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Abstract. For known gravitational lens systems the red-

shift distribution of the lenses is compared with theoreti-

cal expectations for 10

4

Friedmann-Lemâ�tre cosmological

models, which more than cover the range of possible cases.

The comparison is used for assigning a relative probabil-

ity to each of the models. The entire procedure is repeated

for di�erent values of the inhomogeneity parameter � and

the limiting spectroscopic magnitude m

lim

, which is im-

portant for selection e�ects. The dependence on these

two parameters is examined in more detail for the spe-

cial cases �

0

= 0 and k = 0.

Previous results that this method is a better probe

for �

0

than 


0

are con�rmed, but it appears that the

low probability of models with large �

0

values found using

similar methods is due to a selection e�ect.

The power of this method to discriminate between cos-

mological models can of course be improved if more grav-

itational lens systems are found. However, our numerical

simulations indicate that a reasonable number of observed

systems cannot deliver interesting constraints on the cos-

mological parameters.

Key words: gravitational lensing { cosmology: theory {

cosmology: observations

1. Introduction

It has recently been suggested by many authors (see,

for example, Fukugita et al. (1992) and references therein)

that gravitational lensing statistics can provide a means

of distinguishing between di�erent cosmological models,

most e�ectively concerning the value of the cosmologi-

cal constant. This is fortunate, since most of the classi-

cal methods for determining cosmological parameters are

more sensitive to other quantities such as the density (


0

)
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or deceleration (q

0

) parameters. It has even been sug-

gested (Carroll et al. 1992) that gravitational lens statis-

tics based on current observations already give the best

upper limits on �

0

for world models with k > 0, and are

the most promising method of doing so for k = 0.

Kochanek (1992) has suggested a method based not on

the total number of lens systems but rather on the red-

shift distribution of known lens systems characterised by

observables such as redshift and image separation. Look-

ing at a few di�erent models, he concludes that at, �-

dominated models are �ve to ten times less probable than

more `standard' models. The advantage of this method

is that it is not plagued by normalisation di�culties as

are most schemes involving the total number of lenses.

The aim of this paper is to extend this method to arbi-

trary Friedmann-Lemâ�tre cosmological models as well as

to look at the inuence of observational bias concerning

the brightness of the lens. In addition, numerical simula-

tions are used to estimate the usefulness of the method

when more systems are available.

It is important to note that the method described in

this paper treats �

0

and 


0

as independent parameters,

that is, they can in principle be determined simultane-

ously. Also important is the fact that 


0

is the global

value, i.e., determined by the contribution of all com-

ponents, regardless of degree of homogeneity and so on.

This is because the cosmological parameters make them-

selves felt through the cosmological model; most methods

of determining 


0

will miss any matter homogeneously

distributed on a scale larger than that surveyed.

2. Theory

We make the `standard assumptions' that the Universe

can be described by the Robertson-Walker metric and

that lens galaxies can be modelled as non-evolving singu-

lar isothermal spheres (SIS). If one drops the �rst assump-

tion, the cosmological parameters �

0

, 


0

andH

0

lose their

signi�cance; the second assumption allows easy calcula-

tion but, more importantly, is probably justi�ed within
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the attainable accuracy (see Krauss & White (1992) for

a discussion). In order to have a well-de�ned statisti-

cal quantity, which is based on the optical depth d� for

`strong' lensing events,

1

this discussion is limited to grav-

itational lens systems with sources which are multiply im-

aged (! image separation) by isolated (! negligible clus-

ter inuence) single galaxies and with known source and

lens redshifts. An additional requirement is that the sys-

tem must have been found without any biases concerning

the redshift of the lens. (See Kochanek (1992) for a dis-

cussion of these selection criteria.)

Making use of the fact that the SIS produces a constant

deection angle, i.e., independent of the position of the

source with respect to the optical axis (de�ned as passing

through observer and lens), one can de�ne the angular

cross section �a

2

of a single lens for `strong' lensing events

(Turner et al. 1984):

�a

2

= 16�

3

�

v

c

�

4

�

D

ds

D

s

�

2

; (1)

where v is the one-dimensional velocity dispersion of the

lens galaxy, c the speed of light and D

ds

(D

s

) the angu-

lar size distance between lens and source (observer and

source). Following Kochanek (1992), one can arrive at an

expression for the optical depth as follows.

