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ABSTRACT

The m–z relation for Type Ia supernovae is one of the key pieces of evidence supporting the
cosmological ‘concordance model’ with λ0 ≈ 0.7 and Ω0 ≈ 0.3. However, it is well known
that the m–z relation depends not only on λ0 and Ω0 (with H0 as a scale factor) but also on the
density of matter along the line of sight, which is not necessarily the same as the large-scale
density. I investigate to what extent the measurement of λ0 and Ω0 depends on this density
when it is characterized by the parameter η (0 ≤ η ≤ 1), which describes the ratio of density
along the line of sight to the overall density. I also discuss what constraints can be placed on
η, both with and without constraints on λ0 and Ω0 in addition to those from the m–z relation
for Type Ia supernovae.

Key words: supernovae: general – cosmological parameters – cosmology: theory – dark
energy – dark matter.

1 INTRODUCTION

In the last 15 years or so, cosmological observations have improved

greatly and it also appears that the values are converging on their

true values.1 This allows us to answer such questions (provided, of

course, that ‘standard assumptions’ hold) as whether the Universe

will expand for ever (yes), how old it is, whether it is accelerating

now (yes), when it started accelerating, etc. (With the assumption

of a simple topology, the Universe is finite if λ0+Ω0 > 1, but since

observations indicate that this value is very close to 1, we cannot yet

answer this question.) Among the most important of these observa-

tions are those by the Supernova Cosmology Project (e.g. Goobar

& Perlmutter 1995; Perlmutter et al. 1995, 1998, 1999; Amanullah

et al. 2010; Suzuki et al. 2012) and the High-z Supernova Search

team (e.g. Garnavich et al. 1998; Riess et al. 1998; Riess et al.

2000) (see also the reviews by Riess 2000, Leibundgut 2001, 2008,

and Goobar & Leibundgut 2001) which provide joint constraints

on λ0 and Ω0. Combined with other observations (e.g. Komatsu

et al. 2011; Planck Collaboration 2013), these lead to quite well

constrained values for the cosmological parameters (e.g. fig. 5 in

Suzuki et al. 2012). Although the supernova data alone allow a rel-

atively wide range of significantly different other models, it is inter-

⋆ E-mail: helbig@astro.multivax.de
1 The case for the ‘concordance model’ with λ0 ≈ 0.7 and Ω0 ≈ 0.3 was

already made by Ostriker & Steinhardt (1995); the values of the concor-

dance model thus do not need the supernova data, though of course adding

more data improves the constraints. While the corresponding uncertainties

have dramatically decreased (e.g. Komatsu et al. 2011; Planck Collabo-

ration 2013), the values themselves have remained constant over the last

twenty years.

esting that the best-fitting values obtained from these observations

using the current data are quite close to the much better constrained

values using combinations of several observations without the su-

pernova data, at least under the assumptions with which the former

were calculated. However, since the m–z relation depends not only

on λ0 and Ω0 (with H0 as a scale factor) but also on the distribution

of matter along and near the line of sight, the dependence of con-

clusions drawn from the m–z relation for Type Ia supernovae on

this matter distribution should be investigated. Alternatively, these

observations can perhaps tell us something about this distribution.

The plan of this paper is as follows. Section 2 sketches the

basic theory used in this paper. In section 3 I briefly review pre-

vious investigations of the influence of a locally inhomogeneous

universe on the m–z relation. Section 4 describes the calculations

done and discusses the results. Summary, conclusions and outlook

are presented in section 5.

2 BASIC THEORY

Kayser, Helbig & Schramm (1997, hereafter KHS) developed a

general and practical method for calculating cosmological dis-

tances in the case of a locally inhomogeneous universe. See KHS

for details (and for a description of the notation, which is followed

here); here I repeat only the most important points for the purpose

of this paper.

If the Universe is homogeneous, then the fact that light prop-

agates along null geodesics provides sufficient information to cal-

culate distances from redshift. If the Universe is locally inhomoge-

neous, then distances which depend on angular observables related

to the propagation of radiation will differ from the homogeneous

c© 2015 RAS



2 P. Helbig

case because more or less convergence will change the angle in-

volved (the angle at the observer in the case of the angular-size dis-

tance, that at the source in the case of the luminosity distance). The

basic idea is that one considers a Universe which is homogeneous

and isotropic on large scales, this determining the global dynam-

ics via the Friedmann–Lemaı̂tre equation. Local inhomogeneities

are modelled as clumps, where the extra matter in the clumps is

taken from the surrounding matter. Thus, a beam which propagates

between clumps will have only this thinned-out matter inside the

beam, while outside the beam the average density (taking both the

thinned-out background matter and the clumps into account) is ap-

proximately equal to the global density (precisely so in the limit of

an infinitesimal beam). Zeldovich (1964), Dashevskii & Zeldovich

(1965) and Dashevskii & Slysh (1966) developed a general dif-

ferential equation for the distance l between two light rays on the

boundary of a small light cone (the beam) propagating far away

from all clumps of matter in a locally inhomogeneous universe:

l̈ = −4πGηρ l +
Ṙ

R
l̇ , (1)

where G is the gravitational constant, R the scale factor, and η
(defined below) and the density ρ are functions of time (a dot in-

dicates differentiation with respect to time). The first term can be

interpreted as Ricci focusing due to the matter inside the beam, and

the second term is due to the expansion of space during the light

propagation. The key assumption here is that while the the density

ρ within the beam can differ from the overall density, the over-

all dynamics of the universe is still described by the Friedmann–

Lemaı̂tre equation. The assumption that the light propagates far

from all clumps means that Weyl focusing (shear) can be neglected.

In the case that the densities inside the beam and outside the beam

are the same, one of course recovers the homogeneous case.

Since the angular-size distance is defined as D = l/θ, where

θ is the angle at the apex of the beam (at the observer, not at the ob-

served object), D follows the same differential equation as l. Mak-

ing use of this, one can derive a general equation for the angular-

size distance, valid for all (perturbed, in the sense described above)

Friedmann–Lemaı̂tre cosmological models and all reasonable (see

below) values of η. KHS described the inhomogeneity via the pa-

rameter 0 ≤ η ≤ 1, where η is ratio of the density inside the beam

to the global density or, alternatively, the fraction of matter which

is homogeneously distributed, as opposed to being clumped.2 This

leads to a second-order differential equation for the angular-size

distance (equation (33) in KHS) which can be efficiently integrated

numerically:

QD′′ +
(

2Q

1 + z
+

1

2
Q′

)

D′ +
3

2
ηΩ0(1 + z)D = 0 , (2)

where

Q(z) = Ω0(1 + z)3 − (Ω0 + λ0 − 1)(1 + z)2 + λ0 . (3)

In the locally inhomogeneous case as well the luminosity distance,

which is needed in this paper, is larger than the angular-size dis-

tance by a factor of (1 + z)2.

This change, compared to the perfectly homogeneous case, is

essentially a negative gravitational-lensing effect. In a conventional

2 This is sometimes denoted by α. I, and some others, use η because locally

inhomogeneous cosmological models are often used in gravitational lensing

(which per se implies local inhomogeneities) where α is almost always used

to denote the deflection angle.

gravitational-lensing scenario, if the density at a given redshift be-

tween two light rays is higher than the overall density (the corre-

sponding overdensity being ‘the lens’), then there will be more con-

vergence than in the case where the two densities are the same. In

the case of light propagating between clumps, as described above,

the situation is reversed, and the density between the light rays

defining the distance-related angle is less than the overall density.

This means that there is (negative) Ricci focusing (and no Weyl

focusing), making objects appear fainter than they would be in

the completely homogeneous case. Of course, this is only a rough

model, but can be expected to be more realistic than the completely

homogeneous case and to determine not just the sign of the differ-

ence but also give at least an estimate of its strength.

Obviously, one cannot have η < 0. However, it does not make

sense to have η > 1 either. While it is certainly possible that the

average density inside the beam could be greater than the global

density, such cases are either unrealistic or not useful. The limit-

ing case where the density in the beam is greater than the global

density by a constant factor at every redshift is unrealistic because

this would imply the existence of overdense regions with an ex-

treme length-to-width ratio which are aligned between us and the

source, which is incompatible with homogeneity and isotropy on

large scales and would also put us in a special position. The other

limiting case where a single compact object increases the density

in the beam to above the global density is certainly possible, but

observationally would show up as a gravitational-lens effect and

should be analysed as such (perhaps by adopting η ≈ 0 for the

distance calculation and explicitly calculating the amplification).

Of course, cases between these two extremes are possible, but it is

clear that η must be between 0 and 1 if it is used as an additional

parameter in the manner described by KHS; lines of sight which,

due to fluctuations, are slightly denser than the overall density are

certainly possible, but are not usefully parametrized by η in the

style of KHS. (But see Lima, Busti & Santos 2014 for a toy model

with an interesting extension of the η concept.) Note that η does

not have to be constant as a function of redshift, and the code de-

scribed in KHS supports an arbitrary dependence of η on z. Also,

it could be different for different lines of sight. It was pointed out

by Weinberg (1976) that η must be 1 when averaged over all lines

of sight (allowing for the moment higher-than-global densities to

be parametrized by η > 1), which follows from flux conservation.

