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Is there a flatness problem in classical cosmology?
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ABSTRACT

| briefly review the flatness problem within the context ofsdigal cosmology and examine
some of the debate in the literature with regard to its dédimiand even the question whether
it exists. | then present some new calculations for cosmodbgnodels which will collapse
in the future; together with previous work by others for migdehich will expand forever,
this allows one to examine the flatness problem quantitgtiez all cosmological models.
This leads to the conclusion that the flatness problem doesxist, not only for the cosmo-
logical models corresponding to the currently popular &alaf Ay and€2, but indeed for all
Friedmann—Lemaitre models.
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with the dimensionless constaktequal to—1, 0, +1 depending
on spatial curvature (negative, vanishing or positivepeetively);
R is the scale factor (with dimension length) of the universehe
gravitational constanty the density,A the cosmological constant
(dimension time?) andc the speed of light. It is useful to define
the following quantities:

1 INTRODUCTION

ke @)
The flatness problem has been called one of the outstandazggsu
in cosmology (e.g. Dicke & Peebles 1979). This in itself ithea
puzzling in view of the fact that the arguments in favour dfeing

a problem are rather vague and heuristic, while quantéaigu-
ments have been presented against the claim that it is agpnoklt
least for some classes of cosmological models (e.g. Coledlig& E
1997; Lake 2005). The flatness problem is one of the main @otiv

tions for the inflationary scenario (Guth 1981). Of cour§¢hére g = £k
is no flatness problem (or, indeed, even if there were no @otiv R
tion at all for inflation), this does not mean that inflatioruttbnot N = A
have occurred. However, it does mean that inflation shouldao 3H?
taken as given based on the belief that it explains away ttreefia 0 = e _  8nGp
problem and thus without it classical cosmology leads taiabs Perit e
conclusions.
The plan of this paper is as follows. In Section 2 | present the K = fi+a-1
basic equations needed in the rest of the paper, mainly taedefi _BR _ _h _a
my notation (unfortunately, there is not a uniform notatiorthe 9 = The = mar =32
literature) and give an overview of the entire cosmologpaiam- which are all dimensionless except thét has the dimension
eter space relevant to the discussion. Section 3 gives fHisie time™!. H is the Hubble constanty the normalized cosmologi-
torical overview of the flathess problem and some qualigsdirgu- cal constant(2 the density parametek, = sign(K) andgq is the

ments against it. In Section 4 | discuss a hew quantitatigeraent
regarding cosmological models which will collapse in thaufa.
Sections 5 and 6 discuss previous quantitative resultshsrefor
other classes of cosmological models. Section 7 summaitiees
results for all cosmological models.

deceleration parametéiFor A = 0 andk = 0, p = perit = %
This density is ‘critical’ in the sense that, for = 0, a greater
(lesser) density implies a positive (negative) curvaturd a uni-
verse (assumed to be expanding now) which will collapseariuh
ture (expand forever); similarly, fdr = 0, a greater (lesser) density
implies a negative (positive) cosmological constant andigense
(assumed to be expanding now) which will collapse in thertuitu

2 BASIC COSMOLOGY (expand forever). However, in the general case4(0 and A # 0),

| assume that, at the level of detail necessary, the uniasde

described by the Friedmann-Lemaitre equation L ¢ > 0implies that the universe decelerating; the minus sign is included
in the definition since at the time of its invention it was ased that\ = 0
which implies thaty > 0 (or ¢ = 0 in the case of a universe devoid of
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periv doesn’t have any special meaning, thoughiemains a use-
ful parameter. Equation (1) can be rearranged, using theitiefis
above, to give

_ c sign(K)
H /KT
thusR is positive fork = +1 and negative fok = —1; for k = 0,
R can be defined a§.
It can be useful to express equation (1) with the values of the

dimensionless parameters as observed now, denoted byftixe su
0. This leads to

@)

. o (QRo = MR?
R2=R3( 7t 72 —Ko> )
or, making use of the definition df,

QoR} KoR?
H2=H§( F o - ;20). @)
(Note that, with
Ry

= —-1
2= (5)
this leads to
dz dz dR dz -
where
F(2) = Qo1+ 2)° = Ko(1+2)°> + Xo @)

which is the starting point for calculating light-traveinte and dis-
tance as a function of redshift.) In general, A and(2 all change
with time. Note that since

Ly, ®

H
the change in\ with time is due entirely to the change #f with
time, sinceA is constant. Also, since the densjtys inversely pro-
portional to the cube oR,

2 RO 3
) ()
the variation in( is due both to variation i and to the decrease
in density as the universe expands.

In general,A and (2 evolve with time. (They do not for the
(A,€2) values of(0,0) (Milne model), (0,1) (Einstein—de Sitter
model),(1, 0) (de Sitter model) and for the static Einstein model [in
which A and(2 are infinite (though\ andp are not;A = 47 Gp)
since H is 0].) For an excellent discussion of the evolution)of
and ) (though expressed in the older notation using= % and
q = o — ), see Stabell & Refsdal (1966). For a classification based
on the evolution ofA and(2 using the more modern notation used
in the present paper, see table 1, fig. 1 and section a.i. ibigHel
(1996)? For the present discussion, the basic information needed
can be seen in Fig. 1 [for derivation, see Stabell & Refsda6)]
which shows an overview of the-Q) plane. The vertical line cor-
responds to\ = 0; the diagonal line corresponds ko= 0 with
k = —1 below it andk = +1 above it. The curve near the vertical
line [corresponding to the Al curve in Stabell & Refsdal (66

