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Abstract. The calculation of distances is of fundamen-

tal importance in extragalactic astronomy and cosmology.

However, no practical implementation for the general case

has previously been available. We derive a second-order

di�erential equation for the angular size distance valid

not only in all homogeneous Friedmann-Lemâ�tre cosmo-

logical models, parametrised by �

0

and 


0

, but also in

inhomogeneous `on-average' Friedmann-Lemâ�tre models,

where the inhomogeneity is given by the (in the general

case redshift-dependent) parameter �. Since most other

cosmological distances can be obtained trivially from the

angular size distance, and since the di�erential equation

can be e�ciently solved numerically, this o�ers for the �rst

time a practical method for calculating distances in a large

class of cosmological models. We also brie
y discuss our

numerical implementation, which is publicly available.

Key words: cosmology: theory { methods: numerical {

cosmology: distance scale { cosmology: miscellaneous {

gravitational lensing

1. Introduction

The determination of distances is one of the most impor-

tant problems in extragalactic astronomy and cosmology.

Distances between two objects X and Y depend on their

redshifts z

x

and z

y

, the Hubble constant H

0

, the cosmo-

logical constant �

0

, the density parameter 


0

and the in-

homogeneity parameter �.

1

Usually, smaller distances are
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When discussing the distance between two objects, one can

always make a coordinate transformation such that the contri-

bution from the � and � terms in Eq. (1) vanish. Then one sim-

ply needs the redshifts and cosmological parameters in order

determined by the traditional `distance ladder' technique

and larger distances are calculated from the redshift, as-

suming some cosmological model. Since the redshift is for

most purposes exactly measurable, knowledge of or as-

sumptions about two of the factors (a) Hubble constant,

(b) other cosmological parameters and (c) `astronomical

distance' (i.e. ultimately tied in to the local distance scale)

determines the third. In this paper we discuss distances

given the Hubble constant H

0

, the redshifts z

x

and z

y

and

the cosmological parameters �

0

, 


0

and �. Traditionally, a

simple cosmological model is often assumed for ease of cal-

culation, although the distances thus obtained, and results

which depend on them, might be false if the assumed cos-

mological model does not appropriately describe our uni-

verse. A general method allows one to look at cosmological

models whether or not they are easy-to-calculate special

cases and o�ers the possibility of determining cosmologi-

cal distances which are important for other astrophysical

topics once the correct cosmological model is known.

We stress the fact that the inhomogeneity can be as

important as the other cosmological parameters, both in

the �eld of more traditional cosmology and in the case of

gravitational lensing, where, e.g. in the case of the time

delay between the di�erent images of a multiply imaged

source, the inhomogeneity cannot be neglected in a thor-

ough analysis (Kayser & Refsdal 1983). For an example

involving a more traditional cosmological test, Perlmutter

et al. (1995) (see also Goobar & Perlmutter (1995)) dis-

cuss using supernovae with z � 0:25{0:5 to determine q

0

;

for z near the top of this range or larger, the uncertainty

due to our ignorance of � is comparable with the other

uncertainties of the method.

to determine the distance between them. When discussing the

distances between several objects, for example QSOs with �, �

and z as coordinates, this is no longer possible. In many cases,

however, suitable geometrical approximations can be made so

that the most complicated part of the problem is essentially a

determination of a distance between two objects. This point is

further discussed in Sect. 5.
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The plan of this paper is as follows. In Sect. 2 the

basics of Friedmann-Lemâ�tre cosmology are brie
y dis-

cussed; this also serves to de�ne our terms, which is im-

portant since various con
icting notational schemes are in

use. (For a more thorough discussion using a similar nota-

tion see, e.g., Feige (1992).) Section 3 de�nes the various

distances used in cosmology. In Sect. 4 our new di�eren-

tial equation is derived. Similar e�orts in the literature are

brie
y discussed. Section 5 brie
y describes our numerical

implementation and gives the details on how to obtain the

source code for use as a `black box' (which however can be

opened) for use in cosmology and extragalactic astronomy.

The symmetry properties of the angular size distance, an-

alytic solutions and methods of calculating the volume

element are addressed in three appendices.

2. Basic theory

Considering for the moment homogeneous Friedmann-

Lemâ�tre cosmological models, we can write the familiar

Robertson-Walker line element:

ds

2

= c

2

dt

2

�R

2

(t) �

�

d�

2

(1� k�

2

)

+ �

2

d�

2

+ �

2

sin

2

�d�

2

�

; (1)

where the symbols are de�ned as follows (with the corre-

sponding units):

s 4-dimensional interval [length]

c speed of light [velocity]

t time [time]

R scale factor [length]

� radial coordinate [dimensionless]

k curvature constant [dimensionless]

� angular coordinate [dimensionless]

� angular coordinate [dimensionless]

The dynamics of the universe is given by the Friedmann

equations

_

R

2

(t) =

8�G�(t)R

2

(t)

3

+

�R

2

(t)

3

� kc

2

(2)

and

�

R(t)

R(t)

= �

4�G�(t)

3

+

�

3

; (3)

where dots denote derivatives with respect to t, G is the

gravitational constant, �(t) the matter density (this pa-

per assumes negligible pressure), � the cosmological con-

stant and the sign of k determines the curvature of the

3-dimensional space.

Introducing the usual parameters

H =

_

R

R

(Hubble parameter)


 =

8�G�

3H

2

(density parameter)(4)

� =

�

3H

2

(normalised cosmological constant)

(
 and � are dimensionless and H has the dimension t

�1

)

we can use Eq. (2) to calculate

kc

2

= R

2

H

2

(
 + �� 1) ; (5)

so that

k = sign (
 + �� 1) : (6)

Since R > 0 we can write

R =

c

H

1

p

j
+ �� 1j

; (7)

this is the radius of curvature of the 3-dimensional space

at time t. For k = 0 it is convenient to de�ne the scale

factor R to be c=H . In the following the index 0 will be

used to denote the present value of a given quantity, �xed,

as usual, at the time t

0

of observation.