However, in practice lines of sight will probably avoid concentra-

tions of matter, due to selection effects or design: distant objects

will be more difficult to observed if there is luminous matter along

the line of sight or if there is absorbing matter along the line of

sight.3 If these selection effects do not exist, and if the sample is

large enough, then the ‘Safety in Numbers’ effect (Holz & Linder

2005) allows one to effectively assume η = 1, with inhomogene-

3 Matter along the line of sight can increase the apparent brightness and

thus make objects visible which otherwise would not be. This phenomenon,

known as ‘amplification bias’ in gravitational lensing, is relevant only if the

luminosity function is steep enough (since otherwise the magnification of

the area of sky observed, which reduces the number of objects per observed

area, will dominate, resulting in fewer objects in a flux-limited sample).

However, the whole point of the m–z relation for Type Ia supernovae is

that they are standard candles, or can be adjusted to behave as standard can-

dles with the help of other observations, which means that the differential

(integral) luminosity function is essentially a delta (Heaviside) function, so

the amplification bias plays no role here. Also, since objects much fainter

than supernovae can be detected in the corresponding observations, no re-

alistic amplification would make an otherwise undetectable object visible.
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ity merely increasing the dispersion, roughly linearly with redshift.

However, Clarkson et al. (2012) point out that most narrow-beam

lines of sight are significantly underdense, even for beams much

thicker than those considered in this paper. (On the other hand,

they also point out that this does not necessarily lead to a reduc-

tion in brightness if one drops the assumption that inhomogeneities

can be modelled as perturbations on a uniformly expanding back-

ground, a point also emphasized by Bolejko & Ferreira 2012; see

also Bagheri & Schwarz 2014.)

The situation discussed above corresponds to the situation

where the beam contains a density η times the global density at

a given redshift and outside the beam the density is equal to the

global density. In practice, this means that a fraction η of the mass

in the Universe is smoothly distributed and a fraction 1− η is con-

tained in clumps outside the beam. Of course, ‘smoothly’ depends

on the size of the beam; for example, small objects are part of

the ‘smooth’ component, not only in the limiting case where the

smooth component consists of free elementary particles. The im-

portant point is that their angular size is small compared to that of

the beam. η is thus also a function of angle: the larger the angle,

the more representative is the matter within the beam, so that η ap-

proaches 1 for large enough angles. Since the beams of supernovae

at cosmological distances are extremely thin objects (the thinnest

objects ever studied by science), evidence for η < 1 should be

most obvious in the m–z relation for Type Ia supernovae.

A given value of η along a given line of sight does not im-

ply that this value does not change along the line of sight, although

that is of course a possibility, but rather that the influence on angle-

dependent distances can be described by an effective value of η
which is some appropriate average of a value which varies along

the line of sight. This means that it is possible for the density along

the line of sight to be larger than the global density at some points,

but this is not in contrast with the claim above that η > 1 is not

useful as long as the effective value ηeff ≤ 1. Another complication

is that essentially all lines of sight to supernovae will have a den-

sity higher than the globally average cosmological density due to

the overdensities associated with the Milky Way and with the su-

pernova host galaxy (and corresponding clusters).4 However, since

the absolute magnitudes of supernovae are not known from first

principles, but rather calibrated from observations, this effect is, to

a first approximation, unobservable, since it is essentially a renor-

malization of the absolute magnitude. Even if this extra matter as-

sociated with the galaxies at the ends of the beam would increase

the density inside the beam to larger than the global density, it is

not useful to think of this as η > 1, since I want to compare the

standard assumption (completely homogeneous Universe, at least

as far as light propagation is concerned) with that of a more real-

istic distribution. The point of comparison, the m–z relation for a

homogeneous Universe, also contains extra matter at each end of

the beam, and hence extra convergence. As far as I know, no-one

has ever taken this into account and it is not necessary if one is in-

terested only in the differences. (This would have to be taken into

account, though, if the absolute magnitude of objects at cosmolog-

ical distances were known independently of observation.)

Although the term ‘dark matter’ suggests something opaque,

the defining characteristic is lack of interaction with electromag-

netic radiation. Thus, not only does dark matter not glow, it is

also transparent. It is thus irrelevant whether dark-matter objects

within the beam significantly cover a source as seen by an ob-

4 I thank Philip Bull for first pointing this out to me.

server. (Of course, when comparing observed to calculated bright-

ness, one must correct for extinction due to ‘conventional’ matter –

it can also be dark in the sense that it does not radiate, but it is

not transparent.) Here, I am using the term ‘dark matter’ to refer

to the ‘missing matter’, i.e. that responsible for the difference be-

tween the density due to baryonic matter (other non-baryonic but

known particles (neutrinos) do not increase this significantly) and

the global density of the Universe, as measured on large scales. Of

course, non-radiating baryonic matter does exist, but we know from

constraints from big-bang nucleosynthesis that this cannot be a sig-

nificant fraction of the missing matter. This reflects current usage,

e.g. the ‘DM’ in ‘ΛCDM’, and is more convenient than ‘not yet

identified non-baryonic matter’.