/\:)\o(
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Figure 1. The A\-Q plane. See text for details.

separates models which will collapse (to the left) from ghaghich
will expand forever (to the right). Models on the curve start
bitrarily close to the Einstein—de Sitter model (like allhrempty
big-bang models) and asymptotically approach the statistEin
model which has\ = Q = oo (sinceH = 0; A and p have
finite values). The other curve [corresponding to the A2 eunv
Stabell & Refsdal (1966)] separates big-bang models (tdeftp
from non—big-bang models (to the right); the latter cortfeam
an infinite to a finite size then expand forever. Models on three
start at the static Einstein model and asymptotically apginahe
de Sitter model (the latter feature is shared with all modeigch
expand forever and have > 0). Fig. 2 shows some sample trajec-
tories in the\-(2 parameter space superposed in Fig. 1. Note that all
the lines and curves in Fig. 1 correspond to trajectorieadtition,
there are models at the intersections of the lines witl§X) values
of (0, 0) (the Milne model),(0, 1) (the Einstein—de Sitter model),
(1,0) (the de Sitter model) and éto, co) (the Einstein model); in
these \ and(2 are constant in time. Also, note that the trajectories
do not cross; this means that the history of a cosmologicalano
(i.e. the way\ and€2 change with time) is completely determined
by the values at any point on it (in practice, by measuringvtile
ues at the present timgy and(2). Since the lines and curves are
also valid trajectories, this means that the signa ahd K cannot
change and that a model with = 0 at any time ha$) = 0 at all
times.

Fig. 3 shows contours of constahtt, i.e. the age of the uni-
verse in units of the Hubble tim@{~!). The relation between these
contours and the trajectories shown in Fig. 2 is importantlie
discussion in Sections 4 and 6. Note that this is a smooth afid w
behaved function ok and(?, independent of the geometry (global
curvature), origin and fate (big bang or not, recollapseterral
expansion) or contents (matter, cosmological constant)efini-
verse (except of course that the age of the universe is iafimthe
A2 curve; contours to the right of the A2 curve indicate thedi
since the minimum of the scale factor).

© 2012 RAS, MNRASDOQ, 1-9
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Figure 2. Evolutionary trajectories in th&-Q plane.
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Figure 3. The age of the universe in units & 1. From upper left to lower
right, contours are at 0.4, 0.6, 0.8, 1.0, 1.0, 0.8, 0.6, 4082 Between the
two contours at 1.0 is the A2 curve which correspondsctoTo the left of
the curve the contours indicate the time since the big bantet right they
indicate the time since the universe started expanding fterminimum
size.

3 ABRIEF HISTORY OF THE FLATNESS PROBLEM

The flatness problem appears in two forms. One states thatifl
today, then in the early universe it was arbitrarily closé;tthe as-
sumption is that some ‘mechanism’ is needed to explain firis-
tuning’ (e.g. Guth 1981). (It is usually not stated but altred®ays
assumed that no fine-tuning would be necessaffere notx 1
today.) The other states thati¥fchanges with time, then we should
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be surprised tha® is (still) ~ 1 today (e.g. Lake 2005). In other
words, the problem is that the mechanism wherghig forced to
be~ 1 is unknown. Solving one of these variants of the flathess
problem does not necessarily solve the other variant.

[Historically, the flatness problem was first discussedrdyd
time when\ was thought to be zero. Thus, most discussions took
this as given. As mentioned above, in this c@se- 1 corresponds
to k = 0, i.e. a flat universe, hence the name ‘flatness problem’
for the question why the universe is (nearly) flat today cdeisi
ing thatQ) evolves away fronf2 = 1 (kK = 0) with time. If A
is not constrained to be zero, then the flatness problem cHomul
re-phrased as the Einstein—de Sitter problem, i.e. thetiqneis
why the universe is (in some sense) close to the Einsteinitde S
ter model (which is an unstable fixed point and a repulsorayod
when|\| and(2 can take on values betweemndoo. However, for
brevity | will continue to use the term ‘flathess problem’ evier
the more general case and sometimes mention only the change i
Q with time. Nevertheless, it is important to keep in mind (tgb
it doesn’t change the thrust of the argument in all cased)thea
discussion should really be about the Einstein—de Sittaslpm.]

One possible ‘solution’ to the flatness problem is simply to
claim thatQ2 = 1. In this case (for\ = 0), sincef) doesn't evolve
with time, no explanation is needed as to wily~ 1 today; in
other words, we don't have to worry about living at a spediakt
Of course, the fact tha® just happengo be 1 is thought by some
to be improbable in some ill-defined sense, so it is more cwAvi
ing if there is some mechanism, such as inflation, which presgu
Q = 1 to at least a very good approximation, rather than having
to rely on the lucky coincidence of living in a cosmologicabael
in which © does not change with time. (Of course, the Einstein—
de Sitter model is now ruled out by observations. Before s
the case, the argumerf2 ‘must be exactlyl because if not it will
evolve away to to an arbitrarily large or arbitrarily smalwe’ was
indeed used.) However, this solution does not work in pcacis
has been pointed out by Guth (1981) and Coles & Ellis (1997):
even if our universe is described by the Einstein—de Sittedeh
when averaged over large scales, this is obviously not tke ca
smaller scales; any deviations from the Einstein—de Sittedel
would then grow with time, even if the entire universe wei, st
on average, described by the Einstein—de Sitter model,atonth
would not expect our observable universe to be describectlgxa
by the Einstein—de Sitter model at a ‘random’ time.