For a �xed mass and mass distribution (! v), world

model and z

s

, the di�erential optical depth due to all

lenses of a given mass as a function of z

d

is of course

proportional to the number of lenses of the given mass

per z

d

-interval and to the cross section for strong lens-

ing events. In order to arrive at an expression for d� for

a �xed image separation, one needs to know the relative

number of lenses which, under the given circumstances,

can produce this image separation. This can be done by

using the Schechter luminosity function (Schechter 1976)

as well as the Faber-Jackson and Tully-Fisher relations

(Faber & Jackson 1976, Tully & Fisher 1977), which give

the dependence of the velocity dispersion on the luminos-

ity for elliptical and spiral galaxies, respectively. Bringing

in the familiar parameters and dropping all terms which

are concerned only with normalisation, one arrives, after

some tedious but trivial calculations, at the expression

d�

dz

d

= (1 + z

d

)

2

a

a�



2

�

a

a�

D

s

D

ds

�



2

(1+�)

�

D

2

d

1

p

Q(z

d

)

exp

 

�

�

a

a�

D

s

D

ds

�



2

!

; (2)

where a� := 4�

�

v�

c

�

(v� := v of an L� galaxy),  is the

Faber-Jackson/Tully-Fisher exponent, � the Schechter ex-

ponent, D

d

the angular size distance between the observer

and the lens and

Q(z

d

) := (1 + z

d

)

2

(


0

z

d

+ 1� �

0

) + �

0

: (3)

1

See Schneider et al. (1992) for a clari�cation of the concept

of optical depth in lensing.

Equation (2) is independent of the Hubble constant since

the dependences on H

0

in the angular size distances

and in the Faber-Jackson/Tully-Fisher relation cancel.

In order to facilitate comparison with other authors, we

have chosen the `standard values' �1:1, 2.6, 4, 144 km/s

and 276 km/s for the Schechter exponent, the Tully-

Fisher exponent, the Faber-Jackson exponent, v�

spiral

and

v�

elliptical

, respectively. (The value for v�

elliptical

includes

the factor (3=2)

1

2

advocated by Turner et al. (1984) and

so our elliptical galaxies correspond to the c = 2 models

examined by Kochanek (1992).)

The optical depth depends on the cosmological model

through Q(z

d

) as well as through the angular size dis-

tances, because of the fact thatD

ij

= D

ij

(z

i

; z

j

; �

0

;


0

; �).

The inuence of �, which gives the fraction of homoge-

neously distributed, as opposed to compact, matter is

felt only in the calculation of the angular size distances,

whereas the cosmological model in the narrower sense

makes its inuence felt here as well as through Q(z

d

).

In general, there is no analytic expression for the D

ij

;

they can be obtained by the solution of a second-order

di�erential equation. (See Kayser (1985) for the deriva-

tion of the di�erential equation, also Linder (1988) for

a more general formulation. For an equivalent derivation

for �

0

= 0 see Schneider et al. (1992). Kayser et al. (1995)

give a general discussion and an easy-to-use numerical im-

plementation.) If one has an e�cient method of calculating

the angular size distances, it is easy to evaluate Eq. (2) for

various world models described by the parameters �

0

, 


0

and �.

Worthy of note is the independence of Eq. (2) on the

source luminosity function (which of course will generally

itself depend on z

s

as well), the relative numbers of galaxy

types (the galaxy type for a particular lens is known) and

the fraction of galaxies in clusters (the method looks only

at �eld galaxies); these factors have to be taken into ac-

count when doing statistics based on the total number of

lenses. Also, Eq. (2) is insensitive to �ner points of the

mass model such as core radius and ellipticity (cf. Krauss

&White (1992), Narayan &Wallington (1992)). The main

idea is to compare the observed distribution of lens red-

shifts with theoretical expectations for various world mod-

els; the method is described in the next section.

Equation 2 can take on appreciable values at interme-

diate redshifts even though the lens galaxy would be too

faint to be seen at the redshift in question (m > m

lim

).

In order to correct for this e�ect, we have calculated the

redshift at which the lens galaxy would become too faint

to have its redshift measured for the investigated cosmo-

logical model and truncated d� at this point. (Details in

the next section.) It is immediately obvious that failure to

correct for the faintness of the lens galaxies will arti�cially

exclude cosmological models with a high median redshift

in Eq. (2), which might otherwise not be excluded.
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Table 1. Gravitational lens systems used. For references see Refsdal & Surdej (1994) and references therein. Note that �

00

corresponds to the radius of the Einstein ring or half the image separation

name images �

00

source m

source

z

s

lens m

lens

z

l

comments

0142-100 2 1.1 QSO B = 17.0 2.719 EG R = 19.0 0.493 `typical' multiply

B = 19.1 imaged QSO

0218+357 2 + ring 0.165 radio lobe 0.94 SG r � 20 0.6847 `radio ring'

1115+080 4 1.15 QSO B = 17.2 1.722 EG R = 19.8 0.29

B = 17.2

B = 18.7

B = 18.2

1131+0456 2 + ring 1.05 EG, radio lobe 1.13 EG R = 22 0.85 `radio ring'

1654+1346 ring 1.05 radio lobe 1.74 EG R = 18.7 0.254 `radio ring'

3C324 3 1.0 AGN R = 22.7 1.206 SG R = 22.5 0.845

R = 23.3

3. Calculations

The following gravitational lens systems meet our selec-

tion criteria: 0142-100 (= UM 673 ), 0218+357, 1115+080

(= Triple Quasar), 1131+0456, 1654+1346 and 3C324.

