## CORRESPONDENCE

To the Editors of 'The Observatory'

Why stop at 3/3?

In the discussion of Professor Turner's talk, Rev. Barber states1 that "the age of the Universe could be derived from any multiple of the Hubble constant from 3/3 onwards." (Presumably he means the Hubble time, not its inverse, the Hubble constant.) In the Einstein-de Sitter universe, with  $\lambda = 0$  and  $\Omega = 1$ , the age is ¾ of the Hubble time, which is presumably why Barber mentions this fraction. However, this is not a limiting value; except for the fact that there is a region of the  $\lambda$ - $\Omega$  parameter space in which the age of the Universe is infinite (i.e., there is no Big Bang), the age of the Universe expressed in units of the Hubble time is a very well-behaved function of  $\lambda$  and  $\Omega$  with no lower bound, neither at 1/3 nor at any other value (e.g., Fig. 3 in ref. 2). (The value of o occurs for infinitely large (absolute) values of  $\lambda$  (which is negative in such cases) and/or  $\boldsymbol{\Omega}$  (if only one (absolute) value is infinitely large, the other is 0).) To be sure, an age of the Universe of less than  $\frac{2}{3}$  the Hubble time implies  $\lambda < 0$ ,  $\Omega > 1$  or both. Since the discussion is concerned with the possibility to "kick in an arbitrary  $\Lambda$ dark energy", it seems strange to constrain  $\lambda$  to be greater than o and  $\Omega$  to be less than 1. Of course, cosmologists are now reasonably certain<sup>3</sup> that  $\lambda \approx 0.73$ and  $\Omega \approx 0.27$  (and these seem to be the result of a real convergence, not just the popular values  $du jour^4$ ), but in a general discussion of what could be, rather than what is, it is important to remember that there is no theoretical reason to exclude  $\lambda < 0$  or  $\Omega > 1$ .

> Yours faithfully, PHILLIP HELBIG

Thomas-Mann-Straße 9 D-63477 Maintal Germany

helbig@astro.multivax.de

2012 March 03

## References

- (1) Meeting of the Royal Astronomical Society, The Observatory, 132, 64, 2012.
- (2) P. Helbig, MNRAS, **421**, 561, 2012. (3) E. Komatsu *et al.*, ApJS, **192**, 18, 2011.
- (4) R. A. C. Croft & M. Dailey, MNRAS (submitted), arXiv:1112.3108.