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Abstract. 1 discuss various definitions of the flatness problem
and previous claims that it does not exist. [ also present a
new quantitative argument which shows that it does not exist in
cosmological models which collapse in the future.

1. Introduction

Questioning the existence of the flatness problem might seem to some like
questioning the existence of the expansion of the universe. The flatness
problem (e.g. [2]) and the fact that inflation can solve it (e.g. [4]) have become
part of standard cosmology, at least for many definitions of ‘standard’. How
can something so fundamental not exist? My own view is that the emphasis
has been so much on the solution of the flatness problem through inflation
that the flatness problem itself has been rather neglected and its existence just
assumed without being investigated in detail.

2. Basic cosmology

I assume that, at the level of detail necessary, the universe can be described
by the Friedmann—Lemaitre equation
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where the symbols have their usual meaning (e.g. [6]). Tt can be useful to
express Eq. (1) with the values of the dimensionless parameters as observed
now, denoted by the suffix 0. This leads to
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Figure 1. Evolutionary trajectories in the A-€ plane.

Note that, at any time,
_ ¢ sign(K)

- H /K (3)

In general, H, A and € all change with time. (See [9] for an excellent discussion
of the evolution of A and ©.) The change in A with time is due entirely to
the change in H with time, since A is constant; the variation in € is due both
to variation in H and to the decrease in density as the universe expands. For
the present discussion, the basic information needed can be seen in Figure 1,
referring at the moment only to the thick lines and curves. The vertical line



it and k& = +1 above it. The curve near the vertical line (corresponding to the
A1 curve in [9]) separates models which will collapse (to the left) from those
which will expand forever (to the right). Models on the curve start arbitrarily
close to the Einstein-de Sitter model (like all non-empty big-bang models)
and asymptotically approach the static Einstein model which has A = Q = oo
(since H = 0; A and p have finite values). The other curve (corresponding to
the A2 curve in [9]) separates big-bang models (to the left) from non-big-bang
models (to the right); the latter contract from an infinite to a finite size then
expand forever. Models on the curve start at the static Einstein model and
asymptotically approach the de Sitter model (the latter feature is shared with
all models which expand forever and have A > 0). The thin curves show some
sample trajectories in the A-Q parameter space. (Note that all the thick lines,
curves and points of intersection in Figure 1 are also trajectories.) Also, note
that the trajectories do not cross; this means that the history of a cosmological
model (i.e. the way A and € change with time) is completely determined by the
values at any point on it (in practice, by measuring the values at the present
time, Ag and ).

3. A very brief history of the flatness problem

The flatness problem appears in two forms. One states that if Q &~ 1 today,
then in the early universe it was arbitrarily close to 1; the assumption is
that some ‘mechanism’ is needed to explain this ‘fine-tuning’ (e.g. [4]). (It is
usually not stated but almost always assumed that no fine-tuning would be
necessary if  were not & 1 today.) The other states that if € changes with
time, then we should be surprised that Q is (still) & 1 today [7].} Coles &
Ellis [1] discuss three ‘solutions’ to the flatness problem — Q@ =1 (and A = 0),
k = 0, anthropically selected special time — which, however, are ultimately
unsatisfactory. Are there any satisfactory ones?

The flatness problem is often presented as a fine-tuning problem (e.g. [4]):
if € is near 1 to day, then at some time tg,. in the past it must have been
1 to a very high accuracy. I refer to this sense of the flatness problem as
the ‘qualitative flatness problem’. This argument is completely bogus, as has
been pointed out by many authors [1, 7]: all non-empty models begin their
evolution at the Einstein—de Sitter model, so of course the further back in

! Historically, the flatness problem was first discussed during a time when A was
thought to be zero. If A is not constrained to be zero, then the flatness problem
should be re-phrased as the Einstein—de Sitter problem, i.e. the question is why the
universe is (in some sense) close to the Einstein—de Sitter model (which is an unstable
fixed point and a repulsor) today when |A| and € can take on values between 0 and
oo. However, for brevity I will continue to use the term ‘flatness problem’ even for
the more general case and sometimes mention only the change in 2 with time.



classical cosmology, there is nothing special about a time tg,. chosen so that
Q is very close to 1 at that point.

