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Is there a flatness problem in classical cosmology?
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ABSTRACT
I briefly review the flatness problem within the context of classical cosmology and examine
some of the debate in the literature with regard to its definition and even the question whether
it exists. I then present some new calculations for cosmological models which will collapse
in the future; together with previous work by others for models which will expand forever,
this allows one to examine the flatness problem quantitatively for all cosmological models.
This leads to the conclusion that the flatness problem does not exist, not only for the cosmo-
logical models corresponding to the currently popular values ofλ0 andΩ0 but indeed for all
Friedmann–Lemaı̂tre models.
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1 INTRODUCTION

The flatness problem has been called one of the outstanding puzzles
in cosmology (e.g. Dicke & Peebles 1979). This in itself is rather
puzzling in view of the fact that the arguments in favour of itbeing
a problem are rather vague and heuristic, while quantitative argu-
ments have been presented against the claim that it is a problem, at
least for some classes of cosmological models (e.g. Coles & Ellis
1997; Lake 2005). The flatness problem is one of the main motiva-
tions for the inflationary scenario (Guth 1981). Of course, if there
is no flatness problem (or, indeed, even if there were no motiva-
tion at all for inflation), this does not mean that inflation could not
have occurred. However, it does mean that inflation should not be
taken as given based on the belief that it explains away the flatness
problem and thus without it classical cosmology leads to absurd
conclusions.

The plan of this paper is as follows. In Section 2 I present the
basic equations needed in the rest of the paper, mainly to define
my notation (unfortunately, there is not a uniform notationin the
literature) and give an overview of the entire cosmologicalparam-
eter space relevant to the discussion. Section 3 gives a brief his-
torical overview of the flatness problem and some qualitative argu-
ments against it. In Section 4 I discuss a new quantitative argument
regarding cosmological models which will collapse in the future.
Sections 5 and 6 discuss previous quantitative results by others for
other classes of cosmological models. Section 7 summarizesthe
results for all cosmological models.

2 BASIC COSMOLOGY

I assume that, at the level of detail necessary, the universecan be
described by the Friedmann–Lemaı̂tre equation

⋆ E-mail: helbig@astro.multivax.de

Ṙ
2 =

8πGρR2

3
+

ΛR2

3
− kc

2 (1)

with the dimensionless constantk equal to−1, 0, +1 depending
on spatial curvature (negative, vanishing or positive, respectively);
R is the scale factor (with dimension length) of the universe,G the
gravitational constant,ρ the density,Λ the cosmological constant
(dimension time−2) andc the speed of light. It is useful to define
the following quantities:

H := Ṙ
R

λ := Λ
3H2

Ω := ρ

ρcrit
≡ 8πGρ

3H2

K := Ω + λ− 1

q := −R̈R

Ṙ2
≡ −R̈

RH2 ≡ Ω
2
− λ

which are all dimensionless except thatH has the dimension
time−1. H is the Hubble constant,λ the normalized cosmologi-
cal constant,Ω the density parameter,k = sign(K) andq is the

deceleration parameter.1 Forλ = 0 andk = 0, ρ = ρcrit =
3H2

8πG
.

This density is ‘critical’ in the sense that, forλ = 0, a greater
(lesser) density implies a positive (negative) curvature and a uni-
verse (assumed to be expanding now) which will collapse in the fu-
ture (expand forever); similarly, fork = 0, a greater (lesser) density
implies a negative (positive) cosmological constant and a universe
(assumed to be expanding now) which will collapse in the future
(expand forever). However, in the general case (k 6= 0 andλ 6= 0),

1 q > 0 implies that the universe isdecelerating; the minus sign is included
in the definition since at the time of its invention it was assumed thatλ = 0

which implies thatq > 0 (or q = 0 in the case of a universe devoid of
matter).
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ρcrit doesn’t have any special meaning, thoughΩ remains a use-
ful parameter. Equation (1) can be rearranged, using the definitions
above, to give

R =
c

H

sign(K)
√

|K|
, (2)

thusR is positive fork = +1 and negative fork = −1; for k = 0,
R can be defined asc

H
.

It can be useful to express equation (1) with the values of the
dimensionless parameters as observed now, denoted by the suffix
0. This leads to

Ṙ
2 = Ṙ

2
0

(

Ω0R0

R
+

λ0R
2

R2
0

−K0

)

(3)

or, making use of the definition ofH ,

H
2 = H

2
0

(

Ω0R
3
0

R3
+ λ0 −

K0R
2
0

R2

)

. (4)

(Note that, with

z :=
R0

R
− 1 (5)

this leads to

dz

dt
=

dz

dR

dR

dt
=

dz

dR
Ṙ = −H0(1 + z)

√

F (z) (6)

where

F (z) = Ω0(1 + z)3 −K0(1 + z)2 + λ0 (7)

which is the starting point for calculating light-travel time and dis-
tance as a function of redshift.) In general,H , λ andΩ all change
with time. Note that since

λ = λ0

(

H0

H

)2

, (8)

the change inλ with time is due entirely to the change inH with
time, sinceΛ is constant. Also, since the densityρ is inversely pro-
portional to the cube ofR,

Ω = Ω0

(

H0

H

)2 (R0

R

)3

, (9)

the variation inΩ is due both to variation inH and to the decrease
in density as the universe expands.