2

The explicit de-

pendence on t will be dropped for brevity. Taking matter

conservation into account and using the present-day val-

ues, we have

�R

3

= �

0

R

3

0

(8)

and so from Eqs. (2), (4), (5) and (8) follows

_

R

2

= H

2

0

R

2

0

�




0

R

0

R

+

�

0

R

2

R

2

0

� (


0

+ �

0

� 1)

�

: (9)

Since below we want to discuss distances as functions of

the cosmological redshift z, by making use of the facts that

z =

R

0

R

� 1 (10)

and that R

0

is �xed, we can use Eq. (9) to get

dz =

dz

dR

_

Rdt = �H

0

(1 + z)

p

Q(z) dt; (11)

where

Q(z) = 


0

(1 + z)

3

� (


0

+ �

0

� 1)(1 + z)

2

+ �

0

: (12)

Note: Throughout this paper, the

p

sign should

be taken to signify the positive solution, except that

sign

p

Q(z) = sign(

_

R) always.

3. Distance measures

3.1. Distances de�ned by measurement

In a static Euclidean space, one can de�ne a variety of

distances according to the method of measurement, which

are all equivalent.

2

Note that this paper is concerned with the calculation of

distances from redshift. We are not concerned with a change

in redshift with t

0

.



Kayser et al.: Cosmological distances 3

3.1.1. Angular size distance

Let us consider at position y two light rays intersecting at

x with angle �. If l is the distance between these light rays,

it is meaningful to de�ne the angular size distance D

xy

as

D

xy

=

l

�

; (13)

since an object of projected length l at position y will

subtend an angle � = l=D

xy

(for small �) at distance D

xy

.

3.1.2. Proper motion distance

The proper motion distance is similar to the angular size

distance, except that l is given by vt, where v is the tan-

gential velocity of an object and t the time during which

the proper motion is measured.

3.1.3. Parallax distance

Parallax distance is similar to the proper motion distance,

except that the angle � is at y instead of x, so that we

have

D

�

xy

=

l

�

: (14)

In the canonical case, l = 1 AU.

3.1.4. Luminosity distance

Since the apparent luminosity L of an object at distance

D is proportional to 1=D

2

, one can de�ne the luminosity

distance as

D

L

= D

L

0

r

L

0

L

; (15)

where L

0

is the luminosity at some �ducial distance D

L

0

.

3.1.5. Proper distance

By proper distance D

P

we mean the distance measured

with a rigid ruler.

3.1.6. Distance by light travel time

Finally, from the time required for light to traverse a cer-

tain distance, one can de�ne a distance D

c

by

D

c

= ct (16)

where t is the so-called look-back time.

3.2. Cosmological distances

3.2.1. General considerations

In a static Euclidean space, which was used above when

de�ning the distances through a measurement descrip-

tion, these distance measures are of course equivalent. In

the general case in cosmology, where the 3-dimensional

space need not be 
at (k = 0) but can be either positively

(k = +1) or negatively (k = �1) curved, and where the

3-dimensional space is scaled by R(t), not only do the dis-

tances de�ned above di�er, but also (in the general case)

D

xy

6= D

yx

. The de�nitions are still applicable, but dif-

ferent de�nitions will result in di�erent distances.

In reality, of course, the universe is neither perfectly

homogeneous nor perfectly isotropic, as one assumes when

deriving Eq. (1). However, as far as the usefulness of the

Friedmann equations in determining the global dynamics

is concerned, this appears to be a good approximation.

(See, for example, Longair (1993) and references therein

for an interesting discussion.) The approximation is cer-

tainly too crude when using the cosmological model to

determine distances as a function of redshift, since the

angles involved in such cases can have a scale comparable

to that of the inhomogeneities. In this paper, we assume

that these inhomogeneities can be su�ciently accurately

described by the parameter �, which gives the fraction of

homogeneously distributed matter. The rest (1 � �) of

the matter is distributed clumpily, where the scale of the

clumpiness is by de�nition of the same order of magnitude

as the angles involved.

For example, a halo of compact MACHO type objects

around a galaxy in a distant cluster would be counted

among the homogeneously distributed matter if one were

concerned with the angular size distance to background

galaxies further away, but would be considered clumped

on scales such as those important when considering mi-

crolensing by the compact objects themselves. Since we

don't know exactly how dark matter is distributed, dif-

ferent � values can be examined to get an idea as to how

this uncertainty a�ects whatever it is one is interested in.

If one has no selection e�ects, then, due to 
ux conser-

vation, the `average' distance cannot change (Weinberg

1976); � introduces an additional uncertainty when inter-

preting observations. It is generally not possible to esti-

mate this scatter by comparing the cases � = 0 and � = 1,

since, depending on the cosmological parameters and the

cosmological mass distribution, not all combinations are

self-consistent. For instance, if one looks at scales where

galaxies are compact objects, and the fraction of 


0

due

to the galaxies is x, then � must be � (1� x).

We further assume that light rays from the object

whose distance is to be determined propagate su�ciently

far from all clumps. (See Schneider et al. (1992) { hereafter

SEF { for a more thorough discussion of this point.) Com-

pared to the perfectly homogeneous and isotropic case, the

introduction of the � parameter will in
uence the angular
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size and luminosity distances (as well as the proper mo-

tion and parallax distances) since these depend on angles

between light rays which are in
uenced by the amount of

matter in the beam, but not the proper distance and only

negligibly the light travel time. The last two distances are

discussed brie
y in Sect. 3.2.2 and in App. B.3 and B.6.

Since there is a simple relation between the angular size

distance and the luminosity distance (Sect. 3.2.2) which

also holds for the inhomogeneous case (see App. A), for

the general case it su�ces to discuss the angular size dis-

tance, which we do in Sect. 4.

3.2.2. Relationships between di�erent distances

Without derivation

3

we now discuss some important dis-

tance measures, denoting the redshifts of the objects with

the indices x and y. Due to symmetry considerations (see

App. A)

D

yx

= D

xy

�

1 + z

y

1 + z

x

�

; (17)

where the term in parentheses takes account of, by way of

Eq. (10), the expansion of the universe. It is convenient,

in keeping with the meaning of angular size distance, to

think of the expansion of the universe changing the angle

� in Eq. (13) and not l, if one identi�es l as the (projected)

size of an object. The angle is de�ned at the time when

the light rays intersect the plane of the observer. Thus

D

xy

with the observer at x = 0 de�nes what one normally

thinks of as an angular size distance. On the other hand,

D

xy

and D

yx

with x in general 6= 0 can be important in,

for example, gravitational lensing.