Evrard & Coles [3] (see also Coles & Ellis [1]) also point out that the
assumption implicit in the qualitative flatness problem, namely that some wide
range of {2 values are a priori equally likely at some early time, constitutes a
prior which is incompatible with the assumption of minimal information. This
can be regarded as a quantitative solution to the qualitative flatness problem
(or, perhaps, an argument against its existence).

The qualitative flatness problem thus does not exist; it i1s merely a
consequence of the way in which a universe, described by the Friedmann-—
Lemaitre equation, evolves and how dimensionless observable quantities such
as Q are defined. Nevertheless, even if 1t is not a puzzle why @ = 1 at early
times, one can still ask whether we should be surprised that Q &~ 1 today.
The rest of this article is concerned mainly with the second form: should we
be surprised that € &~ 1 today? This ‘quantitative flatness problem’ is more
subtle, but also has solutions within the context of classical cosmology.

4. Cosmological models which collapse in the future

All cosmological models (assumed to be expanding now) with A < 0 will
collapse in the future: R is negative for all values of R and for large R is
proportional to R. Models with A = 0 will collapse for € > 1. In addition,
models with A > 0 will collapse provided that € > 1 (which in this case implies
K >0,ie k=+41),¢>0and a < 1, where
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[9, 7]. (The Al and A2 curves mentioned above have o = 1.) In Figure 1, these
are in the area between A = 0 and the Al curve. Empty big-bang models start
arbitrarily close to the Milne model with (A,Q2) values of (0,0); non-empty
big-bang models start arbitrarily close to the Einstein—de Sitter model with
(A,£2) values of (0,1). The evolution of A and £ can be viewed as trajectories
in the parameter space: A and {2 evolve from the starting point to infinity
and return along the same trajectory. (For the definitive discussion, see [9]; a
very useful visualization can be found at [8].) The interesting question with
regard to the flatness problem is the amount of time spent in various parts of
parameter space. To quantify this, I have calculated the quotient of the age
of the universe now and at the time of maximum expansion as a function of A
and Q. The age of the universe is given by

o = sign(K)
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Figure 2. The age of the universe as a fraction of the time between the big
bang and maximum expansion. Contours, from right to left, are at 0.5, 0.6,

0.7, 0.8 and 0.9.

which follows from Eq. (2). For the current age, the upper limit is given
by Eq. (3); at the time of maximum expansion it is found by calculating the
(smallest) zero of R? (since R? cannot be negative). This is shown in Figure (2).
It is clear that large values of A and €2 occur only during a relatively short time
in the history of the universe, near the time of maximum expansion (at the
precise time of maximum expansion, A and €2 are infinite since I = 0). Note
that this argument is completely independent of Hy.
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Figure 3. The constant of motion « (see Eq. (4)). From upper left to lower
left, contours are at 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50 and 100.

5. Cosmological models which expand forever

Lake [7] has presented a solution which solves the flatness problem as well for
models with & = 41 which will expand forever. (For non-collapsing models,
large values of A and 2 are possible only for £ = 41.) Trajectories in the A-Q
plane have a constant of motion given by Eq. (4).It seems natural to distinguish
cosmological models on the basis of their value of «. Large values of A and 2
are possible only for o < 1. This is shown in Figure 3. (Note that, for clarity,
only © > 1 is shown!) Tt is obvious that & < 1 is a necessary condition for



of Ais just 2 (for Q = 2) and the maximum value of 2 is & 3.5 (for A = 1.25).

In this case, the fine-tuning argument is reversed; only in the case of fine-
tuning do A and €2 become arbitrarily large. This demonstrates quantitatively
that there is no quantitative flatness problem regarding arbitrarily large values
of X or € for models which expand forever. This argument is also independent
of the value of Hy. However, all non-empty models which expand forever
asymptotically approach the de Sitter model at (A, Q) = (1,0). Thus, one final
aspect of the quantitative flatness problem remains: 2 can become arbitrarily
small. This is investigated in the next section.