(See Table 1 for observational data on these systems.) We

considered the following ranges of values for the cosmo-

logical parameters:

�10 < �

0

< +10

0 < 


0

< 10

0 < � < 1

which, of course, are much larger than contemporary

knowledge demands. However, the history of cosmology

shows that the knowledge of today is often out of fashion

tomorrow, so that we prefer to develop an approach capa-

ble of dealing with a wide range of cosmological models.

Also important is the fact that it would be an additional,

though by no means necessary, point in favour of the valid-

ity of the method if it assigns the highest probability to a

cosmological model within the presently accepted canoni-

cal parameter space.

We looked at 100� 100 models in the �

0

-


0

plane for

� = 0:0; 0:3; 0:5; 0:7; 1:0 for m

lim

= 23:5

and

m

lim

= 23:5; 24:5; 1 for � = 0:5

(Johnson R magnitudes). In addition, we looked at 100�

100 models in the �-


0

and m

lim

-


0

planes for the special

cases of �

0

= 0 and k = 0.

Before one can examine the relative probability of a

given cosmological model, one must �rst see if it is com-

patible with the observations. (Of course, this does not

imply that the model is compatible with all observa-

tions, merely with the ones necessary for this analysis:

z

l

, z

s

, �

00

and galaxy type.) One obvious restriction is that

the largest source redshift z

s;max

in the sample must be

smaller than z

max

, the maximum redshift possible in the

cosmological model in question. (See, e.g., Stabell & Refs-

dal (1966) or Feige (1992) for a discussion of these cosmo-

logical models.) Another restriction concerns the bright-

ness of the lens. From the observables z

l

, z

s

, �

00

and galaxy

type one can use Eq. (1) to calculate the velocity disper-

sion v, transform this to an absolute luminosity using the

Faber-Jackson or Tully-Fisher relation and then calculate

the apparent magnitude for the given cosmological model

(given by the angular size distance up to powers of (1+z

l

)

and K-corrections

2

). If this calculated lens brightness for

2

The apparent luminosity of the lens galaxy was calculated

for the Johnson R-band using the K-corrections of Coleman,

Wu & Weedman (1980) and applying a standard B � R cor-

rection (since the B-band Faber-Jackson and Tully-Fisher re-

lations were used). Since these K-corrections are based on dis-

placement of standard spectra at z = 0 which extend into the

UV-band, they are given only up to z = 2:0, where evolution-

ary e�ects would in any case have to be considered. However,
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at least one lens is fainter than m

lim

then the model is

also incompatible with the observations. Since a realistic

value for m

lim

is at least a magnitude fainter than any

m

lens

value in Table 1, there is no danger that the actual

cosmological model would be excluded by this restriction,

even allowing for the uncertainty in calculating the lens

brightness in the matter described.

In these two cases we assigned the corresponding world

model a probability of 0 in our plots, indicated by white.

Since the value 0 doesn't occur otherwise, all white areas

are due to these two restrictions. Otherwise, to measure

the relative probability of a given cosmological model, we

de�ned the quantity f as follows:

0 < f :=

R

z

l

0

d�

R

z

s

0

d�

< 1; (4)

where z

l

is the observed lens redshift for a particular sys-

tem. (z

d

is used to denote the variable corresponding to

lens redshift as opposed to the measured value for a partic-

ular lens.) The distribution of the di�erent f values (one

for each lens system in the sample) in b equally-sized bins

in the interval ]0,1[ gives the relative probability p of a

given cosmological model, with

p =

b

Y

i=1

1

n

i

!

(5)

where n

i

is the number of systems in the i-th bin. This

de�nition allows only a few discrete values, of course. The

variable b is a free parameter; since the most information

is obtained when b is equal to the number of systems, we

adopt this value for b.