In general,λ andΩ evolve with time. (They do not for the
(λ,Ω) values of(0, 0) (Milne model), (0, 1) (Einstein–de Sitter
model),(1, 0) (de Sitter model) and for the static Einstein model [in
which λ andΩ are infinite (thoughΛ andρ are not;Λ = 4πGρ)
sinceH is 0].) For an excellent discussion of the evolution ofλ

andΩ (though expressed in the older notation usingσ = Ω
2

and
q = σ−λ), see Stabell & Refsdal (1966). For a classification based
on the evolution ofλ andΩ using the more modern notation used
in the present paper, see table 1, fig. 1 and section a.i. in Helbig
(1996).2 For the present discussion, the basic information needed
can be seen in Fig. 1 [for derivation, see Stabell & Refsdal (1966)]
which shows an overview of theλ-Ω plane. The vertical line cor-
responds toλ = 0; the diagonal line corresponds tok = 0 with
k = −1 below it andk = +1 above it. The curve near the vertical
line [corresponding to the A1 curve in Stabell & Refsdal (1966)]

2 This is the arXiv version of Kayser, Helbig & Schramm (1997) but
in contrast to the A&A paper contains the User’s Guide as well; also
available athttp://www.astro.multivax.de:8000/helbig/
research/p/ps/angsiz_guide.ps .
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Figure 1. Theλ-Ω plane. See text for details.

separates models which will collapse (to the left) from those which
will expand forever (to the right). Models on the curve startar-
bitrarily close to the Einstein–de Sitter model (like all non-empty
big-bang models) and asymptotically approach the static Einstein
model which hasλ = Ω = ∞ (sinceH = 0; Λ and ρ have
finite values). The other curve [corresponding to the A2 curve in
Stabell & Refsdal (1966)] separates big-bang models (to theleft)
from non–big-bang models (to the right); the latter contract from
an infinite to a finite size then expand forever. Models on the curve
start at the static Einstein model and asymptotically approach the
de Sitter model (the latter feature is shared with all modelswhich
expand forever and haveλ > 0). Fig. 2 shows some sample trajec-
tories in theλ-Ω parameter space superposed in Fig. 1. Note that all
the lines and curves in Fig. 1 correspond to trajectories. Inaddition,
there are models at the intersections of the lines with (λ,Ω ) values
of (0, 0) (the Milne model),(0, 1) (the Einstein–de Sitter model),
(1, 0) (the de Sitter model) and at(∞,∞) (the Einstein model); in
these,λ andΩ are constant in time. Also, note that the trajectories
do not cross; this means that the history of a cosmological model
(i.e. the wayλ andΩ change with time) is completely determined
by the values at any point on it (in practice, by measuring theval-
ues at the present time,λ0 andΩ0). Since the lines and curves are
also valid trajectories, this means that the signs ofλ andK cannot
change and that a model withΩ = 0 at any time hasΩ = 0 at all
times.

Fig. 3 shows contours of constantHt, i.e. the age of the uni-
verse in units of the Hubble time (H−1). The relation between these
contours and the trajectories shown in Fig. 2 is important for the
discussion in Sections 4 and 6. Note that this is a smooth and well
behaved function ofλ andΩ, independent of the geometry (global
curvature), origin and fate (big bang or not, recollapse or eternal
expansion) or contents (matter, cosmological constant) ofthe uni-
verse (except of course that the age of the universe is infinite on the
A2 curve; contours to the right of the A2 curve indicate the time
since the minimum of the scale factor).
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Figure 2. Evolutionary trajectories in theλ-Ω plane.
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Figure 3. The age of the universe in units ofH−1. From upper left to lower
right, contours are at 0.4, 0.6, 0.8, 1.0, 1.0, 0.8, 0.6, 0.4 and 0.2 Between the
two contours at 1.0 is the A2 curve which corresponds to∞. To the left of
the curve the contours indicate the time since the big bang; to the right they
indicate the time since the universe started expanding fromits minimum
size.

3 A BRIEF HISTORY OF THE FLATNESS PROBLEM

The flatness problem appears in two forms. One states that ifΩ ≈ 1
today, then in the early universe it was arbitrarily close to1; the as-
sumption is that some ‘mechanism’ is needed to explain this ‘fine-
tuning’ (e.g. Guth 1981). (It is usually not stated but almost always
assumed that no fine-tuning would be necessary ifΩ were not≈ 1
today.) The other states that ifΩ changes with time, then we should

be surprised thatΩ is (still) ≈ 1 today (e.g. Lake 2005). In other
words, the problem is that the mechanism wherebyΩ is forced to
be≈ 1 is unknown. Solving one of these variants of the flatness
problem does not necessarily solve the other variant.

[Historically, the flatness problem was first discussed during a
time whenλ was thought to be zero. Thus, most discussions took
this as given. As mentioned above, in this caseΩ = 1 corresponds
to k = 0, i.e. a flat universe, hence the name ‘flatness problem’
for the question why the universe is (nearly) flat today consider-
ing thatΩ evolves away fromΩ = 1 (k = 0) with time. If λ
is not constrained to be zero, then the flatness problem should be
re-phrased as the Einstein–de Sitter problem, i.e. the question is
why the universe is (in some sense) close to the Einstein–de Sit-
ter model (which is an unstable fixed point and a repulsor) today
when|λ| andΩ can take on values between0 and∞. However, for
brevity I will continue to use the term ‘flatness problem’ even for
the more general case and sometimes mention only the change in
Ω with time. Nevertheless, it is important to keep in mind (though
it doesn’t change the thrust of the argument in all cases) that the
discussion should really be about the Einstein–de Sitter problem.]