4

Although the angle between the rays (at the source)

at the time of reception of the light is important for the

luminosity distance, this distance is not simply D

yx

, since

in the cosmological case the observed 
ux is obtained

by multiplying the `non-redshifted 
ux' by the factor

(1+z

x

)

2

=(1+z

y

)

2

. One factor of (1+z

x

)=(1+z

y

) occurs be-

cause a given wavelength is increased by (1+z

y

)=(1+z

x

),

which reduces the 
ux correspondingly; an additional fac-

tor of (1 + z

x

)=(1 + z

y

) occurs because the arrival rate

of photons is also decreased. Therefore, since D

L

is in-

versely proportional to the square root of the (observed,

`redshifted') 
ux the luminosity distance is

D

L

xy

= D

yx

�

1 + z

y

1 + z

x

�

: (18)

3

See, e.g., Feige (1992) Berry (1986) or Bondi (1961) for a

more general discussion. What we present in the rest of this

section is not new, but is important in order to clarify the no-

tation. The results are obvious from the de�nitions introduced

above.

4

Although not useful in cosmology or extragalactic astron-

omy, for completeness we mention the fact that the proper

motion distance is equivalent to D

yx

and the parallax distance

is equivalent to D

yx

=

p

1� k�

2

.

From this and Eq. (17) follows the relation

D

L

xy

= D

xy

�

1 + z

y

1 + z

x

�

2

: (19)

This means that the surface brightness of a `standard can-

dle' is � (1 + z)

�4

, a result independent of the cosmologi-

cal model parameters, including �.

5

(This result also holds

for the inhomogeneous case, since Eq. (17) still holds (see

App. A) and the additional factor due to the expansion of

the universe (given by the term in parentheses in Eq. (18))

is of course present in the inhomogeneous case as well.)

Of course, this applies only to the bolometric lumi-

nosity. Observing in a �nite band introduces two correc-

tions. The so-called K-correction as it is usually de�ned

today (see, e.g., Coleman et al. (1980) or, for an interesting

and thorough discussion, Sandage (1995)) takes account

of these, both of which come from the fact that the ob-

served wavelength interval is redshifted compared to the

corresponding interval on emission. This means that, �rst,

for a 
at spectrum, less radiation is observed, because the

bandwidth at the observer is (1 + z) times larger than

at the source. Second, the spectrum need not be 
at, in

which case additional corrections based on the shape of

the spectrum have to be included.

6

Thus,

m =M + 5 log

�

D

L

[pc]

10 pc

�

+K (20)

where m is the apparent magnitude,M the absolute mag-

nitude, D

L

is the luminosity distance and K is the K-

correction as de�ned in Coleman et al. (1980). Perhaps

more convenient is

m =M + 5 logD

L

+K +N (21)

where N is a normalisation term: N = �5 for D

L

in units

of 1 pc, N = 25 for D

L

in units of 1 Mpc and N = x �

5 logh for D

L

in units of the Hubble length

7

c=H

0

, where

x = 5 log

�

Hubble length

1 pc

�

� 5 � 42:384

5

Thus, a `surface brightness test' can in principle show that

cosmological redshifts are due to the expansion of the uni-

verse and not to some other cause. See, e.g., Sect. 6 in Sandage

(1995).

6

Since the observed objects generally evolve with time, and

redshifted objects are necessarily observed as they were when

the radiation was emitted, some authors include an evolution-

ary term in the K-correction. Still other authors prefer to

absorb one or more of these terms into the de�nition of the

luminosity distance. Our luminosity distance is a bolometric

distance based on the geometry and includes the unavoidable

dimming due to the redshift. Our K-correction takes account

of both e�ects of a �nite bandwidth. Evolutionary e�ects are

considered separately from distances.

7

For example, as given by our numerical implementation;

see Sect. 5
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and h is the Hubble constant in units of 100 km=s=Mpc. In

practice one has to add terms to correct for various sources

of extinction and consider the fact that M is the absolute

magnitude of the object when the light was emitted, which

of course could be di�erent from the present M of similar

objects at negligible redshift.

The light travel time (or lookback time) t

xy

= t

x

� t

y

between z

x

and z

y

(where t

x

= t(z

x

) > t

y

= t(z

y

)) is given

by the integration of the reciprocal of Eq. (11):

t

xy

=

z

x

Z

z

y

�

dz

dt

�

�1

dz =

1

H

0

z

y

Z

z

x

dz

(1 + z)

p

Q(z)

; (22)

where the minus sign from Eq. (11) is equivalent to the

swapped limits of integration on the right-hand side so

that the integral gives t

x

� t

y

instead of t

y

� t

x

, making

the light travel time increase (for

_

R > 0) with z; thus

D

c

xy

= ct

xy

.

Since the proper distance would be the same as D

c

were there no expansion, the former can be calculated by

multiplying the integrand in Eq. (22) by c(1 + z). Thus

D

P

xy

=

c

H

0

z

y

Z

z

x

dz

p

Q(z)

: (23)

This gives the proper distance at the present time. Since

D

P

scales linearly with the expansion of the universe, the

proper distance at some other time can be obtained by di-

viding Eq. (23) with (1+z

i

), where z

i

is the redshift at the

corresponding time. For homogeneous (� = 1) cosmolog-

ical models,

8

the propagation of light rays is determined

by the global geometry, so that there is a simple relation

between D

P

and D and, thus, D

L

. This is discussed in

Sect. B.3. Although not `directly' observable, the proper

distance is nevertheless important in cosmological theory,

since it is the basic distance of general relativity. Although

not useful as a distance, the light travel time is of course

important when considering evolutionary e�ects.

For inhomogeneous models, where this relation be-

tween global geometry and local light propagation does

not exist, another approach must be used, which takes ac-

count of both the expansion of the universe as well as the

local propagation of light, when calculating angle-de�ned

distances such as the angular size distance.