Were the other observables the same for all systems,

the redshift distribution should be given by Eq. (2); since

this is not the case, the quantity f is de�ned, which al-

lows one to compare the observed with the expected red-

shifts for di�erent observables and hence di�erent relative

probability curves (Eq. (2)) for each system. Our ansatz

is thus to expect that the f-values should be uniformly

distributed for the correct cosmological model (barring in-

trinsic scatter, of course). Simple combinatorics (the num-

ber of ways to distribute a objects in b bins) and neglect-

ing normalisation then leads to Eq. (5). For a given world

model, the 6 f-values (one for each gravitational lens sys-

tem used) are calculated, and these values are used to

determine the relative probability via Eq. (5).

4. Results and discussion

Figure 1 shows the relative probability of several cosmo-

logical models as given by Eq. (5). The grey scale in all

in most cases the galaxy becomes too faint at modest redshifts,

so the assumption of no evolution made throughout this paper

is probably justi�ed.

Table 2. Values of the relative probability in the plots in Fig. 1

p 1 2 3 4 5 6 7 9 10 11 12 13

1

1

x

1

2

x x x x

1

4

x x x x x x x x x

1

6

x x x x x x x x x x x

1

8

x x

1

12

x x x x x x x x x x x

1

24

x x x x x x x x

1

36

x x x x x

1

48

x x x x x x x x x

plots is the same, regardless of the maximum and mini-

mum values of each individual plot. The resolution is 0.2

in �

0

and 0.1 in 


0

, thus giving 10.000 di�erent models.

The scale is at the right. (Because the relative probabil-

ity can only take on a few discrete values, contour levels

aren't very useful as indicators of the relative probability,

since they would merely indicate the boundaries between

areas of constant probability. In order to indicate the val-

ues directly, Fig. 1 plots the relative probability on a grey

scale. Although in themselves not important, the inter-

ested reader can read o� the probabilities directly in the

legend, where the discrete values which actually appear in

the plots have been marked. In addition, Table 2 gives the

values of the relative probability which occur in each plot.)

All plots except (9), (10), (12) and (13) are in the �

0

-


0

plane. Plot (8) gives some orientation in this plane. The

diagonal line from upper left to lower centre corresponds

to k = 0; the six curves are, left to right, for ht

0

= 4, 5,

6, 8 and 10 �10

9

a (h := H

0

� 100

�1

km

�1

� s �Mpc) as well

as the border to the so called bounce models, i.e. models

with no big bang and thus a maximum redshift z

max

; the

line on the right corresponds to q

0

= �5. The values of

the �xed parameters � and m

lim

are indicated on each

plot. Although some of the area in this plane is de�nitely

excluded

3

by simple arguments, a probability has been

computed for each world model, in keeping with the sec-

ond of our motivations mentioned above. In the white area

at the right the probability is 0 because these world models

have a maximum redshift lower than the highest redshift

in Table 1; in plots (1), (2), (3) and (7) there is an addi-

tional white area (p = 0) separated from the �rst one by a

strip where p > 0 due to the fact that at least one lens is

fainter at its observed redshift than m

lim

. (The brightness

of the lens was not used as an additional constraint due

mainly to the fact that the computed brightnesses are only

correct to about a magnitude or so (Kochanek 1992).)

3

Even though not every point in the plane, i.e. every combi-

nation of �

0

and 


0

, corresponds to a world model which can-

not be excluded by simple arguments, nevertheless the ranges

of the individual parameters are allowed assuming the lowest

realistic values for H

0

and the age of the universe.
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(5) � = 0:0, m

lim

= 23:5 (13) �

0

= 0, � = 0:5

(4) � = 0:3, m

lim

= 23:5 (8) orientation (12) �

0

= 0, m

lim

= 23:5

(3) � = 0:5, m

lim

= 23:5 (7) � = 0:5, m

lim

= 24:5 (11) � = 0:5, m

lim

=1

(2) � = 0:7, m

lim

= 23:5 (6) Kochanek (10) k = 0, � = 0:5

(1) � = 1:0, m

lim

= 23:5 (9) k = 0, m

lim

= 23:5

Fig. 1. Results for the systems in Table 1. The relative probability for di�erent cosmological models is plotted linearly on

the scale shown at the right, where the discrete values which appear in the plots are marked. Fixed parameters are indicated

above each plot. For comparison, the results for the systems used in Kochanek (1992) are included in plot (6). Plot (8) is for

orientation
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Looking at plots (1), (2), (3), (4), (5), (7) and (11) the

general impression is that, apart from some small-scale

structure at the lower right of the p > 0 area which ap-

pears to be signi�cant, there is not much structure. Since

there are only discrete values of p, there are some dis-

continuities. Apart from this large-scale-structure, how-

ever, there is not much change from world model to world

model. The curves along which the probability is constant

are more vertical than horizontal, suggesting that this

method better probes �

0

than 


0

. Although not of any

use statistically, for each plot in Fig. 1 the Kolmogorov-

Smirnov probability (see Sect. 5) was also computed. In

the interest of brevity, we have not included these plots

here; however, the structure is qualitatively similar (with-

out the sharp discontinuities, of course) and also hints

at the signi�cance of the small-scale structure mentioned

above.