One possible ‘solution’ to the flatness problem is simply to
claim thatΩ ≡ 1. In this case (forλ = 0), sinceΩ doesn’t evolve
with time, no explanation is needed as to whyΩ ≈ 1 today; in
other words, we don’t have to worry about living at a special time.
Of course, the fact thatΩ just happensto be 1 is thought by some
to be improbable in some ill-defined sense, so it is more convinc-
ing if there is some mechanism, such as inflation, which produces
Ω = 1 to at least a very good approximation, rather than having
to rely on the lucky coincidence of living in a cosmological model
in which Ω does not change with time. (Of course, the Einstein–
de Sitter model is now ruled out by observations. Before thiswas
the case, the argument ‘Ω must be exactly1 because if not it will
evolve away to to an arbitrarily large or arbitrarily small value’ was
indeed used.) However, this solution does not work in practice, as
has been pointed out by Guth (1981) and Coles & Ellis (1997):
even if our universe is described by the Einstein–de Sitter model
when averaged over large scales, this is obviously not the case on
smaller scales; any deviations from the Einstein–de Sittermodel
would then grow with time, even if the entire universe were still,
on average, described by the Einstein–de Sitter model, so that we
would not expect our observable universe to be described exactly
by the Einstein–de Sitter model at a ‘random’ time.

Note that a flat universe (k = 0, Ω + λ = 1) doesn’t really
offer much of an advantage. Though it is true that ifΩ + λ = 1
then this equation always holds, while in general the sum is time-
dependent, the same argument can be applied to the value ofΩ in
the flat case as in the case ofλ = 0. In other words, although it
is true that in a flat universeΩ + λ doesn’t change with time,Ω
itself suffers from the same ‘problem’ it does in theλ = 0 case
(except in the special cases of the Einstein–de Sitter modeland the
de Sitter model). Thus, for the flatness problem in the broader sense
of the term (i.e. understanding whyΩ ≈ 1 today), the cosmological
model favoured by observations (λ0 ≈ 0.7, Ω0 ≈ 0.3, k = 0 to
very good precision) is actually worse than the Einstein–deSitter
model, even if it were exactly flat.

Another solution discussed by Coles & Ellis (1997) is to deny
that it is a problem that we live at some special time in the history
of the universe, since it is not equally likely that we could live at
any time; this is of course the weak anthropic principle. While the
weak anthropic principle certainly plays some role in determining
the probability of observing given values of the cosmological pa-
rameters, it is not obvious that it can quantitatively explain why our
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universe is so close to the Einstein–de Sitter model. In any case,
most people would probably prefer an explanation which doesn’t
rely on the anthropic principle. I shall return to the weak anthropic
principle in Section 6. [Note that a perfectly spatially flatuniverse
is always perfectly spatially flat, and thus does not suffer from the
‘special time’ problem with regard to flatness (though one might
need some explanation for the perfect flatness itself). However,
it still suffers from the Einstein–de Sitter problem (except in the
cases of the Einstein–de Sitter universe and the de Sitter universe
in which there is no evolution ofλ andΩ).]

One definition of a ‘special time’ is a time such that the ra-
dius of curvature is comparable to the distance to the (particle or
event) horizon or the radius of the Hubble sphere. Since in general
these quantities are not simply proportional and evolve differently
with time, it could be seen as a coincidence (possibly needing ex-
planation) if they are comparable. A perfectly flat universewith an
infinite radius of curvature doesn’t have this problem sincethe ra-
dius of curvature is always infinite. However, this ‘advantage’ of
a flat universe is not so much a solution to the time-scale problem
as a statement that it doesn’t exist (with respect to the evolution of
the curvature radius) in such a universe; one could still askwhat
‘causes’ the universe to be spatially flat. Also, as noted above, a
spatially flat universe still suffers from the ‘Einstein–deSitter prob-
lem’. (This coincidence problem is similar to, but distinctfrom, the
flatness problem. If at all, it exists only forλ = 0 andΩ < 1. I plan
to discuss this in a future paper. As is shown below, this class of
models is somewhat atypical with respect to the flatness problem;
this is also the case for the coincidence problem. Sinceλ = 0 was
a common assumption when these problems were first discussed,
sometimes particular features of this class of models are mistaken
for generic features of Friedmann-Lemaı̂tre models.)

These three ‘solutions’ to the flatness problem –Ω ≡ 1 (and
λ ≡ 0), k = 0, anthropically selected special time – are thus un-
satisfactory. Are there any satisfactory ones?

