
Is there a 
atness problem in classicalcosmology?Phillip Helbig11 Thomas-Mann-Str. 9, 63477 Maintal, GermanyE-mail: helbig@astro.multivax.deAbstract. I discuss various de�nitions of the 
atness problemand previous claims that it does not exist. I also present anew quantitative argument which shows that it does not exist incosmological models which collapse in the future.1. IntroductionQuestioning the existence of the 
atness problem might seem to some likequestioning the existence of the expansion of the universe. The 
atnessproblem (e.g. [2]) and the fact that in
ation can solve it (e.g. [4]) have becomepart of standard cosmology, at least for many de�nitions of `standard'. Howcan something so fundamental not exist? My own view is that the emphasishas been so much on the solution of the 
atness problem through in
ationthat the 
atness problem itself has been rather neglected and its existence justassumed without being investigated in detail.2. Basic cosmologyI assume that, at the level of detail necessary, the universe can be describedby the Friedmann{Lemâ�tre equation_R2 = 8�G�R23 + �R23 � kc2 (1)where the symbols have their usual meaning (e.g. [6]). It can be useful toexpress Eq. (1) with the values of the dimensionless parameters as observednow, denoted by the su�x 0. This leads to_R2 = _R20�
0R0R + �0R2R20 �K0� : (2)
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Figure 1. Evolutionary trajectories in the �-
 plane.Note that, at any time, R = cH sign(K)pjKj (3)In general, H, � and 
 all change with time. (See [9] for an excellent discussionof the evolution of � and 
.) The change in � with time is due entirely tothe change in H with time, since � is constant; the variation in 
 is due bothto variation in H and to the decrease in density as the universe expands. Forthe present discussion, the basic information needed can be seen in Figure 1,referring at the moment only to the thick lines and curves. The vertical line



corresponds to � = 0; the diagonal line corresponds to k = 0 with k = �1 belowit and k = +1 above it. The curve near the vertical line (corresponding to theA1 curve in [9]) separates models which will collapse (to the left) from thosewhich will expand forever (to the right). Models on the curve start arbitrarilyclose to the Einstein{de Sitter model (like all non-empty big-bang models)and asymptotically approach the static Einstein model which has � = 
 =1(since H = 0; � and � have �nite values). The other curve (corresponding tothe A2 curve in [9]) separates big-bang models (to the left) from non{big-bangmodels (to the right); the latter contract from an in�nite to a �nite size thenexpand forever. Models on the curve start at the static Einstein model andasymptotically approach the de Sitter model (the latter feature is shared withall models which expand forever and have � > 0). The thin curves show somesample trajectories in the �-
 parameter space. (Note that all the thick lines,curves and points of intersection in Figure 1 are also trajectories.) Also, notethat the trajectories do not cross; this means that the history of a cosmologicalmodel (i.e. the way � and 
 change with time) is completely determined by thevalues at any point on it (in practice, by measuring the values at the presenttime, �0 and 
0).3. A very brief history of the 
atness problemThe 
atness problem appears in two forms. One states that if 
 � 1 today,then in the early universe it was arbitrarily close to 1; the assumption isthat some `mechanism' is needed to explain this `�ne-tuning' (e.g. [4]). (It isusually not stated but almost always assumed that no �ne-tuning would benecessary if 
 were not � 1 today.) The other states that if 
 changes withtime, then we should be surprised that 
 is (still) � 1 today [7].1 Coles &Ellis [1] discuss three `solutions' to the 
atness problem { 
 � 1 (and � � 0),k = 0, anthropically selected special time { which, however, are ultimatelyunsatisfactory. Are there any satisfactory ones?The 
atness problem is often presented as a �ne-tuning problem (e.g. [4]):if 
 is near 1 to day, then at some time t�ne in the past it must have been1 to a very high accuracy. I refer to this sense of the 
atness problem asthe `qualitative 
atness problem'. This argument is completely bogus, as hasbeen pointed out by many authors [1, 7]: all non-empty models begin theirevolution at the Einstein{de Sitter model, so of course the further back in1 Historically, the 
atness problem was �rst discussed during a time when � wasthought to be zero. If � is not constrained to be zero, then the 
atness problemshould be re-phrased as the Einstein{de Sitter problem, i.e. the question is why theuniverse is (in some sense) close to the Einstein{de Sitter model (which is an unstable�xed point and a repulsor) today when j�j and 
 can take on values between 0 and1. However, for brevity I will continue to use the term `
atness problem' even forthe more general case and sometimes mention only the change in 
 with time.