Plots (1), (2), (3), (4) and (5) show the e�ect of vary-

ing �. As one can see, the general structure doesn't change

much, especially if one concentrates on the area near the

roughly vertical thin strip (which would still be allowed

assuming higher values for H

0

and/or the age of the uni-

verse) for relatively low 


0

values (


0

< 4, say). This is

compatible with the result of Fukugita et al. (1992) which

indicates only a weak dependence of the lensing cross

section on �. � enters into the calculation only in the

computation of the angular size distances, whereas �

0

and 


0

also enter the calculation through the function

Q(z

d

) as de�ned in Eq. (3). Also, the particular combina-

tion of the angular size distances involved in computing

the lensing cross section, (D

d

D

ds

)=D

s

(see, e.g., Fukugi-

ta et al. (1992) or Kochanek (1992); in Eq. (2) the explicit

dependence on D

d

has been lost in the necessary variable

transformation and integration (cf. Kochanek (1992))), is

relatively insensitive to �. This is not true, for exam-

ple, for the combination D

ds

=(D

d

D

s

), which is impor-

tant for computing H

0

from the time delay between the

di�erent images of a multiply imaged source (cf. Fukugi-

ta et al. (1992)).

Plots (3), (7) and (11) show the e�ect of varying m

lim

.

Of course, the additional white area described above be-

comes smaller as m

lim

becomes fainter, disappearing for

m

lim

! 1 (this condition is su�cient but not necessary

for every lens galaxy to be brighter thanm

lim

for the world

models examined). The main di�erences, however, occur

in the small-scale structure at the lower right of the p > 0

area: the fainterm

lim

becomes, the less probable the mod-

els near the border of this area appear. For example, if one

compares the models near the Einstein-de Sitter model

(�

0

= 0 and 


0

= 1) with the models near the de Sitter

model (�

0

= 1 and 


0

= 0), two models which have been

examined rather extensively in the literature on lensing

statistics, especially in the direction `perpendicular' to the

curves dividing di�erent probabilities, then one sees that

for m

lim

= 23:5 and m

lim

= 24:5 those near the de Sitter

models have a roughly equal but slightly higher relative

probability than those near the Einstein-de Sitter model;

only for m

lim

= 1 is the situation reversed, those near

the Einstein-de Sitter model having a clearly higher prob-

ability.

This is easy to understand, since it is these models

near the de Sitter model which have a maximum in d�

at relatively large redshifts (cf. Kochanek (1992)); for re-

alistic values of m

lim

, one cannot see the lens galaxies at

these redshifts. If one uses a realistic value for m

lim

, one

compares the redshift distributions for the di�erent world

models (given by Eq. (2)) at small redshifts, where they

don't di�er very much. If one takes m

lim

= 1, implying

that one could measure the redshifts of the lenses at all

redshifts, whatever their brightness, then it appears that

models with a large median redshift in Eq. (2), such as

those on the right hand border of the p > 0 area includ-

ing the models with a large cosmological constant exam-

ined by Kochanek (1992), are improbable. However, this is

merely a selection e�ect. The relatively low lens redshifts

in Table 1 don't mean that world models with a large me-

dian lens redshift are improbable; it means that we can't see

the lenses at these redshifts. Comparing probability distri-

butions assuming that we could arti�cially excludes these

models in preference to models like the Einstein-de Sitter

model with a small median lens redshift. Introducing m

lim

makes the situation more realistic, but means comparing

the distributions at small redshifts. Thus, the power to

discriminate between various world models is reduced.

For realistic values of m

lim

, such as those in plots (3)

and (7), the exact value ofm

lim

isn't very important; what

does make a di�erence is assuming a value which is much

too faint. This is easy to understand, since, near the red-

shift where a lens galaxy typically becomes fainter than a

realistic value for m

lim

, the function m(z

d

) is rather steep.

This means that a change in m

lim

by a magnitude or two

corresponds to a relatively small change in z

d

and thus to

a correspondingly small change in the area under the d�

curve up to this z

d

value; thus, there is little inuence on

the value of f as de�ned in Eq. (4). This is illustrated in

Fig. 2.

For comparison, we have also tested the method on

the systems used by Kochanek (1992), using m

lim

= 1

und � = 1, both of which he implicitly assumes.