Note that a flat universe(= 0, Q + A = 1) doesn't really
offer much of an advantage. Though it is true tha®ift A = 1
then this equation always holds, while in general the surimis-t
dependent, the same argument can be applied to the valaenof
the flat case as in the case df= 0. In other words, although it
is true that in a flat univers@ + X doesn’'t change with timeQ
itself suffers from the same ‘problem’ it does in the= 0 case
(except in the special cases of the Einstein—de Sitter nadbthe
de Sitter model). Thus, for the flatness problem in the broselese
of the term (i.e. understanding wk¥ = 1 today), the cosmological
model favoured by observationdy ~ 0.7, Qo ~ 0.3, k = 0to
very good precision) is actually worse than the EinsteinSitter
model, even if it were exactly flat.

Another solution discussed by Coles & Ellis (1997) is to deny
that it is a problem that we live at some special time in théohjs
of the universe, since it is not equally likely that we couilglat
any time; this is of course the weak anthropic principle. Wlthe
weak anthropic principle certainly plays some role in deiaing
the probability of observing given values of the cosmolagiza-
rameters, it is not obvious that it can quantitatively ekpiahy our
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universe is so close to the Einstein—de Sitter model. In @sgc
most people would probably prefer an explanation which dbes
rely on the anthropic principle. | shall return to the weakhaopic
principle in Section 6. [Note that a perfectly spatially flaiverse
is always perfectly spatially flat, and thus does not suffemfthe
‘special time’ problem with regard to flatness (though onghmi
need some explanation for the perfect flatness itself). Mewe
it still suffers from the Einstein—de Sitter problem (extépthe
cases of the Einstein—de Sitter universe and the de Sitiezrse
in which there is no evolution of and(?).]

One definition of a ‘special time’ is a time such that the ra-
dius of curvature is comparable to the distance to the @artir
event) horizon or the radius of the Hubble sphere. Since leige
these quantities are not simply proportional and evolvieaiftly
with time, it could be seen as a coincidence (possibly neeeiia
planation) if they are comparable. A perfectly flat univensth an
infinite radius of curvature doesn’t have this problem sitieera-
dius of curvature is always infinite. However, this ‘advagtaof
a flat universe is not so much a solution to the time-scalelpnob
as a statement that it doesn’t exist (with respect to theutiool of
the curvature radius) in such a universe; one could stillvalsat
‘causes’ the universe to be spatially flat. Also, as notedr@pa
spatially flat universe still suffers from the ‘Einstein-8igter prob-
lem’. (This coincidence problem is similar to, but distificim, the
flatness problem. If at all, it exists only far= 0 and2 < 1. | plan
to discuss this in a future paper. As is shown below, thissctds
models is somewhat atypical with respect to the flatnesslgmgb
this is also the case for the coincidence problem. Sihee0 was

that it exists for many other values as well, indeed for alugs,
could lead to the conclusion that it is not a problem at alisT
thus a qualitative argument against the existence of thitagiize
flatness problem.

Evrard & Coles (1995) (see also Coles & Ellis 1997) also point
out that the assumption implicit in the qualitative flatnpssblem,
namely that some wide range @fvalues are a priori equally likely
at some early time, constitutes a prior which is incompatibith
the assumption of minimal information. This can be regardsed
a quantitative solution to the qualitative flatness problem per-
haps, an argument against its existence).

The qualitative flatness problem thus does not exist; it is
merely a consequence of the way in which a universe, destribe
by the Friedmann—Lemaitre equation, evolves and how difoan
less observable quantities such(sre defined. Suppose one is
standing at the bottom of the famous Leaning Tower of Pisa and
observes a cannonball dropping past one’s face to the gréond
some absolute sense it is travelling slowly (its speed istmiess
than the speed of light, say). One can measure the accetesatd
calculate that, at a tim&i,, in the past, its velocity must have been
extremely ‘finely tuned’ to almost zero. In fact, at a finitmé in
the past, its velocityvas zero, and at that time it was at a partic-
ular place (say, the top of the tower). What's more, otheectsj
which, due to the effects of air resistance, are falling jpas at
other speeds aml found to be ‘finely tuned’ so that their velocity
was 0 at a given time in the past (and for all objects, the heigh
that time is the same).

Obviously, there is nothing at all puzzling about this seena

a common assumption when these problems were first discussedNevertheless, this is the type of ‘evidence’ which is ofteesgnted

sometimes particular features of this class of models astaken
for generic features of Friedmann-Lemaitre models.)
These three ‘solutions’ to the flatness problef? = 1 (and
A = 0), k = 0, anthropically selected special time — are thus un-
satisfactory. Are there any satisfactory ones?

