. DISCUSSION

We have defined new bivariate semiparametric Archimedean copulas using local polynomials. We
also provided a fast least-squares method to estimate parameters. We showed how the estimated
parameters could be interpreted as local dependence measures when S was the log-log quantile.
We provided an algorithm to optimize the effective number of parameters by smoothing that de-
pendence over the joint distribution. The flexibility of the new copula to capture local dependence
structures was illustrated in a lifetime analysis of Danish twins.

Other quantile functions S than the log-log could be used as bases for the generator. See Nelsen
(1999) for some examples. The dependence properties using alternative generators are yet to be
established. Also, the selection of an optimal generator could be the topic of future research.

We generated the semiparametric Archimedean copula using a local linear combination of quan-
tile functions. This construction gave rise to a closed-form expression for the joint distribution and
a simple interpretation of parameters as local dependence measures. A downside was that our de-
pendence parameters needed to be ordered to produce a convex generator. Other non-parametric
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Figure 5. Prentice and Cai’s correlation curves generated from Clayton’s (dotted), Frank’s
(dashed), Gumbel–Hougaard’s (-.-) and the semiparametric Archimedean (solid) families from
Figure 3.

construction methods may be envisaged, such as the direct kernel or spline estimation of the
generator φ, or a local higher-order polynomial fit to the function K.

Finally, we showed how to create univariate distributions from bivariate Archimedean copulas.
The distributional properties of any particular family could be studied.
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