4

The re-

sults are in plot (6) where the relative probabilities are

1

6

,

1

2

and 1 and comparing the various models examined by

Kochanek con�rm his conclusions. For instance, the rela-

tive probabilities of the Einstein-de Sitter and de Sitter

model are 1 and

1

6

, con�rming his result that at, �-

dominated models are 5{10 times less probable than stan-

dard ones. (However, taking m

lim

into account and/or us-

4

Of course, when one considers �nite values for m

lim

, one

cannot include systems with lens redshifts which have been

determined by means other than measured emission redshifts,

such as absorption lines (which assumes that the lens is also

the absorber).
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Fig. 2. The relative di�erential optical depth (thin curve) and

the calculated lens brightness m (thick curve) as functions of

z

d

. The world model is the de Sitter model (�

0

= 1:0 


0

= 0:0;

the value of � doesn't matter since there is no matter) and

the observables are those for the gravitational lens system

0142 � 100 (see Table 1). The ordinate gives the magnitude

in Johnson R

ing only directly measured lens redshifts would produce

quite di�erent results, as discussed above.) This plot ar-

ti�cially indicates a low probability for models near the

de Sitter model for the same reasons as those discussed in

connection with plot (11).

Plots (9) and (10) examine the inuence of � andm

lim

,

respectively, for the special case k = 0. Plots (12) and

(13) examine the inuence of � and m

lim

, respectively, for

the special case �

0

= 0. In plots (9) and (12) one can

easily see the weak dependence on �, especially for small

values of 


0

. In plots (10) and (13) one can see the even

weaker dependence on m

lim

in this range. There are hints

toward fainter magnitudes of a declining probability for

small 


0

values, as discussed above. The white area at

the left in plots (10) and (13) is due to the fact that at

least one lens is fainter at its observed redshift than the

corresponding m

lim

value. (Since these m

lim

values are

unrealistically small, these models are not incompatible

with the observations.)

At �rst glance, the `oscillations' in the relative prob-

ability might appear somewhat puzzling. According to

Eq. (5), a higher probability is obtained for a more regular

distribution. Since Eq. (5) only allows discrete values for

the relative probability, a `jump' occurs when the num-

ber of systems in a certain bin changes (unless o�set by

a corresponding change in another bin). This can be seen

l
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Fig. 3. `Oscillations' in the relative probability. The thin hori-

zontal lines are the bin boundaries. The thick curves show, from

top to bottom, the f -values given by Eq. (4) for the gravita-

tional lens systems 1131+0456, 3C 324, 0218+357, 0142�100,

1115 + 080 and 1654 + 1346, respectively. Since two systems

have such large lens redshifts that d� is practically = 0 at the

corresponding redshift, their f -values (in these world models)

are practically = 1 and cannot be distinguished from each other

or from the bin boundary at f = 1 in the resolution of the plot.

Table 1 shows that these are the two highest lens redshifts in

the sample. Beneath the lines and curves, shown in the same

way as in Fig. 1, is the corresponding relative probability

in Fig. 3, where for demonstration purposes the f-values

given by Eq. (4) for each gravitational lens system used

are plotted as functions of �

0

for k = 0 and � = 0:3.

(That is, for the world models along the k = 0 line in

plot (4) in Fig (1).) It can be seen that, although|due to

the de�nition|the relative probability changes by notice-

able amounts between a few discrete values, nevertheless

the f-values themselves are smoothly varying functions of

the world model. Figure 3 also makes the following general

conclusions clear in this speci�c example.

{ The fact that a couple of systems have f-values which

are practically = 1 limits the maximum probability,

since these are always in the same bin.

{ `Oscillations' between di�erent probabilities have no

physical signi�cance, but rather are merely artifacts

of the particular lens redshifts. On the other hand,

extremely low probabilities, e.g. all six systems in the

same bin (p =

1

720

), would be more indicative of a

low-probability cosmological model.

{ Apart from the oscillations, a trend (the f-values in-

creasing to the left in Fig. 1) can be seen which would
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indicate a probability low enough to reject the cor-

responding cosmological models, were the parameter

space examined larger. Thus, the method might be

able to exclude `extreme' cosmological models.

The interested reader can use Fig. 3 together with Eq. (5)

to see how the relative probability is arrived at.

The statistical signi�cance of all results in this section

is discussed in the next section.

5. Numerical simulations

Numerical simulations were done for m

lim

= 23:5 and

for � = 1. This value of m

lim

= 23:5 is the most realis-

tic based on the present state of observations and using

only one value for m

lim

= 23:5 as well as for � is justi-

�ed based on the weak dependence of the results on these

parameters, as discussed in Sect. 4.