3.1 The qualitative flatness problem: Is a fine-tuning of
initial conditions required?

The flatness problem is often presented as a fine-tuning problem
(e.g. Guth 1981): ifΩ is near 1 to day, then at some timetfine in the
past it must have been 1 to a very high accuracy. I refer to thissense
of the flatness problem as the ‘qualitative flatness problem’. This
argument is completely bogus, as has been pointed out by manyau-
thors (e.g. Coles & Ellis 1997; Lake 2005):all non-empty models
begin their evolution at the Einstein–de Sitter model, so ofcourse
the further back in time one goes, the ‘more finely tuned’Ω is. The
point is, within the context of classical cosmology, there is nothing
special about a timetfine chosen so thatΩ is very close to 1 at that
point. Times such as the Planck time are often used in examples
of the flatness problem, but not only is the Planck time irrelevant
within purely classical cosmology but also there is no knownthe-
ory which predicts the likelihood distribution ofΩ values at this
(or any other) time. This should be obvious from the fact thatfor
anyvalue ofΩ today, one can choose a timetfine such thatΩ is as
close to 1 as desired. In other words, the flatness ‘problem’ would
still exist if Ω were appreciably greater or less than 1 today, only
the timetfine for a given degree of fine tuning would occur at an
earlier time. (Why this is less mysterious for many people isnot
clear to me.) Thus, the ‘problem’ still remains. (Also, the degree of
fine tuning required for there to be a ‘problem’ is not well defined,
but is arbitrary and subjective.) Alternatively, if the problem is seen
as a problem connected with the observed value ofΩ, then the fact

that it exists for many other values as well, indeed for all values,
could lead to the conclusion that it is not a problem at all. This is
thus a qualitative argument against the existence of the qualitative
flatness problem.

Evrard & Coles (1995) (see also Coles & Ellis 1997) also point
out that the assumption implicit in the qualitative flatnessproblem,
namely that some wide range ofΩ values are a priori equally likely
at some early time, constitutes a prior which is incompatible with
the assumption of minimal information. This can be regardedas
a quantitative solution to the qualitative flatness problem(or, per-
haps, an argument against its existence).

The qualitative flatness problem thus does not exist; it is
merely a consequence of the way in which a universe, described
by the Friedmann–Lemaı̂tre equation, evolves and how dimension-
less observable quantities such asΩ are defined. Suppose one is
standing at the bottom of the famous Leaning Tower of Pisa and
observes a cannonball dropping past one’s face to the ground. In
some absolute sense it is travelling slowly (its speed is much less
than the speed of light, say). One can measure the acceleration and
calculate that, at a timetfine in the past, its velocity must have been
extremely ‘finely tuned’ to almost zero. In fact, at a finite time in
the past, its velocitywaszero, and at that time it was at a partic-
ular place (say, the top of the tower). What’s more, other objects
which, due to the effects of air resistance, are falling pastone at
other speeds areall found to be ‘finely tuned’ so that their velocity
was 0 at a given time in the past (and for all objects, the height at
that time is the same).

Obviously, there is nothing at all puzzling about this scenario.
Nevertheless, this is the type of ‘evidence’ which is often presented
for the ‘existence of the flatness problem’, withΩ taking the place
of velocity (being 1 at the beginning and not 0, of course). Argu-
ment from analogy can be misleading, so one should put more faith
in quantitative arguments.

In the above case, the solution is obviously to be found in the
initial conditions: Galileo is dropping objects from the top storey.
In fact, in the cosmological case the lack of a need for fine-tuning
is even more obvious. While Galileo could give the objects anini-
tial velocity rather than just dropping them, any non-emptybig-
bang universe described by the Friedmann–Lemaı̂tre equation al-
ways begins arbitrarily close to the Einstein–de Sitter model. There
is no need for fine-tuning since there is no possible range of values
at the initial time. See Section 3.2 for the discussion of a somewhat
better, but still flawed, analogy. Nevertheless, even if it is not a puz-
zle whyΩ = 1 at early times, one can still ask whether we should
be surprised thatΩ ≈ 1 today.