3.1 The qualitative flatness problem: Is a fine-tuning of
initial conditions required?

The flatness problem is often presented as a fine-tuning garobl
(e.g. Guth 1981): if2 is near 1 to day, then at some timhg. in the
past it must have been 1 to a very high accuracy. | refer tsthise
of the flatness problem as the ‘qualitative flatness prohldris
argument is completely bogus, as has been pointed out by awany
thors (e.g. Coles & Ellis 1997; Lake 200%)li non-empty models
begin their evolution at the Einstein—de Sitter model, somfrse
the further back in time one goes, the ‘more finely tur@ds. The
point is, within the context of classical cosmology, theradthing
special about a timés,. chosen so thd® is very close to 1 at that
point. Times such as the Planck time are often used in example
of the flatness problem, but not only is the Planck time ixafe
within purely classical cosmology but also there is no kndiex
ory which predicts the likelihood distribution @& values at this
(or any other) time. This should be obvious from the fact tbat
anyvalue of() today, one can choose a timig,. such that? is as
close to 1 as desired. In other words, the flatness ‘problenuilav
still exist if 2 were appreciably greater or less than 1 today, only
the timetsne for a given degree of fine tuning would occur at an
earlier time. (Why this is less mysterious for many peopleas
clear to me.) Thus, the ‘problem’ still remains. (Also, thegcee of
fine tuning required for there to be a ‘problem’ is not well def,
but is arbitrary and subjective.) Alternatively, if the ptem is seen
as a problem connected with the observed valu®,dghen the fact

for the ‘existence of the flatness problem’, withtaking the place
of velocity (being 1 at the beginning and not 0, of course)guAr
ment from analogy can be misleading, so one should put mithe fa
in quantitative arguments.

In the above case, the solution is obviously to be found in the
initial conditions: Galileo is dropping objects from theptstorey.
In fact, in the cosmological case the lack of a need for fimeénty
is even more obvious. While Galileo could give the objecténan
tial velocity rather than just dropping them, any non-emipiy-
bang universe described by the Friedmann—Lemaitre exjuati
ways begins arbitrarily close to the Einstein—de Sitter ehothere
is no need for fine-tuning since there is no possible rangaloie
at the initial time. See Section 3.2 for the discussion ofraeshat
better, but still flawed, analogy. Nevertheless, even # itdt a puz-
zle why Q2 = 1 at early times, one can still ask whether we should
be surprised thd® =~ 1 today.

3.2 The quantitative flatness problem: Should we be
surprised that Qg = 1?

What is the relation between the two forms of the flathess-prob
lem discussed above? Within the context of classical casgyol
the first statement, that the universe was arbitrarily closéhe
Einstein—de Sitter model near the beginning, is almostyswiaie.

(It is always true for non-empty big-bang models. For empodm
els, similar arguments apply: Far< 1, the starting point is not the
Einstein—de Sitter model but rather the Milne modek Q2 = 0).
For A > 1 the starting point is the de Sitter model & 1 and

Q = 0), although these are not big-bang but rather bounce models.
(The limiting case of the de Sitter model itself can be thdugfh
as a hig-bang model in which the big bang occurred in the tefini
past.) Another non-big-bang model is the static Einsteidehdt
first sight, this model seems completely different than timstein—

© 2012 RAS, MNRASDOQ, 1-9



de Sitter model. However, mathematically both are unstfidel
points. Interestingly, Eddington (1930) argued that tkis imark
against the Einstein model, since it is unstable (thus ahliko
hold in a realistic universe): the attraction due to gradhd the
repulsion due to the cosmological constant are exactlynoath
Since the density of matter decreases if the universe espamnd
vice versa, it is unstable not only to changes in the valuehef t
cosmological constant or the density per se, but also tortiepa
from the static state. The Einstein—de Sitter universe salle in
exactly the same sense: as long as it is not perturbed, thesval
of the cosmological parameters remain constant; if theyeaes
slightly different, they evolve away from the pure Einstale Sit-
ter state. Of course, in some sense this is not a problem giwee
assume that the universe is exactly described by the Frieama
Lemaitre equation, then the behaviour at all times is fitieeke is
no way to perturb it. On the other hand, if only because theanse

is not completely homogeneous, the Friedmann—Lemaitratezm
cannot be exact, so the objection is a valid one. Interdgtitiie
same argument is rarely used against the Einstein—de 8iiter
verse, even though mathematically both are unstable fixedsgo
and hence suffer from the same weakness. [In fact, the argume
is turned aroundbecausehe Einstein—de Sitter universe is unsta-
ble, if the observational constraints on the cosmologieshmeters
describing our universe are compatible with the EinsteenSd-
ter model, it is much more probable that our universe is desdr
(almost) exactly by the Einstein—de Sitter model, rathantbne
nearby in the parameter space. Of course, the caveats irgard
‘probable’, ‘almost’ and ‘nearby’ mentioned above makesthn
invalid line of argument.] In both cases, a universe describx-
actly by the model in question would be stable (but would amnt
no cosmologists, since these presumably require inhonedtizss)
and of course could not be perturbed from ‘outside the usa/er
while a realistic universe would be at least locally unsablen if
the model were an accurate description of a large-scalageeOf
course, the static Einstein universe was ruled out obsenally
before the Einstein—de Sitter universe was, but while olagienal
arguments themselves are essential, they should not in8uehat
should be purely theoretical or mathematical arguments.jlia-
cussed above, this can be interpreted to mean that thistasbe
flatness problem exists for all cosmological models (i.gardless
of what values we observe fag and(), which means that in this
respect there is nothing special about our universe, oittisatot a
problem at all, but just a consequence of definitions. Otsligthe
second form of the problem ({2 evolves, even to arbitrarily large
values in a finite time, should we be surprised if itis1?) holds
only if Q ~ 1 today; on the other hand, holding that the first form
is not a problem (which, as outlined above, | am not aloneamt!
ing) does not automatically solve the second problem. Theafe
this paper is concerned mainly with the second form: showdbev
surprised thaf? ~ 1 today? This ‘quantitative flatness problem’ is
more subtle, but also has solutions within the context afsital
cosmology.