The observables �

00

(the radius of the Einstein ring or

half the image separation corresponding to the diameter

of the Einstein ring), z

s

and galaxy type were chosen ran-

domly from an interval roughly corresponding to the ob-

served range of values in order to produce synthetic data

comparable to real observations. It is important to note

that neither the exact range nor the shape of the distribu-

tion matters, since the method looks at the redshift dis-

tribution of the lenses with the other parameters �xed by

observation. For convenience, a at distribution was cho-

sen for each of the observables. For a given cosmological

model, the corresponding lens redshift z

l

for each system

was calculated from the observables and a randomly gen-

erated f through (numerical) inversion of Eq. (4). This

catalog was then used to determine a relative probabil-

ity for each of the points in the �

0

-


0

plane in the same

manner as for the real systems.

With the probability given by Eq. (5), based on sim-

ple combinatorics, one cannot know to what degree the

values for each cosmological model are inuenced by sta-

tistical uctuations. However, with such a small number

of systems, there is really no other method of computing a

relative probability. We expect that the distribution of the

f-values, barring statistical uctuations, should be at for

the correct cosmological model. So we need a test to com-

pare this distribution with a at probability distribution.

The Kolmogorov-Smirnov (K-S) test is of course a well un-

derstood method for testing if two distributions are statis-

tically signi�cantly di�erent. (See, e.g., Press et.al. (1992)

for a general discussion and de�nition of the K-S probabil-

ity.) However, this test can only be used for distributions

with more than � 20 data points. For purposes of com-

parison, for the systems in Table 1 not only was the prob-

ability de�ned in Eq. (5) computed (shown in Fig. 1) but

also the K-S probability. The K-S probability should of

course not be taken seriously if there are too few systems.

We have done simulations for a variety of world mod-

els and also for numbers of systems between 20 and 50. In

the interest of brevity, we present only one plot. Figure 4

l
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Fig. 4. Results based on a catalogue of 50 simulated systems.

(Note the di�erent scale on the axes.) The cosmological model

used to generate the lens redshifts is the homogeneous Ein-

stein-de Sitter model (� = 1:0, �

0

= 0:0, 


0

= 1:0). The grey

scale is as in Fig. 1

shows the results derived from a catalogue of simulated

gravitational lens systems. Since, even with 50 systems,

no area can be excluded based on the K-S probability {

the white area has p = 0 due to the fact that at least

one lens would be fainter than m

lim

in these world mod-

els, as discussed above { we conclude that, although one

can qualitatively understand the physics which at least in

part is responsible for the results presented in Fig. 1, the

actual relative probabilities are more indicative of intrin-

sic scatter in the redshifts of the lenses than a hint of the

correct cosmological model.

6. Summary and conclusions

In this paper we have extended the method originally pro-

posed by Kochanek (1992) for using the redshift distri-

bution of gravitational lenses to learn something about

the cosmological model. This method is particularly at-

tractive since it avoids the normalisation di�culties nor-

mally associated with lensing statistics. First, we made

use of the equation derived by Kayser (1985; see also

Kayser et al. 1995) to be able to examine cosmological

models described by arbitrary values of �

0

, 


0

and �. Sec-

ond, we looked at the inuence of observational bias by

introducing the parameter m

lim

. (This means that we can-

not include systems where the lens redshift has been esti-

mated by some other means than an emission spectrum.)
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Third, we used a more quantitative statistic to look at

relative probabilities.

Since the potential reward from using the Kochanek

formalism (setting limits on cosmological parameters bet-

ter than with other methods using only observable quanti-

ties and standard assumptions whose validity in this con-

text is undisputed) seemed large, our basic idea was to

extend this formalism to enable it to look at a larger num-

ber of cosmological models (arbitrary values for 


0

and

�

0

as well as �) while correcting an obvious limitation

(selection e�ects due to the brightness of the lens) and

using a variation of his statistic (Kochanek (1992) basi-

cally uses our statistic with two bins) which allows more

information about the distribution of the redshift values

to be used. That is, we intended to follow the formalism

of Kochanek (1992) as closely as possible. Unfortunately,

the fact that the relative optical depth given by Eq. (2) is

appreciably di�erent only for those cosmological models

in which this di�erence cannot be seen due to the selec-

tion e�ect renders the technique less useful than we had

hoped.

We saw that little extra uncertainty in the derived val-

ues for �

0

and 


0

is introduced by letting � be a free pa-

rameter. The same is true of m

lim

with the exception that

values which are unrealistically faint distort the results.