3.2 The quantitative flatness problem: Should we be
surprised that Ω0 ≈ 1?

What is the relation between the two forms of the flatness prob-
lem discussed above? Within the context of classical cosmology,
the first statement, that the universe was arbitrarily closeto the
Einstein–de Sitter model near the beginning, is almost always true.
(It is always true for non-empty big-bang models. For empty mod-
els, similar arguments apply: Forλ < 1, the starting point is not the
Einstein–de Sitter model but rather the Milne model (λ = Ω = 0).
For λ > 1 the starting point is the de Sitter model (λ = 1 and
Ω = 0), although these are not big-bang but rather bounce models.
(The limiting case of the de Sitter model itself can be thought of
as a big-bang model in which the big bang occurred in the infinite
past.) Another non–big-bang model is the static Einstein model. At
first sight, this model seems completely different than the Einstein–
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de Sitter model. However, mathematically both are unstablefixed
points. Interestingly, Eddington (1930) argued that this is a mark
against the Einstein model, since it is unstable (thus unlikely to
hold in a realistic universe): the attraction due to gravityand the
repulsion due to the cosmological constant are exactly balanced.
Since the density of matter decreases if the universe expands and
vice versa, it is unstable not only to changes in the value of the
cosmological constant or the density per se, but also to departures
from the static state. The Einstein–de Sitter universe is unstable in
exactly the same sense: as long as it is not perturbed, the values
of the cosmological parameters remain constant; if they areeven
slightly different, they evolve away from the pure Einstein–de Sit-
ter state. Of course, in some sense this is not a problem sinceif we
assume that the universe is exactly described by the Friedmann–
Lemaı̂tre equation, then the behaviour at all times is fixed;there is
no way to perturb it. On the other hand, if only because the universe
is not completely homogeneous, the Friedmann–Lemaı̂tre equation
cannot be exact, so the objection is a valid one. Interestingly, the
same argument is rarely used against the Einstein–de Sitteruni-
verse, even though mathematically both are unstable fixed points
and hence suffer from the same weakness. [In fact, the argument
is turned around:becausethe Einstein–de Sitter universe is unsta-
ble, if the observational constraints on the cosmological parameters
describing our universe are compatible with the Einstein–de Sit-
ter model, it is much more probable that our universe is described
(almost) exactly by the Einstein–de Sitter model, rather than one
nearby in the parameter space. Of course, the caveats regarding
‘probable’, ‘almost’ and ‘nearby’ mentioned above make this an
invalid line of argument.] In both cases, a universe described ex-
actly by the model in question would be stable (but would contain
no cosmologists, since these presumably require inhomogeneities,
and of course could not be perturbed from ‘outside the universe’)
while a realistic universe would be at least locally unstable even if
the model were an accurate description of a large-scale average. Of
course, the static Einstein universe was ruled out observationally
before the Einstein–de Sitter universe was, but while observational
arguments themselves are essential, they should not influence what
should be purely theoretical or mathematical arguments.) As dis-
cussed above, this can be interpreted to mean that this aspect of the
flatness problem exists for all cosmological models (i.e. regardless
of what values we observe forλ0 andΩ0), which means that in this
respect there is nothing special about our universe, or thatit is not a
problem at all, but just a consequence of definitions. Obviously, the
second form of the problem (IfΩ evolves, even to arbitrarily large
values in a finite time, should we be surprised if it is≈ 1?) holds
only if Ω ≈ 1 today; on the other hand, holding that the first form
is not a problem (which, as outlined above, I am not alone in claim-
ing) does not automatically solve the second problem. The rest of
this paper is concerned mainly with the second form: should we be
surprised thatΩ ≈ 1 today? This ‘quantitative flatness problem’ is
more subtle, but also has solutions within the context of classical
cosmology.

An analogy often used in discussing the flatness problem is
that of a tightrope walker (e.g. Coles & Ellis 1997; Coles 2009):
The Einstein–de Sitter model corresponds to the balanced tightrope
walker. As long as he stays balanced, he will stay where he is.How-
ever, a slight deviation will grow, quickly bringing the tightrope
walker far from the tightrope. If one walks by a circus tent atan ar-
bitrary time and looks inside, one would expect to find the tightrope
walker either balanced on the tightrope or on the ground after hav-
ing fallen; it is extremely improbable that one would just happen
to see him during his fall. The ground corresponds to one of the

extreme values ofΩ (∞ or 0). Every statement of the quantitative
flatness problem essentially follows this example. Were it avalid
analogy, then there would indeed be a quantitative flatness prob-
lem. In the following sections, I will show quantitatively why the
analogy is wrong and hence why there is no quantitative flatness
problem.

4 COSMOLOGICAL MODELS WHICH COLLAPSE IN
THE FUTURE: A NEW SOLUTION TO THE
FLATNESS PROBLEM

All cosmological models (assumed to be expanding now) withλ <

0 will collapse in the future:̈R is negative for all values ofR and
for largeR is proportional toR. Models withλ = 0 will collapse
for Ω > 1. In addition, models withλ > 0 will collapse provided
thatΩ > 1 (which in this case impliesK > 0, i.e.k = +1), q > 0
andα < 1, where

α = sign(K)
27Ω2λ

4K3
(10)

(Stabell & Refsdal 1966; Lake 2005). (The A1 and A2 curves men-
tioned above haveα = 1.) In Fig. 1, these are in the area between
λ = 0 and the A1 curve. Empty big-bang models start arbitrarily
close to the Milne model with (λ,Ω) values of(0, 0); non-empty
big-bang models start arbitrarily close to the Einstein–deSitter
model with (λ,Ω) values of(0, 1). The evolution ofλ andΩ can be
viewed as trajectories in the parameter space:λ andΩ evolve from
the starting point to infinity and return along the same trajectory.
[For the definitive discussion, see Stabell & Refsdal (1966); a very
useful visualisation can be found at Leahy (2003).] Note that such
trajectories do not intersect; this means that a trajectoryis uniquely
determined by measuringλ andΩ at any one time (practical is of
course doing so now).

The fact thatλ andΩ evolve to∞ (and back) in a finite time
immediately illustrates what is wrong with the tightrope-walker
analogy for these models: the proper analogy for a universe which
will collapse in the future would be a tightrope walker who, if he
falls off the tightrope, doesn’t stop when he hits the ground, but
rather continues through the Earth and to infinity and back, finally
approaching the tightrope from below until he is ultimatelyalmost
balanced again. It should be immediately obvious that in this case
all values ofλ andΩ cannot be equally probable. Making the anal-
ogy more quantitative, it turns out that the tightrope walker actu-
ally spends most of his time between the rope and the floor, thus
we shouldnot be surprised to find him somewhere between the
tightrope and the ground when we look inside the tent. In other
words, there is no quantitative flatness problem in these models.