4. The general di�erential equation for the angular

size distance

In a series of papers Zeldovich (1964), Dashevskii and Zel-

dovich (1965) and Dashevskii and Slysh (1966) developed

a general di�erential equation for the distance between

8

This includes empty models (


0

= 0); although � has no

meaning here, the same arguments apply.

two light rays on the boundary of a small light cone prop-

agating far away from all clumps of matter in an inhomo-

geneous universe:

�

l = �4�G�� l+

_

R

R

_

l (24)

where � and � are functions of the time t (not the lookback

time of Eq. 22). The �rst term can be interpreted as Ricci

focusing due to the matter inside the light cone, and the

second term is due to the expansion of space during the

light propagation. We now have to transform this time

dependent di�erential equation into a redshift dependent

di�erential equation. From Eq. (11) we obtain

9

dt = �

�

H

0

(1 + z)

p

Q

�

�1

dz; (25)

and thus

dl

dt

= �H

0

(1 + z)

p

Q

dl

dz

(26)

and

d

2

l

dt

2

= H

2

0

(1 + z)

p

Q

d

dz

�

(1 + z)

p

Q

dl

dz

�

(27)

= H

2

0

��

(1 + z)Q+ (1 + z)

2

1

2

dQ

dz

�

dl

dz

+ (1 + z)

2

Q

d

2

l

dz

2

�

: (28)

Furthermore, since R = R

0

=(1 + z) (Eq. (10)), we obtain,

using Eq. (25),

dR

dt

= �H

0

(1 + z)

p

Q

dR

dz

: (29)

From the de�nition of 
 (Eq. (4)) and matter conservation

(Eq. (8)) we obtain

4�G� =

3

2

H

2

0




0

(1 + z)

3

: (30)

If we now insert Eqs. (26), (28), (29) and (30) into

Eq. (24), sort the terms appropriately and cancel H

2

0

,

which appears in all terms, we obtain

Q l

00

+

�

2Q

1 + z

+

1

2

Q

0

�

l

0

+

3

2

�


0

(1 + z) l = 0 ; (31)

where a prime denotes a derivative with respect to redshift

and from Eq. (12) follows

Q

0

(z) = 3


0

(1 + z)

2

� 2(


0

+ �

0

� 1)(1 + z) : (32)

9

This transformation causes problems if the integration in-

terval contains a point where

_

R = 0 and thus

p

Q changes

sign. In this case the integration interval (t

x

; t

y

) has to be

transformed into two integration intervals, namely (z

x

; z

max

)

and (z

max

; z

y

), where z

max

is the redshift at

_

R = 0, with the

boundary conditions for the second integration interval chosen

appropriately.
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From the de�nition of the angular size distance (Eq. (13))

it is obvious that it follows the same di�erential equation

as l:

QD

00

+

�

2Q

1 + z

+

1

2

Q

0

�

D

0

+

3

2

�


0

(1 + z)D = 0 (33)

with special boundary conditions at the redshift z

x

where

the two considered light rays intersect. The �rst boundary

condition is trivially

D = 0 for z = z

x

; (34)

and the second boundary condition follows from the Eu-

clidean approximation for small distances, i.e.

dD

dt

�

�

�

�

z=z

x

= c sign(t

x

� t

y

); (35)

hence

D

0

=

c

H

0

1

(1 + z

x

)

p

Q(z

x

)

sign(t

y

� t

x

) for z = z

x

; (36)

where the sign has been chosen such that D is always

> 0 locally. We denote these special solutions of Eq. (33)

with D

x

(z), and, following the de�nition (Eq. (13)), the

angular size distance of an object at redshift z

y

is then

given as

D

xy

= D

x

(z

y

) : (37)

Figure 1 shows the in
uence of z, � and � on the an-

gular size distance, calculated using Eq. (33) with our nu-

merical implementation.

For completeness we note that after the original deriva-

tion by Kayser (1985) an equivalent equation was derived

by Linder (1988) which, however, is di�cult to implement

due to the cumbersome notation.

Special mention must be made of the so-called bounce

models, which expand from a �nite R after having con-

tracted from R = 1: (See, e.g., Feige (1992).) A glance

at Eq. (10) shows that in these cosmological models there

must be four distances for an (ordered) pair of redshifts.

If we denote the distances by D

12

, D

14

, D

34

and D

32

,

where 1(2) und 3(4) refer to z

1

(z

2

) during the expanding

(contracting) phase, then symmetry considerations dictate

that D

12

= D

34

and D

14

= D

32

as long as the dependence

of � on z is the same during both phases. In this case,

there are two independent distances per (ordered) pair

of redshifts. If this is not the case, the degeneracy is no

longer present and there are four independent distances

per (ordered) pair of redshifts.

5. Numerics and practical considerations

For the actual numerical integration of the di�erential

equation, we have found the Bulirsch-Stoer method to be
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Fig. 1. The angular size distance from the observer (z

1

= 0)

and from z

1

= 2 (lower right) as a function of the redshift z

2

for di�erent cosmological models. Thin curves are for � = 0,

thick for � = 1. The upper curves near z = 0 (z = 2 at lower

right) are for �

0

= 2, the lower for �

0

= 0. 


0

= 1 for all

curves. The angular size distance D is given in units of c=H

0

both faster and more exact than other methods such as

Runge-Kutta. However, the conventional method of ratio-

nal function extrapolation is rather unstable in this par-

ticular case; fortunately, using polynomial extrapolation

solves the problem. Although programming the integra-

tion is rather straightforward in theory, in numerical prac-

tice considerable e�ort is needed to determine combina-

tions of free parameters which work for all cases. We have

tested the �nished programme intensively and extensively,

for example by comparing the results of calculations for

� = 1 (the value of � plays no special role in the integra-

tion of the di�erential equation) with those in Refsdal et

al. (1967) or given by the method of elliptical integrals as

outlined in Feige (1992) and have used it in Kayser (1995),

Helbig (1996) and Helbig & Kayser (1996). For a general

discussion of various methods of integrating second-order

di�erential equations, see Press et al. (1992). Those inter-

ested in technical details can read the comments in our

source code and the accompanying user's guide.

Since H

0

, in contrast to the other cosmological param-

eters, merely inversely scales the angular size distance,

our routine actually calculates the angular size distance

in units of c=H

0

. This dimensionless quantity must be

multiplied by c=H

0

(in whatever units are convenient) in

order to obtain the actual distance. Other than reducing

numerical overhead, this allows all distances to be cal-
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culated modulo c=H

0

, which is convenient for expressing

quantities in an H

0

-independent manner. In practice, H

0

cancels out of many calculations anyway.