Since we know that the Universe is not exactly homogeneous

and isotropic, η 6= 1 is the most obvious departure from the sim-

plest cosmological model (the Einstein–de Sitter model with λ0 =
0, Ω0 = 1, and η = 1, although the last item is often not stated

explicitly), but there is not much literature on this topic. (There are,

though, several recent papers investigating whether ‘dark energy’

could be something other than the traditional cosmological con-

stant, e.g. whether the equation of state w differs from −1, whether

it changes with time etc, even though there are no observations

which indicate this. Of course, that does not mean that one should

not look.)

If η is allowed to vary from one line of sight to another, one

could regard this as an additional contribution to the uncertainty in

the distance modulus, much the same as the uncertainty in the ab-

solute magnitude. Theoretically, fitting the observations for a con-

stant value of η would result in a worse fit for such cases if this

additional uncertainty is ignored or in a larger allowed region of

parameter space if it is included in the error budget. With some as-

sumptions, one could try to take this additional dispersion into ac-

count and/or correct for it; see, e.g., Amanullah, Mörtsell & Goobar

(2003), Gunnarsson et al. (2006), Jönsson et al. (2006), Jönsson,

Mörtsell & Sollerman (2009). In practice, with a large number of

objects and only a few variables, the difference in goodness of fit

is well within the expected range of values for the case in which η
is the same along all lines of sight. Alternatively, with current data

it is also a relatively small contribution to the error budget. Thus,

if observations suggest 0 < η < 1, it would be unclear if this is

evidence for the corresponding value of the global value of η or

whether this is a compromise between lines of sight with lower and

higher values. However, if observations indicate η = 0 or η = 1,

then this would be evidence for the corresponding global value,

because these are the extreme values of η and cannot result from

averaging.

Of course, more complicated models are possible. In this pa-

per, I consider only models in which η is a constant function of

redshift and the same along all lines of sight5; also, in all cases but

one, it is independent of the other cosmological parameters. The

variation between these models, however, is certainly larger than

the realistic range of the possible influence of η on the m–z rela-

tion for Type Ia supernovae.

3 BRIEF HISTORY

The effects of a locally inhomogeneous universe on quantities im-

portant for observational cosmology were first investigated in a se-

5 See Gunnarsson et al. (2006) for a discussion of a z-dependent η in the

context of the m–z relation for Type Ia supernovae.
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ries of papers by Zeldovich (1964), Dashevskii & Zeldovich (1965)

and Dashevskii & Slysh (1966). Dyer & Roeder (1972) discussed

the special case of λ0 = 0 but with Ω0 as a free parameter for

η = 0 (where there is an analytic solution) and for general η val-

ues (Dyer & Roeder 1973). As a result, the distance for η = 0 is

sometimes referred to as the Dyer–Roeder distance. KHS presented

a second-order differential equation and numerical implementation

valid for the general case (−∞ < λ0 < ∞, 0 ≤ Ω0 ≤ ∞,

0 ≤ η ≤ 1). Kantowski and collaborators (Kantowski 1969; Kan-

towski, Vaughan & Branch 1995; Kantowski 1998; Kantowski, Kao

& Thomas 2000; Kantowski & Thomas 2001; Kantowski 2003)

have stressed the importance of η for the interpretation of the m–z
relation for Type Ia supernovae and have provided numerical im-

plementations using elliptic integrals for the special values of η
of 0, 2

3
, and 1. Perlmutter et al. (1999) considered the effect of

η 6= 1 on their results (see their fig. 8) and concluded that, at least

in the ‘interesting’ region of the λ0–Ω0 parameter space, it had a

negligible effect (see also Jönsson et al. 2006). The reason for the

current paper is that, with the larger number of supernovae now

available, this is no longer the case. Further investigation has often

been motivated by the m–z relation for Type Ia supernovae (e.g.

Goliath & Mörtsell 2000; Mörtsell, Goobar & Bergström 2001). It

has also been investigated, via comparison with explicit ray-tracing

through mass distributions derived from simulations or observa-

tions, whether η is a useful parametrization for local inhomogeneity

(e.g. Bergström et al. 2000; Mörtsell 2002) (and the conclusion is

that it is a useful approximation, at least for cosmological models

which are otherwise realistic).

There seem to be three schools with respect to the attitude

taken to the possible influence of inhomogeneities on cosmological

parameters derived from the m–z relation for Type Ia supernovae.

One school ignores it completely, assuming a completely homoge-

neous Universe as far as the calculation of the luminosity distance

is concerned (e.g. Riess et al. 1998), or provides some limited jus-

tification for not considering it further (e.g. Betoule et al. 2014).

Another school emphasizes that the problem is not completely un-

derstood, the amount of uncertainty is unknown, and even the sign

of some effects is unclear (e.g. Clarkson et al. 2012). A third school

uses some approximation to at least get an idea of the size of possi-

ble effects (e.g. Mörtsell et al. 2001). (While Perlmutter et al. 1999

did consider the possible influence of η, hence belonging to the

third school, at least at that time, with their data then it was not a

significant source of uncertainty in their main result. One purpose

of this paper is to show that this is no longer the case.)