An analogy often used in discussing the flatness problem is

that of a tightrope walker (e.g. Coles & Ellis 1997; Coles 200
The Einstein—de Sitter model corresponds to the balangbtidpe
walker. As long as he stays balanced, he will stay where Iois-
ever, a slight deviation will grow, quickly bringing the kitrope
walker far from the tightrope. If one walks by a circus tenaatar-
bitrary time and looks inside, one would expect to find thittigpe
walker either balanced on the tightrope or on the ground htre-
ing fallen; it is extremely improbable that one would jusppan

to see him during his fall. The ground corresponds to one &f th

© 2012 RAS, MNRASDOQ, 1-9
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extreme values of2 (oo or 0). Every statement of the quantitative
flatness problem essentially follows this example. Werevalid
analogy, then there would indeed be a quantitative flatness p
lem. In the following sections, | will show quantitativelyhy the
analogy is wrong and hence why there is no quantitative fatne
problem.

4 COSMOLOGICAL MODELS WHICH COLLAPSE IN
THE FUTURE: A NEW SOLUTION TO THE
FLATNESS PROBLEM

All cosmological models (assumed to be expanding now) with

0 will collapse in the future? is negative for all values aR and
for large R is proportional toR. Models withA = 0 will collapse
for Q > 1. In addition, models with\ > 0 will collapse provided
thatQ > 1 (which in this case implie& > 0,i.e.k = +1),q > 0

anda < 1, where

270% )\

4K3
(Stabell & Refsdal 1966; Lake 2005). (The Al and A2 curves-men
tioned above have = 1.) In Fig. 1, these are in the area between
A = 0 and the Al curve. Empty big-bang models start arbitrarily
close to the Milne model withX,©?) values of(0, 0); non-empty
big-bang models start arbitrarily close to the EinsteinSiter
model with (\,£2) values of(0, 1). The evolution of\ and2 can be
viewed as trajectories in the parameter spacand(2 evolve from
the starting point to infinity and return along the same ti@gy.
[For the definitive discussion, see Stabell & Refsdal (1966)ery
useful visualisation can be found at Leahy (2003).] Not¢ sah
trajectories do not intersect; this means that a trajedsonpiquely
determined by measuring and{2 at any one time (practical is of
course doing so now).

The fact that\ and(2 evolve toco (and back) in a finite time
immediately illustrates what is wrong with the tightropedier
analogy for these models: the proper analogy for a univetrgehw
will collapse in the future would be a tightrope walker whbhé
falls off the tightrope, doesn't stop when he hits the grqumat
rather continues through the Earth and to infinity and baok)Ifi
approaching the tightrope from below until he is ultimatalgnost
balanced again. It should be immediately obvious that is thise
all values of\ and$2 cannot be equally probable. Making the anal-
ogy more quantitative, it turns out that the tightrope wal&etu-
ally spends most of his time between the rope and the floos, thu
we shouldnot be surprised to find him somewhere between the
tightrope and the ground when we look inside the tent. Inrothe
words, there is no quantitative flatness problem in theseatsod

To quantify this, | have calculated the quotient of the agdef
universe now and at the time of maximum expansion as a functio
of XA and2. The age of the universe is given by

a = sign(K) (10)

R(t)

t:/ dR
| oo

2
RO

(11)

_ KO)

which follows from equation (3). For the current age, the arpp
limit is given by equation (2); at the time of maximum expamsit
is found by calculating the (smallest) zero®f (since2? cannot
be negative). This is shown in Fig. (4). Itis clear that largkies of
A and2 occur only during a relatively short time in the history of
the universe, near the time of maximum expansion (at theg@ec
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Figure 4. The age of the universe as a fraction of the time between the bi
bang and maximum expansion. Contours, from right to leé,ar0.5, 0.6,
0.7,0.8 and 0.9.
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Figure 5. The age of the universe as a fraction of the time between the bi
bang and maximum expansion. Contours, from the upper leftat0.5,
0.4,0.3,0.2and 0.1.

time of maximum expansion\ and2 are infinite sinced = 0).
Fig. 5 shows the same for > 0. While the constraints aren't quite
as strong here, in the Section 5 | show that a different argtime
renders many of the models in this part of parameter spadesiynl

Note that this argument is completely independentFf
whatever the value ofiy, i.e. whatever the age of the universe,
models which recollapse have large values\and {2 for only a
relatively short time.