Apart from auxiliary routines which the user does not

have to be concerned with, our implementation consists of

four FORTRAN77 subroutines. The �rst, INICOS, calculates

z-independent quantities used by the other routines, some

of which are returned to the calling programme. ANGSIZ

calculates the angular size distance. Normally, � is used

as a z-independent cosmological parameter, on an equal

footing with �

0

and 


0

. If desired, however, the user can

let INICOS know that a variable (that is, z-dependent) � is

to be used; this is given by the function VARETA. We supply

an example; the user can modify this to suit her needs. In

particular, many di�erent dependencies of � on z can be

included, and a decision made in the calling programme

about which one to use. This feature is also included in

our example. ANGSIZ returns only the distance D

12

; if one

is interested in the other distances in the bounce mod-

els, our subroutine BNGSIZ returns all of these (though

internally calculating only the independent distances, of

course, depending on the dependence of � on z).

Due to the fact that not everyone has a Fortran90

compiler at his disposal, we have coded the routines in

FORTRAN77. Only standard FORTRAN77 features are used,

and thus the routines should be able to be used on

all platforms which support FORTRAN77. Since standard

FORTRAN77 is a subset of Fortran90, the routines can be

used without change in Fortran90 as well.

With the exception of D

c

, all distance measures can

be easily transformed into one another. Thus, it su�ces

to calculate the angular size distance for a given case.

10

When discussing the distance between two objects

other than the observer, rather than between the observer

and one object, in many cases one of two simplifying as-

sumptions can be made:

D(�z)� D(�) In this case, the proper distance D

P

at the

time of emission between the two objects is �D

0x

�

�D

0y

, where � � 1 is the angle in radians between the

two objects on the sky.

D(�) � D(�z) In this case, the angular size distance be-

tween the two objects is D

xy

.

D(�z) (D(�)) refers to the distance due to �z (�) when

setting � (�z) equal to zero. In the �rst case, where the

two objects are practically at the same redshift, one uses

the angular size distance to this redshift to transform the

observed di�erence in angular position on the sky into the

proper distance between the two objects at the time of

emission. This follows directly from the de�nition of the

10

The proper distance, which is �-independent, can be calcu-

lated from the angular size distance assuming � = 1, by making

use of the simple relation between proper distance and angu-

lar size distance in this case. The result holds of course for all

values of �.

angular size distance. Since the distance between the ob-

jects is much less than the distance from the observer to

the objects, the di�erently de�ned distances between the

objects are for practical purposes degenerate. A practical

example of this case would be the distance between indi-

vidual galaxies in a galaxy cluster at large redshift. Natu-

rally, one should use one redshift, say, of the cluster centre;

the individual redshifts will in most cases be overlaid with

the doppler redshift due to the velocity dispersion of the

cluster, so the di�erence in cosmological redshifts is neg-

ligible. (Of course, the present distance would be a factor

of (1 + z) larger, due to the expansion of the universe,

were the objects comoving and not, as in a galaxy cluster,

bound.) In the second case, which is typical of gravita-

tional lensing, the angles on the sky between, for exam-

ple, source and lens, are small enough to be neglected, so

that the angular size distance between the objects is de-

termined by the di�erence in redshift. If neither of these

assumptions can be made, any sort of distance between

the two objects is probably of no practical interest. (Of

course, there is the trivial case where the redshifts are all

� 1 in which case one can simply use �, � and cz=H

0

as

normal spherical coordinates.)

6. Summary

After discussing cosmological distances with an emphasis

on practical distance measures for general use in cosmol-

ogy and extragalactic astronomy, we have obtained a new

di�erential equation, which gives the angular size distance

for a class of `on average' Friedmann-Lemâ�tre cosmolog-

ical models, that is, models described not only by �

0

and




0

but also by �(z), which describes the clumpiness of the

distribution of matter. We have also developed a practical

numerical method of solving this equation, which we have

made publicly available. Since the equation is valid for all

cases, this o�ers for the �rst time an e�cient means of cal-

culating distances in a large class of cosmological models.

The numerical implementation (in FORTRAN77), user's

guide and a copy of the latest version of this paper can be

obtained from either of the following URLs:

http://www.hs.uni-hamburg.de/english/persons/helbig/

Research/Publications/Info/angsiz.html

ftp://ftp.uni-hamburg.de/pub/unihh/astro/angsiz.tar.gz

Acknowledgements. It is a pleasure to thank O. Czoske,

S. Refsdal and A. Smette for helpful discussions and comments

on the manuscript.

A. Symmetry: The relation between D

xy

and D

yx

The proof in this appendix follows closely the proof pre-

sented in Kayser (1985). For completeness we note that

after the original derivation by Kayser (1985) an equiv-

alent equation was derived by Linder (1988). We rewrite
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the di�erential equation, Eq. (33), for the angular size dis-

tance in the normal form:

a

2

D

00

(z) + a

1

(z)D

0

(z) + a

0

(z)D(z) = 0 (A1)

with the coe�cient functions

a

2

(z) = Q(z) (A2)

a

1

(z) =

2Q(z)

1 + z

+

1

2

Q

0

(z) (A3)

a

0

(z) =

3

2

�


0

(1 + z) : (A4)

Now let D

(1)

and D

(2)

be two solutions of Eq. (A1) which

build a fundamental system, i.e. the Wronskian for these

two solutions does not vanish:

W (z) =

�

�

�

�

�

D

(1)

D

(2)

dD

(1)

dz

dD

(2)

dz

�

�

�

�

�

6= 0 8z : (A5)

Every solution D

i

of Eq. (A1) can then be written as a

linear combination of D

(1)

and D

(2)

:

D

i

= �

i

D

(1)

+ �

i

D

(2)

; with �

i

; �

i

= const : (A6)

The angular size distances are special solutions D

x

of

Eq. (A1) ful�lling the following boundary conditions:

D

x

= 0 for z = z

x

(A7)

and

dD

x

dz

= b(z

x

) for z = z

x

(A8)

with

b(z

x

) =

c

H

0

�

(1 + z

x

)

p

Q(z

x

)

�

�1

sign(t

y

� t

x

) ; (A9)

compare Eq. (36). From Eq. (A6) we obtain

0 = �

i

D

(1)

(z

x

) + �

i

D

(2)

(z

x

) (A10)

and

b(z

x

) = �

i

dD

(1)

dz

�

�

�

�

z=z

x

+ �

i

dD

(2)

dz

�

�

�

�

z=z

x

: (A11)