To quantify this, I have calculated the quotient of the age ofthe
universe now and at the time of maximum expansion as a function
of λ andΩ. The age of the universe is given by

t =

R(t)
∫

0

dR
√

Ṙ2
0

(

Ω0R0

R
+ λ0R

2

R2

0

−K0

)

(11)

which follows from equation (3). For the current age, the upper
limit is given by equation (2); at the time of maximum expansion it
is found by calculating the (smallest) zero ofṘ2 (sinceṘ2 cannot
be negative). This is shown in Fig. (4). It is clear that largevalues of
λ andΩ occur only during a relatively short time in the history of
the universe, near the time of maximum expansion (at the precise

c© 2012 RAS, MNRAS000, 1–9



6 P. Helbig

λ

 
Ω

-40 -35 -30 -25 -20 -15 -10 -5 0

5
10

15
20

25
30

35
40

45

Figure 4. The age of the universe as a fraction of the time between the big
bang and maximum expansion. Contours, from right to left, are at 0.5, 0.6,
0.7, 0.8 and 0.9.

λ

 

Ω

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

2.
0

3.
0

4.
0

5.
0

6.
0

7.
0

Figure 5. The age of the universe as a fraction of the time between the big
bang and maximum expansion. Contours, from the upper left, are at 0.5,
0.4, 0.3, 0.2 and 0.1.

time of maximum expansion,λ andΩ are infinite sinceH = 0).
Fig. 5 shows the same forλ > 0. While the constraints aren’t quite
as strong here, in the Section 5 I show that a different argument
renders many of the models in this part of parameter space unlikely.

Note that this argument is completely independent ofH0:
whatever the value ofH0, i.e. whatever the age of the universe,
models which recollapse have large values ofλ andΩ for only a
relatively short time.
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Figure 6. The constant of motionα (see equation (10)). From upper left to
lower left, contours are at 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50 and 100.

5 COSMOLOGICAL MODELS WHICH EXPAND
FOREVER: REVERSING THE FINE-TUNING
PROBLEM

An interesting point has been made by Lake (2005), though it is
implicit in Stabell & Refsdal (1966): there are many cosmological
models which expand forever in which, althoughλ andΩ evolve
with time, they never stray very far from their initial values. In par-
ticular, there are many models for whichK is roughly0 today and
which never deviate very far from this value. Looking atK rather
than justΩ, these models don’t suffer from a flatness problem in the
restricted sense, though as mentioned above the same arguments
apply toΩ (and analogously toλ) as apply in theλ = 0 case,
i.e. they still suffer from the Einstein–de Sitter problem.Neverthe-
less, if, as observations suggest,K ≈ 0 and0 < λ0 < 1, then large
values ofλ andΩ never occur during the evolution of the universe.
However, this is not really a satisfactory solution, since it assumes
the observed values ofλ0 andΩ0 rather than explaining why we
observe these or similar values and the Einstein–de Sitter problem
still exists (especially in respect toΩ becoming arbitrarily small in
the future).

More interesting is an argument due to Lake (2005) which
solves the Einstein–de Sitter problem as well for models with
k = +1 which will expand forever. (For models which will expand
forever, large values ofλ andΩ are possible only fork = +1.)
Trajectories in theλ-Ω plane have a constant of motion given by
equation (10).3 It seems natural to distinguish cosmological mod-
els on the basis of their value ofα. Large values ofλ andΩ are
possible only forα<

∼ 1. This is shown in Fig. 6. (Note that, for
clarity, onlyΩ > 1 is shown!) It is obvious thatα ≤ 1 is a neces-
sary condition for having infinitely large values ofλ or Ω. Already

3 This makes it much easier to plot trajectories than by calculating λ and
Ω as a function of time, though of course the latter is necessary if one is
interested in the amount of time spent during a particular section of the
trajectory.
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for α = 2 the maximum value ofλ is just 2 (forΩ = 2) and the
maximum value ofΩ is ≈ 3.5 (for λ = 1.25).

In this case, the fine-tuning argument is reversed; only in the
case of fine-tuning doλ andΩ become arbitrarily large. [Ifα is
seen as a free parameter which can take on any value between−∞
and∞, then a ‘random’ value would probably be arbitrarily large,
corresponding toK ≈ 0 to a very good approximation. Interest-
ingly, this is what observations seem to indicate:K0 ≈ 0 to within
(by now quite good) observational accuracy, but with no specially
interesting values forλ0 or Ω0. For K0 ≈ 0 andλ > 0, λ and
Ω evolve from(0, 1) (the Einstein–de Sitter model) to(1, 0) (the
de Sitter model, like the Einstein–de Sitter model a fixed point,
though an attractor rather than a repulsor) without any large values
of λ or Ω along the way; forλ < 0 (in which case the universe
always recollapses), large values do occur but, as shown above,
only during a relatively short time during the history of theuni-
verse.] This demonstrates quantitatively that there is no quantita-
tive flatness problem regarding arbitrarily large values ofλ or Ω
for models which expand forever. [Some models which recollapse
but which haveλ > 0 also haveα ≈ 1; this provides an addi-
tional argument against the existence of the flatness problem in
these models which complements that made in Section 4 (where,
for λ ≈ 0, that argument is somewhat weaker).] This argument
is also independent of the value ofH0. However, all non-empty
models which expand forever asymptotically approach the deSitter
model at(λ,Ω) = (1, 0). Thus, one final aspect of the quantitative
flatness problem remains:Ω can become arbitrarily small. This is
investigated in the next section.