02 04 06 08 10 12 14 16 1.8
A

Figure 6. The constant of motion. (see equation (10)). From upper left to
lower left, contours are at 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 5D¥00.

5 COSMOLOGICAL MODELS WHICH EXPAND
FOREVER: REVERSING THE FINE-TUNING
PROBLEM

An interesting point has been made by Lake (2005), though it i
implicit in Stabell & Refsdal (1966): there are many cosngidtal
models which expand forever in which, althougrand) evolve
with time, they never stray very far from their initial vakién par-
ticular, there are many models for whiéhis roughly0 today and
which never deviate very far from this value. LookingFatrather
than just, these models don't suffer from a flatness problem in the
restricted sense, though as mentioned above the same angume
apply to2 (and analogously td\) as apply in thex = 0 case,
i.e. they still suffer from the Einstein—de Sitter problexeverthe-
less, if, as observations suggest~ 0 and0 < Ao < 1, then large
values of\ and(2 never occur during the evolution of the universe.
However, this is not really a satisfactory solution, sirtcasisumes
the observed values ofy and (), rather than explaining why we
observe these or similar values and the Einstein—de Sitbdtgm

still exists (especially in respect @ becoming arbitrarily small in
the future).

More interesting is an argument due to Lake (2005) which
solves the Einstein—de Sitter problem as well for modelsh wit
k = +1 which will expand forever. (For models which will expand
forever, large values ok and (2 are possible only fok = +1.)
Trajectories in the\-Q plane have a constant of motion given by
equation (10} It seems natural to distinguish cosmological mod-
els on the basis of their value of. Large values of\ and( are
possible only fora < 1. This is shown in Fig. 6. (Note that, for
clarity, only Q2 > 1 is shown!) It is obvious that < 1 is a neces-
sary condition for having infinitely large values bdfor Q2. Already

3 This makes it much easier to plot trajectories than by catid A and
Q as a function of time, though of course the latter is necgs$ame is
interested in the amount of time spent during a particulatiee of the
trajectory.
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for a = 2 the maximum value oA is just 2 (forQ2 = 2) and the
maximum value of2 is =~ 3.5 (for A = 1.25).

In this case, the fine-tuning argument is reversed; only én th
case of fine-tuning do. and Q2 become arbitrarily large. [l& is
seen as a free parameter which can take on any value betwegen
andoo, then a ‘random’ value would probably be arbitrarily large,
corresponding td{ ~ 0 to a very good approximation. Interest-
ingly, this is what observations seem to indica&; ~ 0 to within
(by now quite good) observational accuracy, but with no Ekgc
interesting values fohg or . For Ko ~ 0 andA > 0, A and
Q evolve from(0, 1) (the Einstein—de Sitter model) {a, 0) (the
de Sitter model, like the Einstein—de Sitter model a fixechpoi
though an attractor rather than a repulsor) without anyelaedues
of A or 2 along the way; forA\ < 0 (in which case the universe
always recollapses), large values do occur but, as showweabo
only during a relatively short time during the history of thei-
verse.] This demonstrates quantitatively that there is unemtjta-
tive flatness problem regarding arbitrarily large values\air
for models which expand forever. [Some models which repska
but which have\ > 0 also haven &~ 1; this provides an addi-
tional argument against the existence of the flatness prolte
these models which complements that made in Section 4 (where
for A = 0, that argument is somewhat weaker).] This argument
is also independent of the value &f,. However, all non-empty
models which expand forever asymptotically approach thsiter
model at(), Q) = (1,0). Thus, one final aspect of the quantitative
flatness problem remain§ can become arbitrarily small. This is
investigated in the next section.

If we want to use the tightrope-walker analogy to examine
large values of\ and(2 in models which expand forever, we can
think of the ground representing arbitrarily large valués\and
Q). However, in this case the tightrope walker is secured byetysa
line of finite length, which prevents him from reaching thewnrd
(and, as he swings back up after his fall, causes the values of

The flatness problem in classical cosmology?

6 COSMOLOGICAL MODELS WHICH EXPAND
FOREVER: THE WEAK ANTHROPIC PRINCIPLE

I have now covered the entive() parameter space except for big-
bang models with (a) < 0 (which impliesA > 0) and (b)$2 less
than= 2 (all three values of are possible) and shown that in all
cases there is no flatness problem. What about this remadoing
tion of parameter space? Models here all hAve: 0 and approach
the de Sitter model asymptotically. This means that thene i#at-
ness problem in the restricted sense, as pointed out by RaKs).
However (2 becomes arbitrarily small (andarbitrarily close to 1).
Thus, there is still a problem in that we do not observe sutiega
even though they exist for almost the entire (infinite) lifet of the
universe.

This is essentially the question ‘if the universe lastsJerg
then why are we near the beginning?’ Note that this questoitdc
be asked at any time. One could leave it at that and say thag sin
any finite age is arbitrarily close to the beginning, theraedathing
special about our time and thus no flathess problem in the-time
scale sense (i.e. the quantitative flatness problem, wiyriet ar-
bitrarily small today).