These equations can easily be solved for �

i

and �

i

:

�

i

= �

i

D

(2)

(z

x

)

D

(1)

(z

x

)

(A12)

�

i

=

b(z

x

)D

(1)

(z

x

)

W (z

x

)

(A13)

and inserting �

i

and �

i

back into Eq. (A6) we obtain for

the special solutions D

x

:

D

x

(z) =

b(z

x

)

W (z

x

)

�

D

(1)

(z

x

)D

(2)

(z)

�D

(1)

(z)D

(2)

(z

x

)

�

: (A14)

If we now consider a second special solution D

y

we �nd

the relation

D

x

(z

y

)

D

y

(z

x

)

= �

b(z

x

)

b(z

y

)

W (z

y

)

W (z

x

)

: (A15)

The Wronskians can be calculated using Liouville's for-

mula:

W (z) =W (z

0

) exp

z

0

Z

z

a

2

(z) dz ; (A16)

where z

0

is arbitrary. Thus

D

x

(z

y

)

D

y

(z

x

)

= �

b(z

x

)

b(z

y

)

exp

z

x

Z

z

y

a

1

(z)

a

2

(z)

dz (A17)

and after inserting a

0

, a

1

and a

2

from Eqs. (A2), (A3)

and (A4) as well as b(z

x

) and b(z

y

) from Eq. (A9) and

integration we �nally obtain for the angular size distances

(cf. Eq. (37)) the relation

D

xy

D

yx

=

1 + z

x

1 + z

y

: (A18)

B. Special cases

For certain special cases the di�erential equation can be

simpli�ed and sometimes analytically solved.

B.1. 


0

= 0

A glance at Eq. (33) shows that for 


0

= 0 the third

term on the left hand side of Eq. (33) vanishes; one thus

has a �rst order di�erential equation for D

0

. (Of course

� has no meaning for 


0

= 0.) Due to the fact that a

vanishing 


0

also simpli�es Q(z), it is possible to calcu-

late the angular size distance analytically. Since in this

case the angular size distance is determined exclusively

by global e�ects, one can use an approach based on global

geometry.

11

Depending on the value of �

0

, one can use the

11

See the discussion in Sect. B.3.
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following expression to calculate �

xy

= �(y)��(x) (Feige

1992)

�(z) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

arccosh( ) for �

0

< 0

ln(1 + z) for �

0

= 0

arcsinh( ) for 0 < �

0

< 1

z for �

0

= 1

arcsin( ) for �

0

> 1

; (B1)

where  := (1 + z)

q

j1��

0

j

j�

0

j

. The relationship between �

and the angular size distance D is

D

xy

=

R

0

(1 + z

y

)

8

<

:

sinh� for k = �1

� for k = 0

sin� for k = +1

; (B2)

as discussed below in Sect B.3.

B.2. � = 0

In the case � = 0 the third term on the left hand side

of Eq. (33) vanishes; one thus has a �rst order di�erential

equation forD

0

. AssumingD

0

6= 0, Eq. (33) can be written

as

D

00

D

0

= �

2

1 + z

�

1

2

Q

0

(z)

Q(z)

: (B3)

This equation can be solved in two steps. ForD

0

we obtain

D

0

=

c

1

p

Q(z) (1 + z)

2

(B4)

and consequently for D

D =

Z

c

1

p

Q(z) (1 + z)

2

+ c

2

: (B5)

The constants c

1

; c

2

are determined by the appropriate

boundary conditions (Eqs. (34) and (35)). We then �nd

the solution (see also SEF for an equivalent discussion

with �

0

= 0)

D

xy

=

c

H

0

(1 + z

x

)(!(z

y

)� !(z

x

)); (B6)

where

!(z) =

z

Z

0

dz

0

(1 + z

0

)

2

p

(1 + z

0

)

2

(


0

z

0

+ 1� �

0

) + �

0

; (B7)

or, perhaps more convenient,

D

xy

=

c

H

0

(1 + z

x

)

Z

z

y

z

x

dz

(1 + z)

2

p

Q(z)

: (B8)

For �

0

= 0 there is an analytic solution (see Sect. B.4).

B.3. � = 1

The case � = 1 has all matter distributed homogeneously.

Due to homogeneity, the matter locally a�ecting the prop-

agation of light is known when the global geometry is

known, so that the `classical' approach of relating global

geometry to observable relations is a better approach than

using (the simpli�ed form of) Eq. (33). This approach of-

fers an analytic solution. Here, we simply sketch the most

important points; the interested reader can refer to Feige

(1992) for a good description of this method.

The angular size distance in this case is

D

xy

= R

y

�

xy

=

R

0

�

xy

(1 + z

y

)

; (B9)

where � is the radial coordinate in the Robertson-Walker

metric (cf. Eq. (1)) and thus

D

yx

=

R

0

�

xy

1 + z

x

= D

xy

�

1 + z

y

1 + z

x

�

; (B10)

since this angle is inversely proportional to R for constant

� and physical size. (The value of R at the time the light

rays de�ning the angle intersect is important.)

Since � is given by

� = F (�) =

8

<

:

sinh� for k = �1

� for k = 0

sin� for k = +1

; (B11)

an expression for �(z) is su�cient for calculating the an-

gular size distance D (and of course the luminosity dis-

tance D

L

(via Eq. (19)) and the `coordinate distance' �

(via Eq. (B11)). In general, �

xy

6= �

y

� �

x

; however,

�

xy

= �

y

� �

x

, so that

�

xy

= F (�

xy

) (B12)

where F is given by Eq. (B11). Using Eq. (23) one can

calculate

�

xy

=

D

P

R

0

=

c

H

0

R

0

z

y

Z

z

x

dz

p

Q(z)

: (B13)

In the general case, Eq. (23) can be solved by elliptic in-

tegrals, as explained in Feige (1992). For the cases �

0

= 0

and 


0

= 0 the formulae using elliptic integrals break

down; in these cases, easier analytic formulae, which for-

tunately exist, can be used. The case 


0

= 0 has been

discussed above. The case �

0

= 0 will be discussed below.