4 CALCULATIONS, RESULTS AND DISCUSSION

I have used the publicly available ‘Union2.1’ sample of supernova

data (Suzuki et al. 2012) and calculated χ2 and the associated prob-

ability following Amanullah et al. (2010) on regularly-spaced grids

of various extents and resolutions in the λ0–Ω0–η parameter space.

This assumes, of course, that η is a free parameter on the same foot-

ing as λ0 and Ω0. My goal is not to obtain the ‘best’ cosmological

parameters, not even the ‘best’ ones from the supernova data alone.

Rather, it is to investigate the influence of η 6= 1 on the interpreta-

tion of the m–z relation for Type Ia supernovae. I have thus inten-

tionally made the supernova data as precise as possible, by using

only the statistical uncertainties (i.e. column 4 in the publicly avail-

able data file) and fixing H0 at 70 kms−1Mpc−1, which implies

M = −19.3182761161. Thus, all increase in the allowed region

of parameter space (at a given confidence level) is due only to the

influence of η.6

I have calculated χ2 and the corresponding probability on two

three-dimensional grids: a larger, lower-resolution grid

−5< λ0 < 5 ∆λ0 =0.02 (500 values)
0<Ω0 < 10 ∆Ω0 =0.02 (500 values)
0< η < 1 ∆η =0.01 (100 values)

and a smaller, higher-resolution grid

0< λ0 < 1.5 ∆λ0 =0.003125 (480 values)
0<Ω0 < 1.0 ∆Ω0 =0.003125 (320 values)
0< η < 1.0 ∆η = 0.01 (100 values)

(This paper contains no plots based on the larger, lower-resolution

grid; the corresponding calculations were done to make sure that

there is no appreciable probability outside of the range of the

smaller, higher-resolution grid.) Since three-dimensional contours

cannot be fully represented in two dimensions, I present various

two- and one-dimensional visualizations in order to illustrate the

influence of η.

All contours in two (three) dimensions have been calculated

as the smallest-area closed curve (smallest-volume closed surface)

which encloses the corresponding fraction of the probability. I have

used the standard values 0.683, 0.954 and 0.997; these correspond

to 1–σ, 2–σ and 3–σ in the Gaussian case. However, I have made

no assumption about Gaussianity, since I have calculated the con-

tours explicitly, rather than plotting them at the corresponding frac-

tion of the peak likelihood under the Gaussian assumption. For all

plots, the area outside of the plot has been assigned a probability

of zero. Otherwise, no priors other than those explicitly stated have

been used. In particular, no prior information on the values of the

cosmological parameters from other tests have been used; what I

show depends on the supernova data only.

Figs. 1, 2, and 3 show projections of the three-dimensional

contours along one axis on to the plane spanned by the other two

axes for the smaller, higher-resolution grid. It can be seen that the

combination of λ0 and Ω0 is well constrained, as are both individ-

ually, while η is hardly constrained at all. Note also that λ0 and Ω0

are less constrained for lower values of η. (The contours at 0.954
and 0.997 cannot be distinguished in these plots.) The relatively

sharp bend in the lower right contours in Figs. 1 and 2 is due to the

fact that I have assigned a probability of 0 to models which have no

big bang (see the discussion of figs. 1 and 2 in Helbig (2012) and

references therein for an explanation).

Another way of visualizing these three-dimensional contours

is to make cuts through them for a fixed value of one of the pa-

rameters. Figs. 4, 5, and 6 show cuts for η = 0.005, 0.455, 0.955.

The contours become smaller and move to lower values of λ0 and

Ω0 as η becomes larger. (Again, the contours at 0.954 and 0.997
cannot be distinguished in these plots.) Fig. 6 is quite similar to

standard presentations of the supernova constraints (e.g. Suzuki

6 Since the goal is not to obtain the best constraints on λ0 and Ω0, but

rather to investigate the influence of η on the constraints, I have retained

the Union 2.1 sample with which I began this investigation, rather than up-

dating it to use, e.g., that used by Betoule et al. (2014). Those with better

access to such data will always have a better sample than that which is pub-

licly available. Since even Betoule et al. (2014) do not consider η at all, it

is perhaps important at the moment for a theorist to take a step back for a

more general view in order to contrast with continual updates using some-

what better samples. It is important, though, that the Union 2.1 sample is

significantly larger than those used in the early works discussed in section 1.
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Figure 1. Projection of three-dimensional probability distribution along the

η-axis.
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Figure 2. Projection of three-dimensional probability distribution along the

Ω0-axis.