One can do better by invoking the weak anthropic princi-
ple: cosmological parameters can be observed only to hduesra
which permit the existence of cosmologists. For the firsetithe
analysis is not independent &f. In the de Sitter modeld is con-
stant in time. Hence, in models which asymptotically apphate
de Sitter model H approaches a constant value (which is not that
different from Hy). If H is similar to the observed value &y,
then small values of2 (and values of\ near 1) occur only in the
relatively distant future of the universe. It is difficult estimate
the probability that cosmologists exist at such future srmut it
is clear that humans in their present form probably won'sexin
this sense, we don't observe an arbitrarily small valu€dfince
we probably wouldn't exist in such a universe. This is due toot
the small value of2 itself but rather to the fact that in the far future
there will be no main-sequence stars etc. While this is onlyedis-
factory as any use of the weak anthropic principle, (a) tbisscthot
mean that the argument is invalid, (b) it is needed only te out

and(2 to decrease). The only way he can reach the ground is in the arbitrarily small values of) (and not arbitrarily large ones, which

finely tuned case that his rope is long enough, i.e. infinitehg
(since the ground corresponds to arbitrarily large valifes and
Q).

are ruled out by other arguments above) and, (c) as pointelyou
Lake (2005), in the restricted sense there is no flatnesdgmob
(i.e. K =~ 0 during the entire lifetime of the universe). Fig. 7 il-
lustrates this: only arbitrarily old models are arbitnaglose to the
de Sitter model. One can see that arbitrarily small value @r

Another class of models which expand forever are the bounce Values ofA arbitrarily close to 1) occur only wheH ¢ approaches

models in which the universe contracts from infinity to a érstze
before expanding forever. For those neardhe- 1 curve [the A2
curve in Stabell & Refsdal (1966)], the same arguments apply
for those on the other side of the curve: only for~ 1 are large
values ofA and(2 possible for a significant period of time. These
models begin at the de Sitter model withand €2 increasing to
oo in a finite time and return along the same trajectory inXHe
parameter space, in this respect similar to the models wdvth
lapse in the future, thus the argument against the flatneddeon
is similar in the two cases. To be sure, these models havdiaiten
extent in time in both directions, so in this sense there atness
problem (or, more precisely, no ‘de Sitter problem’, analag to
the Einstein—de Sitter problem discussed above) sinceateyl-
most always arbitrarily close to the de Sitter model. If wease
starting values forx and 2 which are not arbitrarily close to the
de Sitter model, then the argument is completely analogmtisat
for collapsing models.
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Since the quantityf¢ is determined by, and(2,, one could
have an arbitrarily young universe arbitrarily close to deeSitter
model if Hy were arbitrarily large. However, such a universe will
spend only a short time near the Einstein—de Sitter modathwh
probably means that structure, and hence cosmologistddwot
form in such a universe.

[Since Ht has a finite value (namel) for A = 0 and2 = 0
and, for H near the observed value &f,, the age of the universe
for = 0 would be approximately the same as the observed age,
one might get the impression that, far= 0, observing an arbi-
trarily small value ofQ2g wouldn’t be that unlikely. However, this
is the case for a universe whichésgactlydescribed by the Milne
model, which means that it is empty and hence contains no cos-
mologists. The situation is somewhat different when cceréidy
the Milne model as the asymptotic value of a universe Witk 0
but2 > 0. ForA = 0 and0 < Q < 1, the universe approaches
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Figure 7. Evolutionary trajectories superposed on contours of eonigf ¢.
Starting at the lower right and moving along a curve perpandr to the
trajectories, contours fax are at 0.2, 0.4, 0.6, 0.8,1.0,1.2,1.4,1.6, 1.8, 2,
3,4,5,6,7,8,9, 10, 20, 50, 100, 200, 500, 1000 and 2000. Famlst
diagonal line forK = 0 corresponds tax = oco. Continuing below this
line, the order is reversed. From upper left to lower rigottours forH¢

are 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, &5(which corresponds to
a =1),15,14,13,1.2,1.1, 1.0,0.9, 0.8, 0.7. Those to thiet rif co
measure the time since the universe was at its minimum size.

the Milne model asymptotically and approaches$. In this case,
an arbitrarily small2 is reached only after an arbitrarily long time,
so a similar argument applies as in the caseXas 0: if H now
is near the observed value &fy, then this happens in the far fu-
ture when there are no more main-sequence stars etc. Orntire ot
hand, if one assumes an age near the current observed aggtbut w
an arbitrarily small value of2, then this implies that the universe
spent only a relatively short time near the Einstein—deSittodel
and hence structure formation would be difficult.]

If we want to use the tightrope-walker analogy to examine the
behaviour at arbitrarily large times in models which exptordver,
we can think of the ground representing the de Sitter modiébrA
the tightrope walker falls off, he falls towards the groubdt his
speed slows with time, so that he never actually reachegtid.