A comparison with the results of Kochanek (1992), con-

�rmed with our formalism, also show the consequences of

neglecting m

lim

.

An interesting result is the degeneracy of the derived

relative probability along curves roughly parallel to curves

of constant world age in the �

0

-


0

plane. This indicates

that the method is more sensitive to �

0

than to 


0

, but

also shows that demonstrating the consistency of a given

cosmological model with the observations using this sta-

tistical method also implies consistency with a large range

of other cosmological models.

The dramatic di�erence caused by not neglecting m

lim

casts doubt on the degree to which present observations,

based only on the redshift distribution,

5

are able to rule

out certain cosmological models; in particular, at models

with a large cosmological constant, having a high median

5

More information is available in theory by looking at not

only the redshift distribution, i.e., the shape of the curve, but

also the number of lenses, i.e., the area under the curve. This,

however, introduces additional uncertainties due to normalisa-

tion. Additionally, one could consider the completeness of the

sample, as pointed out to the authors by the referees. For ex-

ample, the number of lens systems with unmeasured redshifts

could in principle be used to exclude cosmological models in

which the redshifts could have been measured, or the other

way around. This requires information regarding the reasons

as to why the redshifts haven't been measured|the e�ects of

the cosmology should be separated from the current observa-

tional stand, which requires a detailed analysis of the observa-

tional literature, or a separate observational programme, both

of which are beyond the scope of this paper.

expected lens redshift, become more probable through in-

troducing m

lim

.

Nevertheless, plots (6) and (11) gives an idea of what

could be done, if one were able to measure the redshifts of

the faintest lens galaxies. For a given image separation, the

calculated brightness of the lens galaxy has a minimum at

some intermediate redshift; this is typically at about 30

m

in R, so that larger telescopes and advances in image pro-

cessing will probably be able to make some progress on

this front in the next several years. If one were able to

measure the lens redshift at the minimum brightness, this

would have the side-e�ect of eradicating the dependence

on m

lim

. On the other hand, probably more would be lost

than gained, because it would no longer be possible to ne-

glect evolutionary e�ects. For this reason, one could sup-

pose that more progress in the immediate future (barring

a revolution in the understanding of evolutionary e�ects)

will probably come from increasing the number of usable

systems (through the discovery of more systems and/or

through measuring more redshifts in known systems) than

from pushing m

lim

to fainter values.

The results of using the method on synthetic data,

however, cast doubt on the statistical signi�cance of our

results and on the hope of using this method to exclude

certain cosmological models, especially those which cannot

be excluded by other tests. Thus, being conservative in our

appraisal of what the statistics of redshifts of gravitational

lenses can tell us, we conclude that at present and in the

foreseeable future this method will probably not give us

any useful information.

Acknowledgements. It is a pleasure to thank S. Refsdal and

T. Schramm for helpful discussions.

References

Carroll S.M., Press W.H., Turner E.L, 1992, ARAA, 30, 499

Coleman G.D., Wu C.-C., Weedman D.W., 1980, ApJS, 43,

393

Fukugita M., Futamase K., Kasai M., Turner E.L., 1992, ApJ,

393, 1

Faber S.M., Jackson R.E., 1976, ApJ, 204, 668

Kayser R., 1985, Ph.D. thesis, University of Hamburg

Kayser R., Helbig P. & Schramm T., 1995, in preparation

Kochanek C.S., 1992, ApJ, 384, 1

Krauss L.M., White M., 1992, ApJ, 394, 385

Linder, 1988, A&A, 206, 190

Narayan R., Wallington S., 1992, Introduction to basic con-

cepts of gravitational lensing. In: Kayser R., Schramm T.,

Nieser L. (eds.) Gravitational Lenses. Springer-Verlag, Hei-

delberg, p. 12

Press W.H., Flannery B.P., Teukolsky, S.A., Vetterling W.T.,

1986, Numerical Recipes. Cambridge University Press,

Cambridge, p. 469

Refsdal S., Surdej J., 1994, Rep. Prog. Phys., 56, 117

Schechter P., 1976, ApJ, 203, 297

Schneider P., Ehlers J., Falco E.E., 1992, Gravitational Lenses.

Springer-Verlag, Heidelberg

Tully R.B., Fisher J.R., 1977, A&A, 54, 661



10 Helbig & Kayser: Cosmological parameters and lens redshifts

Turner E.L., Ostriker J.P., Gott J.R., 1984, ApJ, 284, 1

Feige B., 1992, Astr. Nachr., 313, 139

Stabell R., Refsdal S., 1966, MNRAS, 132, 379

This article was processed by the author using Springer-Verlag

L

a

T

E

X A&A style �le L-AA version 3.