time one goes, the `more �nely tuned' 
 is. The point is, within the context ofclassical cosmology, there is nothing special about a time t�ne chosen so that
 is very close to 1 at that point.Evrard & Coles [3] (see also Coles & Ellis [1]) also point out that theassumption implicit in the qualitative 
atness problem, namely that some widerange of 
 values are a priori equally likely at some early time, constitutes aprior which is incompatible with the assumption of minimal information. Thiscan be regarded as a quantitative solution to the qualitative 
atness problem(or, perhaps, an argument against its existence).The qualitative 
atness problem thus does not exist; it is merely aconsequence of the way in which a universe, described by the Friedmann{Lemâ�tre equation, evolves and how dimensionless observable quantities suchas 
 are de�ned. Nevertheless, even if it is not a puzzle why 
 = 1 at earlytimes, one can still ask whether we should be surprised that 
 � 1 today.The rest of this article is concerned mainly with the second form: should webe surprised that 
 � 1 today? This `quantitative 
atness problem' is moresubtle, but also has solutions within the context of classical cosmology.4. Cosmological models which collapse in the futureAll cosmological models (assumed to be expanding now) with � < 0 willcollapse in the future: �R is negative for all values of R and for large R isproportional to R. Models with � = 0 will collapse for 
 > 1. In addition,models with � > 0 will collapse provided that 
 > 1 (which in this case impliesK > 0, i.e. k = +1), q > 0 and � < 1, where� = sign(K)27
2�4K3 (4)[9, 7]. (The A1 and A2 curves mentioned above have � = 1.) In Figure 1, theseare in the area between � = 0 and the A1 curve. Empty big-bang models startarbitrarily close to the Milne model with (�,
) values of (0; 0); non-emptybig-bang models start arbitrarily close to the Einstein{de Sitter model with(�,
) values of (0; 1). The evolution of � and 
 can be viewed as trajectoriesin the parameter space: � and 
 evolve from the starting point to in�nityand return along the same trajectory. (For the de�nitive discussion, see [9]; avery useful visualization can be found at [8].) The interesting question withregard to the 
atness problem is the amount of time spent in various parts ofparameter space. To quantify this, I have calculated the quotient of the ageof the universe now and at the time of maximum expansion as a function of �and 
. The age of the universe is given byt = R(t)Z0 dRr _R20 �
0R0R + �0R2R20 �K0� (5)
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Figure 2. The age of the universe as a fraction of the time between the bigbang and maximum expansion. Contours, from right to left, are at 0.5, 0.6,0.7, 0.8 and 0.9.which follows from Eq. (2). For the current age, the upper limit is givenby Eq. (3); at the time of maximum expansion it is found by calculating the(smallest) zero of _R2 (since _R2 cannot be negative). This is shown in Figure (2).It is clear that large values of � and 
 occur only during a relatively short timein the history of the universe, near the time of maximum expansion (at theprecise time of maximum expansion, � and 
 are in�nite since H = 0). Notethat this argument is completely independent of H0.
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Figure 3. The constant of motion � (see Eq. (4)). From upper left to lowerleft, contours are at 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50 and 100.5. Cosmological models which expand foreverLake [7] has presented a solution which solves the 
atness problem as well formodels with k = +1 which will expand forever. (For non-collapsing models,large values of � and 
 are possible only for k = +1.) Trajectories in the �-
plane have a constant of motion given by Eq. (4).It seems natural to distinguishcosmological models on the basis of their value of �. Large values of � and 
are possible only for � <� 1. This is shown in Figure 3. (Note that, for clarity,only 
 > 1 is shown!) It is obvious that � � 1 is a necessary condition for



having in�nitely large values of � or 
. Already for � = 2 the maximum valueof � is just 2 (for 
 = 2) and the maximum value of 
 is � 3:5 (for � = 1:25).In this case, the �ne-tuning argument is reversed; only in the case of �ne-tuning do � and 
 become arbitrarily large. This demonstrates quantitativelythat there is no quantitative 
atness problem regarding arbitrarily large valuesof � or 
 for models which expand forever. This argument is also independentof the value of H0. However, all non-empty models which expand foreverasymptotically approach the de Sitter model at (�;
) = (1; 0). Thus, one �nalaspect of the quantitative 
atness problem remains: 