Again, we stress that the di�erential equation derived in

Sect. 4 is completely general and can be used in all cases.
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B.4. �

0

= 0

For �

0

= 0, there is in general no simpler solution. This

case has been discussed by Dyer and Roeder for � = 0

(1972) and for general � values (1973). They point out

the interesting result that the maximum in the angular

size distance from z

1

= 0 to z

2

increases monotonically

from 1:25 to1 as � decreases from 1 to 0. See also the dis-

cussion (with a di�ering notation!) in Sect. 4.5.3 in SEF.

However, some solutions exist for special values of 


0

and

�. The case 


0

= 0 has been discussed in Sect. B.1 above;

the value of � is of course irrelevant in this case. With the

exception of Sect B.4.3 below, in the following we simply

quote results from SEF in our notation.

B.4.1. �

0

= 0 and � = 0

As discussed above, for � = 0 Eq. (33) is e�ectively a �rst

order equation for D

0

. For �

0

= 0 Q(z) is su�ciently sim-

pli�ed to allow an analytic solution. Recalling Eq. (B6),

D

xy

=

c

H

0

(1 + z

x

)(!(z

y

)� !(z

x

));

Eq. (B7) simpli�es to

!(z) =

z

Z

0

dz

0

(1 + z

0

)

3

p




0

z

0

+ 1

; (B14)

which has the solution:

!(z) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

3


2

0

4(


0

�1)

5

2

arctan( ) +

3

4(


0

�1)

2

�

�

(




0

z+

5


0

3

�

2

3

)

p




0

z+1

(1+z)

2

�

5


0

3

+

2

3

�

(I)

2

5

�

1� (


0

z + 1)

�

5

2

�

(II)

3


2

0

4(1�


0

)

5

2

arctanh( ) +

3

4(1�


0

)

2

�

�

(




0

z+

5


0

3

�

2

3

)

p




0

z+1

(1+z)

2

�

5


0

3

+

2

3

�

(III)

(B15)

with

 =

8

>

>

<

>

>

:

�

p




0

�1(1+

p




0

z+1)




0

�1+

p




0

z+1

�

(I)

�

p

1�


0

(1+

p




0

z+1)




0

�1+

p




0

z+1

�

(III)

(B16)

and

case I: 


0

> 1

case II: 


0

= 1

case III: 0 < 


0

< 1

: (B17)

Note that in SEF, the text at the top of page 137 is

unclear|the expression in parentheses in the denomina-

tor of the �rst term (
� 1) for the 
 > 1 case has to be

replaced with (1 � 
) as well for 
 < 1. Note also that


 � 


0

and that after page 131 �

0

= 0 is always assumed.

B.4.2. �

0

= 0 and 


0

= 1

For 


0

= 1 and �

0

= 0 (the Einstein-de Sitter model) we

have the solution

D

xy

=

c

H

0

1

2�

 

(1 + z

y

)

��

5

4

(1 + z

x

)

�+

1

4

�

(1 + z

x

)

��

1

4

(1 + z

y

)

�+

5

4

!

; (B18)

where

� :=

1

4

p

25� 24�: (B19)

B.4.3. �

0

= 0 and � = 1

For � = 1 the special case of the expression for �(z) for

�

0

= 0 is (Feige 1992)

�(z) = �2

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

arcsin

�
q




0

�1




0

(1+z)

�

(


0

> 1)

q

1

1+z

(


0

= 1)

arcsinh

�
q

1�


0




0

(1+z)

�

(0 < 


0

< 1)

; (B20)

where �

xy

= �(y) � �(x). (It is obvious that in the case

�

0

= 


0

= 0 Eq. (B1) should be used.) From this, it is

possible to obtain a general expression for the angular size

distance (see, e.g., SEF):

D

xy

=

c

H

0

2




2

0

(1+z

x

) (R

1

(z

y

)R

2

(z

x

)� R

1

(z

x

)R

2

(z

y

)) ;(B21)

with

R

1

(z) =




0

z � 


0

+ 2

(1 + z)

2

(B22)

and

R

2

(z) =

p




0

z + 1

(1 + z)

2

: (B23)

For z

x

= 0 and z

y

= z one gets for the angular size dis-

tance

D(z) =

c

H

0

2




2

0

(1 + z)

2

�

�




0

z � (2� 


0

)

�

p




0

z + 1� 1

��

: (B24)

valid for 


0

> 0. For 


0

= 0 one obtains

D =

c

H

0

z

�

1 +

z

2

�

(1 + z)

2

(B25)

(Multiplying Eq. (B24) or Eq. (B25) with (1 + z)=R

0

re-

sults in the respective expression for � as a function of red-

shift as �rst derived by Mattig (1958). See also Sandage
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(1995), Sect. 1.6.3). In this case, the volume element given

by Eq. (C4) reduces to

dV = 16�R

3

0

(


0

z � (2� 


0

)(

p




0

z + 1� 1)

2

)




4

0

(1 + z)

3

p




0

z + 1

(B26)

Of course, for the physical, as opposed to comoving, den-

sity, an additional factor of (1+ z)

3

must be added to the

denominator.

B.4.4. �

0

= 0 and � =

2

3

For � =

2

3

and �

0

= 0 there is also an analytic solution

(see SEF):

D

xy

=

c

H

0

2

3


2

0

(1 + z

x

) �

(R

1

(z

x

)R

2

(z

y

)� R

2

(z

x

)R

1

(z

y

)) ; (B27)

with

R

1

(z) =

1

(1 + z)

2

(B28)

and

R

2

(z) =

p




0

z + 1(


0

z + 3


0

� 2)

(1 + z)

2

: (B29)

B.5. Other cases

We can o�er no proof that no other easier solutions, ei-

ther reducing Eq. (33) to a more easily (numerically) in-

tegrated form or even to an analytic solution, exist. This

is left as an exercise to the interested reader. The authors

are of course interested in such solutions and are willing

to verify them. As far as we know, Eq. (33) must be used

except in the special cases mentioned in this appendix.

B.6. Light travel time

Feige (1992) not only gives the distance but also the light

travel time by means of elliptic integrals. As for the dis-

tance, and for the same reasons, simple analytic formulae

can and must be used for the special cases 


0

= 0 and

�

0

= 0. For k = 0, an analytic expression for the light

travel time exists, although the elliptic integrals can also

be used in this case. For completeness, we give these spe-

cial cases here for the light travel time t

xy

= t

x

� t

y

.