et al. 2012), but keep in mind that these contours are a cut through

the three-dimensional contours for a fixed value of η, not two-

dimensional contours. If η is substantially less than 1, then not only

is the allowed region much larger, but the ‘concordance model’

with λ0 ≈ 0.7 and Ω0 ≈ 0.3 is ruled out. Qualitatively, this be-

haviour is easy to understand: there is some degeneracy between

η and λ0 + Ω0 since both increase the amount of focusing in the

beam, the former because there is more matter in the beam and the

latter because of the increase in the global curvature, which is es-

sentially λ0 +Ω0. When there is essentially no matter in the beam,

Ω

  

η

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Figure 3. Projection of three-dimensional probability distribution along the

λ0-axis.
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Figure 4. Cut through the three-dimensional probability distribution per-

pendicular to the η-axis for η = 0.005.

then the value of Ω0 is less important and hence not as well con-

strained. This means that λ0+Ω0 can be realized via a larger range

of each parameter, making the allowed region larger. The middle

value of η is that of the global maximum probability. (Since λ0 and

Ω0 are better constrained, the corresponding plots for fixed values

of these parameters, not shown here, are less interesting.)

The ‘standard procedure’ for reducing the number of param-

eters shown in a plot is to marginalize over the less interest-

ing or ‘nuisance’ parameters. This is shown in Figs. 7, 8, and 9.

Here, and in similar figures below, the grey-scale corresponds to

c© 2015 RAS, MNRAS 000, 1–11
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Figure 5. Cut through the three-dimensional probability distribution per-

pendicular to the η-axis for η = 0.455.
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Figure 6. Cut through the three-dimensional probability distribution per-

pendicular to the η-axis for η = 0.955.

the probability.7 These are qualitatively similar to the projections.

Fig. 7 also contains two straight lines corresponding to a flat uni-

7 It has become fashionable to plot contours and have the regions between

the contours filled with a certain colour (or perhaps shade of grey). This

conveys no information in addition to the contours themselves. Of course,

the probability between two contours, or within the smallest contour, is not

everywhere the same, as is obvious from Fig. 7. I have chosen to display

this potentially important information in addition to the contour curves.
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Figure 7. Two-dimensional probability distribution obtained by marginal-

izing over η.
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Figure 8. Two-dimensional probability distribution obtained by marginal-

izing over Ω0.

verse with λ0 + Ω0 = 1 (negative slope) and zero acceleration

(q0 = Ω0

2
− λ0 = 0) (positive slope). Note that a flat universe

is compatible with the data but not required by them; in fact, the

degeneracy in the constraints is almost perpendicular to the flat-

universe line. In this particular plot, the degeneracy corresponds

roughly to q0 ≈ −0.6; in many of the other plots, the degeneracy

in the λ0–Ω0 plane is closer to a constant value of Ω0 − λ0 than

to a constant value of q0 = Ω0

2
− λ0. (q0 was important histori-

cally since the departure from the linearity of the m–z relation at

c© 2015 RAS, MNRAS 000, 1–11
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Figure 9. Two-dimensional probability distribution obtained by marginal-

izing over λ0.
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Figure 10. Two-dimensional probability distribution obtained by maximiz-

ing η.

low redshift is proportional to q0; nowadays quoting a value for q0
derived from the m–z relation for higher-redshift objects is neither

necessary nor sufficient nor, in general, meaningful.)

Another approach is to maximize the ‘nuisance’ parameter,

i.e. for a given point in the plane of the plot, find the value of the

third parameter which maximizes the probability. This is shown in

Fig. 10. (For these data, such plots are very similar to those where

the third parameter has been marginalized over, so only this one

example is shown.)
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Figure 11. Two-dimensional probability distribution for η = 0.
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Figure 12. Two-dimensional probability distribution for η = 0.455.

Most discussion of the m–z relation for Type Ia supernovae

has concentrated not on contours of more than two dimensions,

nor on some reduction (projection, cut, marginalization, maximiza-

tion) of these higher-dimensional contours to two dimensions, but

rather on two-dimensional contours, i.e. with a δ-function prior

on the nuisance parameters. Almost always, of course, the (often

implicitly assumed) prior is η = 1. For comparison, in Figs. 11,

12, and 13 I show constraints in the λ0–Ω0 plane for fixed val-

ues of η, namely 0, 0.455 (the value at the maximum of the three-

dimensional probability distribution) and 1. The last should be

compared with e.g. fig. 11 in Kowalski et al. (2008), but keep in

c© 2015 RAS, MNRAS 000, 1–11



8 P. Helbig

λ

  
Ω

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

λ

  
Ω

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Figure 13. Two-dimensional probability distribution for η = 1.

mind that, as mentioned above, I have fixedH0 and use only the sta-

tistical uncertainties. (See also figs. 1a and 5a in Amanullah et al.

(2003).) Thus, Fig. 13 has slightly smaller contours than similar

plots elsewhere in the literature. Again, this is intentional so that

any deviations from this fiducial plot (larger and/or shifted con-

tours) are due solely to the influence of η.