 can become arbitrarilysmall. This is investigated in the next section.6. Cosmological models which expand foreverI have now covered the entire �-
 parameter space except for big-bang modelswith (a) q < 0 (which implies � > 0) and (b) 
 less than � 2 (all three values ofk are possible) and shown that in all cases there is no 
atness problem. Whatabout this remaining portion of parameter space? Models here all have K � 0and approach the de Sitter model asymptotically. This means that there is no
atness problem in the restricted sense, as pointed out by Lake [7]. However,
 becomes arbitrarily small (and � arbitrarily close to 1). Thus, there is stilla problem in that we do not observe such values, even though they exist foralmost the entire (in�nite) lifetime of the universe. This is essentially thequestion `if the universe lasts forever, then why are we near the beginning?'Note that this question could be asked at any time. One could leave it at thatand say that since any �nite age is arbitrarily close to the beginning, there isnothing special about our time and thus no 
atness problem in the time-scalesense (i.e. the quantitative 
atness problem, why is 
 not arbitrarily smalltoday). This is discussed in more detail in [5].7. SummaryThe qualitative 
atness problem, i.e. the puzzle why the universe wasarbitrarily close to the Einstein{de Sitter model (or, for an empty universe,the Milne or de Sitter model) at early times, does not exist. It is merely aconsequence of the way � and 
 are de�ned. Neither does the quantitative
atness problem exist: although the cosmological parameters in general evolvewith time, it is not puzzling that we don't observe extreme values for themtoday. In the case of models which will collapse in the future this is becauselarge (absolute) values of � and 
 occur only during a relatively short time inthe lifetime of such a universe, namely near the time of maximum expansion.� and 
 can become large only when H becomes small, and this happens onlyduring the time when the universe is at or near its maximum size. (Arbitrarilysmall (absolute) values, if they occur at all, also occur for only a relativelyshort time). For models which will expand forever, large values are possible



only for k = +1. However, this occurs only for � � 1. In this case, the �ne-tuning argument is reversed; only in the case of �ne-tuning do � and 
 becomearbitrarily large. Since all models which will expand forever asymptoticallyapproach 
 = 0, arbitrarily small values of 
 can occur. Those with � = 0(and hence k = �1) approach the Milne model with 
 = 0; models with � > 0,whatever the value of k, approach the de Sitter model with � = 1 (the Milneand de Sitter models themselves are of course stationary points). (If � = 0at any time then � = 0 at all times. Otherwise, arbitrarily small values of �,if they occur at all, occur only for a relatively short time.) However, if H0has a value similar to or smaller than the observed value, small values of 
will occur only in the far future when anthropic arguments probably make theobservation of such a low value of 
 unlikely. While (for � > 0) a higher valueof H0 would allow a low value of 
 even for an age near the observed age, sucha universe would have spent only a very short time during which 
 was notvery small, so structure formation would have been strongly suppressed.References[1] Coles, P. and Ellis, G.F.R., Is the Universe Open or Closed?, (CambridgeUniversity Press, Cambridge, 1997). [ADS].[2] Dicke, R.H. and Peebles, P.J.E., \The Big Bang Cosmology { Enigmas andNostrums", in Hawking, S.W. and Israel, W., eds., General Relativity:An Einstein Centenary Survey, pp. 504{517, (Cambridge University Press,London, 1979). [ADS].[3] Evrard, G. and Coles, P., \Getting the Measure of the Flatness Problem", Class.Quantum Grav., 12, L93{L98, (1995). [DOI], [ADS].[4] Guth, A.H., \In
ationary Universe: A Possible Solution to the Horizon andFlatness Problems", Phys. Rev. D, 23, 347{356, (1981). [DOI], [ADS].[5] Helbig, P., \Is there a 
atness problem in classical cosmology?", Mon. Not. R.Astron. Soc., 421, 561{569, (2012). [DOI], [ADS].[6] Kayser, R., Helbig, P. and Schramm, T., \A General and Practical Methodfor Calculating Cosmological Distances", Astron. Astrophys., 318, 680{686,(1997). [ADS].[7] Lake, K., \The Flatness Problem and �", Phys. Rev. Lett., 94, 201102, (2005).[DOI], [ADS].[8] Leahy, J.P., \Solutions of the Friedman Equation", personal homepage, JodrellBank Centre for Astrophysics, (2003). URL (accessed 2012-10-07):http://www.jb.man.ac.uk/~jpl/cosmo/friedman.html.[9] Stabell, R. and Refsdal, S., \Classi�cation of general relativistic world models",Mon. Not. R. Astron. Soc., 132, 379{388, (1966). [ADS].