6. Cosmological models which expand forever

I have now covered the entire A-€2 parameter space except for big-bang models
with (a) ¢ < 0 (which implies A > 0) and (b) Q less than & 2 (all three values of
k are possible) and shown that in all cases there is no flatness problem. What
about this remaining portion of parameter space? Models here all have K 0
and approach the de Sitter model asymptotically. This means that there is no
flatness problem in the restricted sense, as pointed out by Lake [7]. However,
2 becomes arbitrarily small (and A arbitrarily close to 1). Thus, there is still
a problem in that we do not observe such values, even though they exist for
almost the entire (infinite) lifetime of the universe. This is essentially the
question ‘if the universe lasts forever, then why are we near the beginning?’
Note that this question could be asked at any time. One could leave it at that
and say that since any finite age is arbitrarily close to the beginning, there is
nothing special about our time and thus no flatness problem in the time-scale
sense (i.e. the quantitative flatness problem, why is € not arbitrarily small
today). This is discussed in more detail in [5].

7. Summary

The qualitative flatness problem, i.e. the puzzle why the universe was
arbitrarily close to the Einstein—de Sitter model (or, for an empty universe,
the Milne or de Sitter model) at early times, does not exist. It is merely a
consequence of the way A and  are defined. Neither does the quantitative
flatness problem exist: although the cosmological parameters in general evolve
with time, it is not puzzling that we don’t observe extreme values for them
today. In the case of models which will collapse in the future this is because
large (absolute) values of A and Q occur only during a relatively short time in
the lifetime of such a universe, namely near the time of maximum expansion.
A and  can become large only when H becomes small, and this happens only
during the time when the universe is at or near its maximum size. (Arbitrarily
small (absolute) values, if they occur at all, also occur for only a relatively
short time). For models which will expand forever, large values are possible



tuning argument is reversed; only in the case of fine-tuning do A and 2 become
arbitrarily large. Since all models which will expand forever asymptotically
approach ©Q = 0, arbitrarily small values of €2 can occur. Those with A = 0
(and hence k = —1) approach the Milne model with & = 0; models with A > 0,
whatever the value of k, approach the de Sitter model with A = 1 (the Milne
and de Sitter models themselves are of course stationary points). (If A = 0
at any time then A = 0 at all times. Otherwise, arbitrarily small values of A,
if they occur at all, occur only for a relatively short time.) However, if Hy
has a value similar to or smaller than the observed value, small values of Q2
will occur only in the far future when anthropic arguments probably make the
observation of such a low value of Q unlikely. While (for A > 0) a higher value
of Hy would allow a low value of €2 even for an age near the observed age, such
a universe would have spent only a very short time during which Q was not
very small, so structure formation would have been strongly suppressed.

References

[1] Coles, P. and Ellis, G.F.R., Is the Universe Open or Closed?, (Cambridge
University Press, Cambridge, 1997). [ADS].

[2] Dicke, R.H. and Peebles, P.J.E., “The Big Bang Cosmology — Enigmas and
Nostrums”, in Hawking, S.W. and Israel, W., eds., General Relativity:
An FEinstein Centenary Survey, pp. 504-517, (Cambridge University Press,
London, 1979). [ADS].

[3] Evrard, G. and Coles, P., “Getting the Measure of the Flatness Problem”, Class.
Quantum Grav., 12, 1.93-1.98, (1995). [DOI], [ADS].

[4] Guth, A.H., “Inflationary Universe: A Possible Solution to the Horizon and
Flatness Problems”, Phys. Rev. D, 23, 347-356, (1981). [DOI], [ADS].

[5] Helbig, P., “Is there a flatness problem in classical cosmology?”, Mon. Not. R.
Astron. Soc., 421, 561-569, (2012). [DOT], [ADS].

[6] Kayser, R., Helbig, P. and Schramm, T., “A General and Practical Method
for Calculating Cosmological Distances”, Astron. Astrophys., 318, 680-686,
(1997). [ADS].

[7] Lake, K., “The Flatness Problem and A”, Phys. Rev. Lett., 94, 201102, (2005).
[DOI], [ADS].

[8] Leahy, J.P., “Solutions of the Friedman Equation”, personal homepage, Jodrell
Bank Centre for Astrophysics, (2003). URL (accessed 2012-10-07):
http://www. jb.man.ac.uk/~jpl/cosmo/friedman.html.

[9] Stabell, R. and Refsdal, S., “Classification of general relativistic world models”,
Mon. Not. R. Astron. Soc., 132, 379-388, (1966). [ADS].