7 SUMMARY

The qualitative flatness problem, i.e. the puzzle why theemse
was arbitrarily close to the Einstein—de Sitter mddatlearly times,
does not exist. It is merely a consequence of the waynd(2 are
defined. Neither does the quantitative flatness problent: exdis
though the cosmological parameters in general evolve witb,t
it is not puzzling that we don’t observe extreme values femth
today. In the case of models which will collapse in the futtlvis
is because large (absolute) values)oénd 2 occur only during
a relatively short time in the lifetime of such a universemedy

4 Or, for an empty universe, the Milne or de Sitter model.

near the time of maximum expansioh.and{2 can become large
only whenH becomes small, and this happens only during the time
when the universe is at or near its maximum size. [Arbityahall
(absolute) values, if they occur at all, also occur for onlglatively
short time]. For models which will expand forever, largeues are
possible only fork = +1. However, this occurs only far =~ 1. In

this case, the fine-tuning argument is reversed; only in dse of
fine-tuning doA and(2 become arbitrarily large. Since all models
which will expand forever asymptotically approath= 0, arbi-
trarily small values of2 can occur. Those with = 0 (and hence

k = —1) approach the Milne model witfe = 0; models with

A > 0, whatever the value df, approach the de Sitter model with

A = 1 (the Milne and de Sitter models themselves are of course
stationary points). (Ih = 0 at any time them\ = 0 at all times.
Otherwise, arbitrarily small values of, if they occur at all, occur
only for a relatively short time.) However, i, has a value similar

to or smaller than the observed value, small valueQ wfill occur
only in the far future when anthropic arguments probably erthle
observation of such a low value 6f unlikely. While (for A > 0)

a higher value ofd, would allow a low value of2 even for an
age near the observed age, such a universe would have spent on
a very short time during whick was not very small, so structure
formation would have been strongly suppressed.

It is interesting to note that the three arguments presdraesl
make it unlikely that we would observe extreme values\gfor
Qo. This automatically solves the so-called coincidence lgrab
which has been called deeply puzzling (e.g. Tegmark, Vilesk
Pogosian 2005).

Also interesting is that in the appendix to his seminal pa-
per, Guth (1981) anticipates much of the subsequent digtuss
He points out that even though essentially all cosmologieadels
begin arbitrarily close to the Einstein—de Sitter univetse quali-
tative flatness problem), this still leaves the questioroaslity the
universe is so close to the Einstein—de Sitter universeytdttee
quantitative flatness problem). He also rejects the ideqsiime
basic principle must force the universe to conform exadailyhe
Einstein—de Sitter model on the grounds that this is obWowisly
an approximation in the case of the real universe (see theislis
sion of this above). He basically recasts the flathess pmobkethe
longevity problem: fine tuning is required in order that timéverse
does not recollapse or thin out to extremely low density iwithn
very short time. However, this argument relies on an assoempt
for the value ofH,, while our arguments do not need this assump-
tion except in the third category. Also, as | have shown heven
in an extremely short-lived universe (which of course riaqses),
extreme values of or (2 are observed only during a relatively small
fraction of the lifetime of the universe.

If there is no flatness problem, what does this mean for infla-
tion? If there is no flatness problem (or, indeed, even ifalveere
no motivation at all for inflation), this does not mean thdtan
tion could not have occurred. However, it does mean thattiofla
should not be taken as a given based on the belief that itiaspla
away the flatness problem and thus without it classical ctmgmo
leads to absurd conclusions. Inflation also solves the naaemd
isotropy problems. However, the monopole problem seemsto b
more a problem with theories of particle physics than witbrsol-
ogy (Narlikar & Padmanabhan 1991) while Barrow (1995) ckim
that there is no isotropy problemlf all of these claims are true,

5 Itis, however, debatable whether Barrow’s conclusion igex®ral as he
claims or depends too strongly on his assumptions.
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then this still does not prove that inflation didn’t happent the
necessity for inflation or something like it is weakened if de-
stroyed altogether.

Acknowledgments

I thank Nils Bergvall, Leéon Koopmans, Rolf Stabell and EZi&-
ckrisson for comments on the manuscript. Figures were mextiu
with the GRAL software package written by Rainer Kayser.

REFERENCES

Barrow J. D., 1995, Phys. Rev. D, 51, 3113

Coles P., 2009, The Cosmic Tightropehttp://
telescoper.wordpress.com/2009/05/03/
the-cosmic-tightrope/

Coles P, Ellis G. F. R., 1997, Cambridge Lecture Notes in
Physics, No. 7, Is the Universe Open or Closed? Cambridge
Univ. Press, Cambridge

Dicke R. H., Peebles P. J. E., 1979, in Hawking S. W., Israel W.
eds, General Relativity: An Einstein Centenary Survey. €am
bridge Univ. Press, London, p. 504

Eddington A. S., 1930, MNRAS, 90, 668

Evrard G., Coles P., 1995, Classical and Quantum Gravity, 12
L93

Guth A. H., 1981, Phys. Rev. D, 23, 347

Helbig P., 1996,ANGSIZ User's Guide, preprint (arXiv:astro-
ph/9603028v3)

Kayser R., Helbig P., Schramm T., 1997, A&A, 318, 680

Lake K., 2005, Phys. Reuv. Lett., 94, 201102

Leahy J. P., 2003, Solutions of the Friedman Equatidtp,//
www.jb.man.ac.uk/  ~jpl/cosmo/friedman.html

Narlikar J. V., Padmanabhan T., 1991, ARA&A, 29, 325

Stabell R., Refsdal S., 1966, MNRAS, 132, 379

Tegmark M., Vilenkin A., Pogosian L., 2005, Phys. Rev. D, 71,
103523

This paper has been typeset fromgXmMATEX file prepared by the
author.

© 2012 RAS, MNRASDOQ, 1-9

The flatness problem in classical cosmologyd