Of course, little significance should be placed on variations

in the probability within the innermost contour, since the proba-

bility that the point representing the true values of λ0 and Ω0 is

only about twice as likely to lie inside this contour than outside it.

Nevertheless, it is remarkable that the maximum of the probabil-

ity in Fig. 13 is at λ0 = 0.7210938 and Ω0 = 0.2773438, i.e. at

the values of the concordance model (within the small uncertain-

ties; these are much smaller than even the 68.3 per cent contour

in Fig. 13).8 Note that when fewer supernova data were available,

the best-fitting value was at much higher values of λ0 and Ω0; see

e.g. fig. 1 in Helbig (1999). (As mentioned above, the best-fitting

value is often not visible in modern versions of such plots, though

of course it can be easily found in the data used to make the plots.)

If the best-fitting value remains the same when significantly more

supernova data are available, then very probably the true value will

have been converged upon, even though the range of values al-

lowed, even at the 68.3 per cent level, would include values well

outside what is acceptable when other cosmological constraints are

considered (i.e. joint constraints from several cosmological tests).

Normally, when more data are available one expects the new best-

fitting value to be consistent with, but different from, the old best-

fitting value, as has been the case with the supernova data up until

now. However, looking towards the future, I don’t expect the best-

fitting values for λ0 and Ω0 to change significantly, but do expect

the constraints from the supernova data to improve, which appears

somewhat puzzling. A possible explanation for this is that the sta-

8 For completeness, I quote the exact position of the maximum as calcu-

lated on the grid; of course, this does not imply that the maximum is known

to greater precision than the resolution of the grid.
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Figure 14. Two-dimensional probability distribution for k = 0.

tistical errors in the supernova data have been overestimated. Note,

however, that the best-fitting values for the supernova data corre-

spond to the concordance model only if one assumes η ≈ 1. For

η = 0.455, the concordance model lies very near the 95.4 per cent

contour, and for η = 0 it is even outside the 99.7 per cent contour.

The plots above illustrate that it is not possible to appreciably con-

strain η from the supernova data alone. However, the fact that the

supernova data suggest the concordance model only for high values

of η could be seen as evidence that η ≈ 1.

A similar result is shown in Fig. 14, where a flat universe (λ0+
Ω0 = 1) has been assumed. As in the other plots, λ0 is reasonably

well constrained, while η is quite weakly constrained. (In this case,

since Ω0 = 1 − λ0, Ω0 is just as well constrained; in general, Ω0

is less well constrained than λ0.) However, note that the best-fitting

value is for η = 1 and λ0 ≈ 0.72; in other words, again the best fit

is for the concordance model with η = 1. (This plot also shows the

importance of plotting the probability and not just a few contours.)

To illustrate the change in the effect of η now that more su-

pernova data are available, Fig. 15 shows the constraints where η
is a function of Ω0, namely η = 0 for Ω0 ≤ 0.25 and 1 − 0.25
for Ω0 ≥ 0.25. This should be compared with fig. 8 in Perlmut-

ter et al. (1999). In that figure, the red contours were calculated

in the same way as those in Fig. 15. In the same figure, the green

contours were calculated in the same way as in Fig. 11. The com-

parison illustrates vividly the fact that the effect of η can no longer

be neglected. While Perlmutter et al. (1999) concluded that, at least

in the interesting part of parameter space, the constraints on λ0 and

Ω0 from the supernova data did not depend heavily on the assumed

value of η, this is definitely no longer the case.

While the supernova data cannot usefully constrain η, as has

been shown above, the fact that they result in the concordance

model if one assumes η ≈ 1 suggests that η ≈ 1. Since there

are many cosmological tests completely independent of the super-

nova data, and also independent of the value of η, which suggest

the concordance model (this is of course why it is called the con-

cordance model), one can assume the concordance values for λ0

c© 2015 RAS, MNRAS 000, 1–11
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Figure 15. Two-dimensional probability distribution with η = f(Ω0).
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Figure 16. One-dimensional probability distribution for the concordance

model.

and Ω0 and calculate the probability of η from the supernova data

with these additional constraints; this is shown in Fig. 16. The best-

fitting value is η = 0.7485 while the formal statistical limits are:

0.60 < η < 0.90 (68.3%)

0.46 < η < 1.00 (95.4%)

0.28 < η < 1.00 (99.7%)

. (This can be contrasted with Fig. 17 which shows the value

of η preferred by the supernova data alone; λ0 and Ω0 have been

marginalized over.) While η = 1 is not ruled out at high confidence,
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Figure 17. One-dimensional probability distribution after marginalizing

over λ0 and Ω0.

lower values of η are ruled out at a high level of statistical signif-

icance.9 This suggests that η is relatively large, even though the

beams of supernovae at cosmological distances are extremely thin

and this cosmological test should suggest a value of η lower than

that of any other cosmological test known today. One would not

expect to obtain η = 1 since some matter is associated with galax-

ies which are outside the beam; such mass contributes about 0.1 to

Ω0. Fig. 16 thus suggests that dark matter is distributed much more

smoothly than galaxies. While the beam of a supernova at cosmo-

logical distance is almost a fair sample of the Universe, it is an even

fairer sample of dark matter. Dark matter is thus not significantly

clumped at the scale of a supernova beam.

