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Abstract. This paper deals with modeling and fitting for epedimic models and their ap-
plications to the field of plants disease. For this purpose, two models are proposed that are
expressed as a blend of two functions which reflect the effect of the temperature and the
wetness. In addition, we provide an original method to fit the proposed models by employing
simple techniques that can constitute an easy-to-use tool for simulation, prediction and/or
control. Moreover, the method accuracy and efficiency are evaluated for some reported works
in the literature. Computational results are provided to show the validity and effectiveness
of the proposed epidemic models for some plant infections.
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1 Introduction

The conception of epedimic models for plant infections is one of the most important ingredients
for disease forecasting and control [6, 1]. The infection evolutions can be evaluated via fundamental
models that should be designed in order to reflet the interaction between some environmental
variables captured in laboratory, greenhouse, field experiments or by simulation [6, 7, 10, 9]. As for
instance, in the fields of crop physiology and agricultural meteorology: the temperature, the surface
wetness, the humidity and the rainfall, are the commonly studied environmental variables [14, 12,
13].

In this paper, our contribution is twofold:
(a) Developing suitable infection models for plant pathogens.
(b) Proposing an original methodology for fitting.

Specefically, we provide two models that can be succesfully used for plant infections with mixed
effects of the temperature and the wetness. Such models have an appealing advantage compared
with other published models [2, 5, 4, 8]. Their whole parameters have an intrinsic biological meaning
that describes the scale, the shape, and the location of the disease response.

A second advantage of the proposed approach is that unlikely for many other epedimic models
reported in the literature for which the location parameters are predetermined or empirically fixed
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or even absent in the model,(see for instance, [3, 2, 8]); is that, instead, these intrinsically biological
parameters are treated as a core to be a priori designed.

Moreover, based on the introduced methodology, the proposed models were implemented and
successfully compared to some well-known models in the literature [5, 4, 8]. Our original least-square
procedure with bound constraints presented herein, yielded quite good and better fits compared
to three kinds of plants with different fungal infections based upon experimental data sets. In all
the cases, our models were very competitive and outperform the well-known reported models. As
a result, we have shed a new light on an easy, accurate and efficient way for modelling and fitting
the data for various fungal infections.

2 Modeling Plant Diseases

In this part, we perform a mixed effects modeling for plant disease through the relative infection
response with regard to the effect of some environmental variables represented by the temperature
and the wetness duration.

The first proposed model is defined as follows

y(t, w) = f1(t, w) + ε (1)

where the function f1(t, w) :={
α(t− tI)β(tC − t)γ [1− exp(−κ(w − wI)λ))] if (t, w) ∈ [tI tC ]× [wI +∞[
0 otherwise

(2)

The second model can be viewed as a variant of the previous model (1) which is defined by

y(t, w) = f2(t, w) + ε (3)

where the function f2(t, w) :={
α(t− tI)β(tC − t)γ [1− exp(−κ(w − wI)]λ if (t, w) ∈ [tI tC ]× [wI +∞[
0 otherwise

(4)

In fact one can see that the S-shaped function 1 − exp(−κ(w − wmin))λ in the model (1) is
replaced by another S-shaped function of the form [1− exp(−κ(w − wI))]λ in the model (3).

The involved entities of the proposed modeling are

– y is the mesure of the relative infection on a scale from 0 to 1 (or score response tacking values
in the interval [0 1]).

– t is the temperature (in Celsius).
– w is wetness duration (in hours).
– ε is the model residual or perturbation error represented by an unknown random normal variable.

The parameters of the models (1) and (3) are defined by

– β, γ and λ are the shape paramerters.
– κ is a speed parameter.
– α is a scale parameter depending on the shape and location parameters.
– tI , tC and wI are the location paramerters such that
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· tI : minimum temperature required for infection (in Celsius)

tI := min{t | y 6= 0}. (5)

· tC : maximum temperature required for cure (in Celsius)

tC := max{t | y 6= 0} (6)

· wI : minimum wetness duration for infection (in hours)

wI := min{w | y 6= 0}. (7)

In the sequel, we shall show the features of the proposed models (1) and (3).

Remark 1. Note that by definition, the location parameters intrinsically satisfy the fact that for all
(t, w) we have y(tI , w) = y(tc, w) = y(t, wI) = 0.

Now, in order to fully caracterize our models the scale parameter α has to be designed. Specifi-
cally, this parameter should be selected such that the functions f1 and f2 take their values in the
interval [0 1]. As a consequence, the proposed modeling is intrinsically based on the following result.

Proposition 1. The function f1 and f2 take their values in the interval [0 1] if and only if β >
0,γ > 0,λ > 0, κ > 0 and the scale parameter α has the following form

α = γ−ββ−γ(β + γ)β+γ(tC − tI)−(β+γ) (8)

Proof 1 The condition β > 0,γ > 0,λ > 0, κ > 0 results from the fact that the functions f1 and
f2 do not go to infinity at the boundary of the domain [tI tC ]× [wI .

The rest of the proof can be shown based on the fact that

sup
(
1− exp(−κ(w − wI)λ)

)
= sup

(
(1− exp(−κ(w − wI))λ

)
= 1,

and
max

(
(t− tI)β(tC − t)γ

)
= α−1.

3 Models Identification

The identification procedure in the modeling of plants disease can be based on likelihood principle
which under some statistically legitimate assumptions leads to fit a given model to the obseved
data by applying the least square procedure.