If we want to use the tightrope-walker analogy to examine
large values ofλ andΩ in models which expand forever, we can
think of the ground representing arbitrarily large values of λ and
Ω. However, in this case the tightrope walker is secured by a safety
line of finite length, which prevents him from reaching the ground
(and, as he swings back up after his fall, causes the values ofλ

andΩ to decrease). The only way he can reach the ground is in the
finely tuned case that his rope is long enough, i.e. infinitelylong
(since the ground corresponds to arbitrarily large values of λ and
Ω).

Another class of models which expand forever are the bounce
models in which the universe contracts from infinity to a finite size
before expanding forever. For those near theα = 1 curve [the A2
curve in Stabell & Refsdal (1966)], the same arguments applyas
for those on the other side of the curve: only forα ≈ 1 are large
values ofλ andΩ possible for a significant period of time. These
models begin at the de Sitter model withλ andΩ increasing to
∞ in a finite time and return along the same trajectory in theλ-Ω
parameter space, in this respect similar to the models whichcol-
lapse in the future, thus the argument against the flatness problem
is similar in the two cases. To be sure, these models have an infinite
extent in time in both directions, so in this sense there is noflatness
problem (or, more precisely, no ‘de Sitter problem’, analogous to
the Einstein–de Sitter problem discussed above) since theyare al-
most always arbitrarily close to the de Sitter model. If we choose
starting values forλ andΩ which are not arbitrarily close to the
de Sitter model, then the argument is completely analogous to that
for collapsing models.

6 COSMOLOGICAL MODELS WHICH EXPAND
FOREVER: THE WEAK ANTHROPIC PRINCIPLE

I have now covered the entireλ-Ω parameter space except for big-
bang models with (a)q < 0 (which impliesλ > 0) and (b)Ω less
than≈ 2 (all three values ofk are possible) and shown that in all
cases there is no flatness problem. What about this remainingpor-
tion of parameter space? Models here all haveK ≈ 0 and approach
the de Sitter model asymptotically. This means that there isno flat-
ness problem in the restricted sense, as pointed out by Lake (2005).
However,Ω becomes arbitrarily small (andλ arbitrarily close to 1).
Thus, there is still a problem in that we do not observe such values,
even though they exist for almost the entire (infinite) lifetime of the
universe.

This is essentially the question ‘if the universe lasts forever,
then why are we near the beginning?’ Note that this question could
be asked at any time. One could leave it at that and say that since
any finite age is arbitrarily close to the beginning, there isnothing
special about our time and thus no flatness problem in the time-
scale sense (i.e. the quantitative flatness problem, why isΩ not ar-
bitrarily small today).

One can do better by invoking the weak anthropic princi-
ple: cosmological parameters can be observed only to have values
which permit the existence of cosmologists. For the first time, the
analysis is not independent ofH0. In the de Sitter model,H is con-
stant in time. Hence, in models which asymptotically approach the
de Sitter model,H approaches a constant value (which is not that
different fromH0). If H is similar to the observed value ofH0,
then small values ofΩ (and values ofλ near 1) occur only in the
relatively distant future of the universe. It is difficult toestimate
the probability that cosmologists exist at such future times, but it
is clear that humans in their present form probably won’t exist. In
this sense, we don’t observe an arbitrarily small value ofΩ since
we probably wouldn’t exist in such a universe. This is due notto
the small value ofΩ itself but rather to the fact that in the far future
there will be no main-sequence stars etc. While this is only as satis-
factory as any use of the weak anthropic principle, (a) this does not
mean that the argument is invalid, (b) it is needed only to rule out
arbitrarily small values ofΩ (and not arbitrarily large ones, which
are ruled out by other arguments above) and, (c) as pointed out by
Lake (2005), in the restricted sense there is no flatness problem
(i.e. K ≈ 0 during the entire lifetime of the universe). Fig. 7 il-
lustrates this: only arbitrarily old models are arbitrarily close to the
de Sitter model. One can see that arbitrarily small values ofΩ (or
values ofλ arbitrarily close to 1) occur only whenHt approaches
∞.

Since the quantityHt is determined byλ0 andΩ0, one could
have an arbitrarily young universe arbitrarily close to thede Sitter
model ifH0 were arbitrarily large. However, such a universe will
spend only a short time near the Einstein–de Sitter model, which
probably means that structure, and hence cosmologists, would not
form in such a universe.