For 


0

= 0 we have:

t(z) =

1

H

0

p

j�

0

j

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

arcsin( ) �

0

< 0

p

j�

0

j

(1+z)

�

0

= 0

arcsinh( ) 0 < �

0

< 1

�

p

j�

0

j ln(1 + z) �

0

= 1

arccosh( ) �

0

> 1

; (B30)

where  :=

1

(1+z)

q

j�

0

j

j1��

0

j

For �

0

= 0 we have:

t(z) = A�

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

p

(


0

z+1)(


0

�1)




0

(1+z)

�

arcsin

�
q




0

�1




0

(1+z)

�




0

> 1

�

p




0

�1

3




0

2

3

�q

1

1+z

�

3




0

= 1

arcsinh

�
q

1�


0




0

(1+z)

�

�

p

(


0

z+1)(1�


0

)




0

(1+z)

0 < 


0

< 1

;(B31)

where

A = �




0

H

0

(

p

j


0

� 1j)

3

(For 


0

= 0 the appropriate case from Eq. (B30) must be

used.)

For k = 0 we have:

t(z) =

2

3H

0

�

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1

p




0

�1

arcsin( ) 


0

> 1

�q

1

1+z

�

3




0

= 1

1

p

1�


0

arcsinh( ) 0 < 


0

< 1

;(B32)

where

 =

8

>

>

<

>

>

:

q




0

�1




0

(1+z)

3




0

> 1

q

1�


0




0

(1+z)

3

0 < 


0

< 1

: (B33)

(For 


0

= 0 the appropriate case from Eq. (B30) must be

used.)

C. Volume element

Sometimes the distance is only a means of calculating the

volume element at a given redshift. In the static Euclidean

case the volume element is of course

dV = 4�r

2

dr: (C1)

In the cosmological case, the volume element is, with r =

R

0

�,

dV = 4�r

2

dD

P

= 4�r

2

c

H

0

dz

p

Q(z)

: (C2)

R

0

�

y

is, for � = 1, simply D

y0

= (1+y)D

0y

; see Sect B.3.

Thus, the distance D

y0

is all that is needed to calculate

the volume; this �rst can be calculated by Eq. (33) with

� = 1 (This applies even if one would calculate distances

with another value of � since the volume element is a
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quantity related to the global geometry of the universe|

alternatively, one can use elliptic integrals, as in Sect. B.3

and Feige (1992).) If one has an expression for �(z), then,

since

dD

P

= R

0

d�

p

1� k�

2

; (C3)

which follows directly from Eq. (1), one can write

dV (�) = 4�R

3

0

�

Z

0

�

02

d�

0

p

1� k�

02

: (C4)

where R

0

is given by Eq. (7) for the present values:

R

0

=

c

H

0

1

p

j


0

+ �

0

� 1j

: (C5)

and

� =

D

y0

(1 + z

y

)

R

0

(C6)

Integration gives

V (�) =

8

>

>

<

>

>

:

2�r

3

�

p

1+�

2

�

2

�

arcsinh�

�

3

�

k = �1

4

3

�r

3

k = 0

2�r

3

�

arcsin �

�

3

�

p

1��

2

�

2

�

k = +1

(C7)

Thus, for k = +1, the total volume of the universe is

2�

2

R

3

0

. (See, e.g., Sandage (1995), Sect. 1.6.1; Sandage's

d is our D

P

and his r is our �.) Since

d� =

d�

p

1� k�

2

Eq. (C7) can also be written as (cf. Feige (1992),

Eq. (116); Feige's r is our �)

V (�) = 2�R

3

0

8

<

:

sinh(�) cosh(�)� � k = �1

2

3

�

3

k = 0

�� sin(�) cos(�) k = +1

(C8)

Of course, all this refers to volumes now at the distance

corresponding to z = y. If the volume at another time is

important, say at the time of emission of the light we see

now|for instance if one is concerned with the space den-

sity of some comoving objects|then the volume element

must be divided by (1 + z)

3

.

References

Berry M. V., 1986, Cosmology and Gravitation. Adam Hilger,

Bristol

Bondi H., 1961, Cosmology. Cambridge University Press, Cam-

bridge

Coleman G. D., Wu C.-C., Weedman D. W., 1980, ApJS 43,

393

Dashevskii V. M. , Slysh V. J., 1966, Sov. Astr. 9, 671

Dashevskii V. M. , Zeldovich Y. B., 1965, Sov. Astr. 8, 854

Dyer C. C., Roeder R. C., 1972, ApJ 174, L115

Dyer C. C., Roeder R. C., 1973, ApJ 180, L31

Feige B., 1992, Astr. Nachr. 313, 139

Goobar A., Perlmutter S., 1995, ApJ 450, 14

Helbig P., 1996, Predicted lens redshifts and magnitudes.

In: Kochanek C. S., Hewitt J. (eds.) Astrophysical Appli-

cations of Gravitational Lensing (IAU Symposium 173).

Kluwer, Dordrecht

Helbig P., Kayser R., 1996, A&A 308, 359

Kayser R., Refsdal S., 1983, A&A 128, 156

Kayser R., 1985, doctoral thesis, University of Hamburg

Kayser R., 1995, A&A 294, L21

Linder E. V., 1988, A&A 206, 190

Longair M., 1958, QJRAS 34, 157

Mattig W., 1958, Astr. Nachr. 284, 109

Perlmutter S., Pennypacker C. R., Goldhaber G., et al., 1995,

ApJ 440, L41

Press W. H., Teukolsky S. A., Vetterling W. T., Flannery

B. P., 1992, Numerical Recipes in FORTRAN. Cambridge

University Press, Cambridge

Refsdal S., Stabell R., de Lange F. G., 1967,

Mem. R. Astron. Soc. 71, 143

Sandage A., 1995, Practical Cosmology: Inventing the Past. In:

Binggeli B., Buser R. (eds.) The Deep Universe. Springer,

Berlin

Schneider P., Ehlers J., Falco E. E., 1992, Gravitational Lenses.

Springer-Verlag, Heidelberg

Weinberg S., 1976, ApJ 208, L1

Zeldovich Y. B. , 1964, Sov. Astr. 8, 13

This article was processed by the author using Springer-Verlag

L

a

T

E

X A&A style �le L-AA version 3.