Given the sample data of measured temperature T := {t1, . . . , tn} and the set of measured
wetness duration W := {w1, . . . , wn} with their corresponding observed relative infection Y :=
{y1, . . . , yn}. Then, in order to fit the model to the sample data Y by estimating the involved
parameters, one has to look for β, γ, λ, κ, tI , tC , wI that are the optimal solution to the following
nonlinear least square optimization (Sum of Squares Error (SSE) minimization)

SSE := min
β,γ,λ,κ,tI ,tC ,wI

‖y − ŷ‖2 (9)



4 A. Soufi et al.

In our case, ŷ = f1(t, w) or ŷ = f2(t, w) as defined before by equations (1)-(3) .
The above optimization problem do not incorporate any information on T and W . Henceforth,

to tacke into account the features of Y and the model’s conception, we introduce the following
undelying constraints 

t−C ≤ tC
tI ≤ t+I
wI ≤ w+

I

(10)

In this way, we exploit the structure of the optimization problem by incoporating the lower
bound on tC and the upper bounds respectively on tI and wI . In what follows, it is shown how to
obtain them.

Proposition 2. In order to fit the data sets (Y, T,W ), the following bounds must hold
t−C := max

yi 6=0
(ti)

t+I := min
yi 6=0

(ti)

w+
I := min

yi 6=0
(wi)

(11)

Proof 2 The argument line is straightforward from the construction of the functions f1 and f2.

The observed null responses yi = 0 are suitable for tightening the bounds given by the constraints
(10). Specifically, one can exploit additional upper and lower bounds by considering the following
bounds that result from the model’s design.

Proposition 3. Define the following subsets of T := {t1, . . . , tn} and W := {w1, . . . , wn} as
S(tC) := {tj | yj = 0, tj ≥ t−C , wj ≥ w

+
I }

S(tI) := {tj | yj = 0, tj ≤ t+I , wj ≥ w
+
I }

S(wI) := {wj | yj = 0, t+I ≤ tj ≤ t
−
C , wj ≥ w

+
I }

(12)

Assume that these subsets are not empty. Then, based upon the previous bounds t−C , t+I and w+
I

defined by (11), the following bounds hold true.
t−C ≤ tC ≤ t

+
C

t−I ≤ tI ≤ t
+
I

w−I ≤ wI ≤ w
+
I

(13)

where 
t+C := min

tj∈S(tC)
(tj)

t−I := max
tj∈S(tI)

(tj)

w−I := max
tj∈S(wI)

(wj)

(14)

Moreover, in the case where the subsets S(tC), S(tI), S(wI) are empty (or some of them), one can
set t+C , t−I and w−I to some empirical or trivial meteorological extremum values. For instance, set
w−I = 0h and more or less t+C = 40C◦, t−I = 0C◦.
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Proof 3 The argument line is a direct consequence of Proposition 2 with regard to the conception
of the functions f1 and f2

Therefore, by appealing to Propositions 1.- 2.- 3., the constrained nonlinear least square opti-
mization problem under consideration for fitting the proposed models to the sample data (Y, T,W )
is suitably formulated as

min
β,γ,λ,κ,tI ,tC ,wI

∑
yi 6=0

(yi − ŷi)2

subject to
β > 0, γ > 0, δ > 0, κ > 0
t−C ≤ tC ≤ t

+
C

t−I ≤ tI ≤ t
+
I

w−I ≤ wI ≤ w
+
I

(15)

This constrained optimization problem can usually be solved using nonlinear programming meth-
ods such as the classical Gauss-Newton with its many variants, Trust-Region, Interior Point method.
Note that unlike linear least-squares method, nonlinear least square methods are not guaranteed to
converge to the global minimizer due to the lack of convexity. But these methods can work well in
practice, if the initial starting points are well-guessed or can be close to the optimal solution.

4 Models Validation and Numerical Results

In the sequel, we perform a comparison study with the most well-known nonlinear models related
to fungal infection that are based upon the combined effects of wetness duration and temperature.
These models can be summarized as follows

– Beta model:
f(t, w) = a(t− tI)b(tC − t)cwd (16)

– Duthie’s model:

f(t, w) =
e(h+ 1)h((h+1)−1−1)exp(g(h+ 1)−1(t− f))

1 + exp(g(t− f))
(17)

– Polynomial model: There is many kinds such that the model f(t, w) or the logit of y is a
polynomial function p(w, t) as

log(y/(1− y)) = a0 + w(a1 + a2t+ a3t
2 + a4t

3) (18)

Appart from SSE index accurracy that yields close estimates to the real observed disease score
y, the goodness of the fit in the simulation study greatly depends on the statistical measure of per-
formance. Thus, it is essential in our validation that the selected model truly reflects the properties
and the featurse of the infection evolution. This should be validated through common statistical
goodness of fit tests such as the R2 and its adjusted value R2

a which indicate the strength of the
linear relationship between the predicted and observed values as they become closer to the value 1
(perfect fit).

For the fitting purpose, we have used interior point method to solve the optimization problem
(15). This method is supported by Matlab via the function fmincon. We have chosen the initial
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conditions t0I , t
0
C and w0

I for the temperature and the wetness, close to the proposed bounds t+I , t−C
and w+

I . For the others initial parameters α0,β0,γ0,λ0 and κ0 we have chosen values between 0 and
1.

The simulation results in Tables 1.and 2. show that the two proposed models are more effective
than the other reported models [5, 4, 8]. It can be seen that our performance factors are the best
since they provide a better fit and significantly outperform these alternative models.
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Fig. 1: Observed and predicted values of the relative disease using model 2 and Residuals versus the fitted
values. A: Immature Strawberry fruit by hytophthora cactorum, B: Medicinal Plant by Powdery Mildew,
C: Onion by Puccinia allii.
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5 Conclusion

The method presented in this paper is original and can provide accurate modeling which is built
upon simple techniques that may constitute an easy-to-use tool for simulation analysis, prediction
and control for plant disease. In addition, the implementation procedure and the comparison study
have shown the soundness of the proposed epedimic models.
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