[SinceHt has a finite value (namely1) for λ = 0 andΩ = 0
and, forH near the observed value ofH0, the age of the universe
for Ω = 0 would be approximately the same as the observed age,
one might get the impression that, forλ = 0, observing an arbi-
trarily small value ofΩ0 wouldn’t be that unlikely. However, this
is the case for a universe which isexactlydescribed by the Milne
model, which means that it is empty and hence contains no cos-
mologists. The situation is somewhat different when considering
the Milne model as the asymptotic value of a universe withλ = 0
but Ω > 0. Forλ = 0 and0 < Ω < 1, the universe approaches
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Figure 7. Evolutionary trajectories superposed on contours of constantHt.
Starting at the lower right and moving along a curve perpendicular to the
trajectories, contours forα are at 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2,
3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100, 200, 500, 1000 and 2000. The straight
diagonal line forK = 0 corresponds toα = ∞. Continuing below this
line, the order is reversed. From upper left to lower right, contours forHt

are 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5,∞ (which corresponds to
α = 1), 1.5, 1.4, 1.3, 1.2, 1.1, 1.0, 0.9, 0.8, 0.7. Those to the right of ∞
measure the time since the universe was at its minimum size.

the Milne model asymptotically andH approaches0. In this case,
an arbitrarily smallΩ is reached only after an arbitrarily long time,
so a similar argument applies as in the case forλ > 0: if H now
is near the observed value ofH0, then this happens in the far fu-
ture when there are no more main-sequence stars etc. On the other
hand, if one assumes an age near the current observed age but with
an arbitrarily small value ofΩ, then this implies that the universe
spent only a relatively short time near the Einstein–de Sitter model
and hence structure formation would be difficult.]

If we want to use the tightrope-walker analogy to examine the
behaviour at arbitrarily large times in models which expandforever,
we can think of the ground representing the de Sitter model. After
the tightrope walker falls off, he falls towards the ground,but his
speed slows with time, so that he never actually reaches the ground.

7 SUMMARY

The qualitative flatness problem, i.e. the puzzle why the universe
was arbitrarily close to the Einstein–de Sitter model4 at early times,
does not exist. It is merely a consequence of the wayλ andΩ are
defined. Neither does the quantitative flatness problem exist: al-
though the cosmological parameters in general evolve with time,
it is not puzzling that we don’t observe extreme values for them
today. In the case of models which will collapse in the futurethis
is because large (absolute) values ofλ andΩ occur only during
a relatively short time in the lifetime of such a universe, namely

4 Or, for an empty universe, the Milne or de Sitter model.

near the time of maximum expansion.λ andΩ can become large
only whenH becomes small, and this happens only during the time
when the universe is at or near its maximum size. [Arbitrarily small
(absolute) values, if they occur at all, also occur for only arelatively
short time]. For models which will expand forever, large values are
possible only fork = +1. However, this occurs only forα ≈ 1. In
this case, the fine-tuning argument is reversed; only in the case of
fine-tuning doλ andΩ become arbitrarily large. Since all models
which will expand forever asymptotically approachΩ = 0, arbi-
trarily small values ofΩ can occur. Those withλ = 0 (and hence
k = −1) approach the Milne model withΩ = 0; models with
λ > 0, whatever the value ofk, approach the de Sitter model with
λ = 1 (the Milne and de Sitter models themselves are of course
stationary points). (Ifλ = 0 at any time thenλ = 0 at all times.
Otherwise, arbitrarily small values ofλ, if they occur at all, occur
only for a relatively short time.) However, ifH0 has a value similar
to or smaller than the observed value, small values ofΩ will occur
only in the far future when anthropic arguments probably make the
observation of such a low value ofΩ unlikely. While (forλ > 0)
a higher value ofH0 would allow a low value ofΩ even for an
age near the observed age, such a universe would have spent only
a very short time during whichΩ was not very small, so structure
formation would have been strongly suppressed.

It is interesting to note that the three arguments presentedhere
make it unlikely that we would observe extreme values ofλ0 or
Ω0. This automatically solves the so-called coincidence problem,
which has been called deeply puzzling (e.g. Tegmark, Vilenkin &
Pogosian 2005).

Also interesting is that in the appendix to his seminal pa-
per, Guth (1981) anticipates much of the subsequent discussion.
He points out that even though essentially all cosmologicalmodels
begin arbitrarily close to the Einstein–de Sitter universe(the quali-
tative flatness problem), this still leaves the question as to why the
universe is so close to the Einstein–de Sitter universe today (the
quantitative flatness problem). He also rejects the idea that some
basic principle must force the universe to conform exactly to the
Einstein–de Sitter model on the grounds that this is obviously only
an approximation in the case of the real universe (see the discus-
sion of this above). He basically recasts the flatness problem as the
longevity problem: fine tuning is required in order that the universe
does not recollapse or thin out to extremely low density within a
very short time. However, this argument relies on an assumption
for the value ofH0, while our arguments do not need this assump-
tion except in the third category. Also, as I have shown here,even
in an extremely short-lived universe (which of course recollapses),
extreme values ofλ orΩ are observed only during a relatively small
fraction of the lifetime of the universe.

If there is no flatness problem, what does this mean for infla-
tion? If there is no flatness problem (or, indeed, even if there were
no motivation at all for inflation), this does not mean that infla-
tion could not have occurred. However, it does mean that inflation
should not be taken as a given based on the belief that it explains
away the flatness problem and thus without it classical cosmology
leads to absurd conclusions. Inflation also solves the monopole and
isotropy problems. However, the monopole problem seems to be
more a problem with theories of particle physics than with cosmol-
ogy (Narlikar & Padmanabhan 1991) while Barrow (1995) claims
that there is no isotropy problem.5 If all of these claims are true,

5 It is, however, debatable whether Barrow’s conclusion is asgeneral as he
claims or depends too strongly on his assumptions.
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then this still does not prove that inflation didn’t happen, but the
necessity for inflation or something like it is weakened if not de-
stroyed altogether.
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