5 SUMMARY, CONCLUSIONS AND OUTLOOK

The following conclusions were more or less expected.

(i) Constraints on λ0 and Ω0 are weaker if η is not constrained.

(ii) The concordance model is reasonably probable.

(iii) There is a degeneracy between η and the amount of spatial

curvature (λ0 + Ω0).

(iv) λ0 is constrained best, then Ω0, then η.

The following conclusion was neither expected nor surprising.

9 This can be contrasted with the location of the maximum of the three-

dimensional probability distribution, where the best-fitting values are λ0 =
0.8609375, Ω0 = 0.5015625, and η = 0.455. While this lies outside

the allowed region of parameter space as determined from cosmological

tests other than the m–z relation for Type Ia supernovae, the allowed re-

gion is quite large and the concordance model with η = 1 is within the

68.3 per cent contour. Even though the constraints on λ0 and Ω0 are of

course weaker if η is allowed to vary, a significant portion of the three-

dimensional parameter space can be ruled out, and portions of the λ0–Ω0

plane are also ruled out, though no additional region is ruled out which is

not already ruled out by other cosmological tests.

c© 2015 RAS, MNRAS 000, 1–11



10 P. Helbig

(i) Even when η is allowed to be a free parameter, the m–z rela-

tion for Type Ia supernovae is not compatible with q0 = Ω0

2
−λ0 ≥

0, and thus implies that the Universe is currently accelerating.10

(Even though the m–z relation for Type Ia supernovae is one of the

key pieces of evidence supporting the cosmological ‘concordance

model’ with λ0 ≈ 0.7 and Ω0 ≈ 0.3, it is not an essential piece

in the sense that combinations of other tests still result in the same

concordance model. Nevertheless, it is still an important piece of

evidence in favour of the concordance model since it is the only

single test which, without additional assumptions, implies q0 < 0,

i.e. a Universe which is currently accelerating.)

The following conclusions are somewhat surprising.

(i) The overall (in the three-dimensional parameter space) best-

fitting values for λ0 and Ω0 are ruled out by other cosmological

tests. Probably, this best-fitting point is the result of overfitting: its

probability is not significantly higher than elsewhere and the al-

lowed region is quite large.

(ii) If one assumes k = 0 then the best fit is very close to the

concordance model and has η = 1.

(iii) If one assumes η = 1, then the best fit is very close to the

concordance model.

(iv) If one assumes the concordance model, then one can probably

rule out low values of η, even though the relevant scale is extremely

small, which implies that dark matter is much less clustered than

galaxies are.

(v) We cannot rule out η = 1, and there is some tentative evidence

for it.

To summarize, allowing η, which is otherwise only weakly

constrained, as a free parameter significantly alters both the best

fit in the λ0–Ω0 plane and the allowed region of this plane. The

concordance model is, however, still allowed. There are hints that

η ≈ 1, though these are not statistically significant when exam-

ined in the three- or two-dimensional parameter space. On the other

hand, if one assumes the concordance values for λ0 and Ω0, low

values of η can probably be ruled out, which is not obvious consid-

ering the very small scales involved; this implies that dark matter is

very homogeneously distributed.

One might have thought that the increase in the number of

data points since Perlmutter et al. (1999) would allow some sort

of useful constraint to be placed on η from the supernova data

without further assumptions. This is not the case. Even worse, if

η is allowed to vary, then the conclusions about the cosmologi-

cal model derived from the m–z relation for Type Ia supernovae

are not as robust. However, as discussed in section 1, current con-

straints from combinations of cosmological tests without using the

supernova data determine the ‘concordance model’ with λ0 ≈ 0.7
and Ω0 ≈ 0.3 to rather high precision. It is thus perhaps more

interesting to assume the concordance model and use the super-

nova data to constrain η, especially since η is otherwise difficult

to measure. Indeed, as shown in Fig. 16, current data already pro-

vide interesting constraints. It is also extremely interesting that the

supernova data have the best-fitting values for λ0 and Ω0 corre-

sponding to those of the concordance model if and only if η ≈ 1
is assumed. (Note that while the best-fitting value of η assuming

the concordance model is ≈ 0.75, the best-fitting values of λ0 und

10 Mörtsell & Clarkson (2009) have shown that this conclusion also holds

for a much wider class of models than the Friedmann–Lemaı̂tre models

considered here.

Ω0 assuming η ≈ 0.75 are different from those of the concor-

dance model.) If this is not a statistical fluke, it could indicate that

η ≈ 1, which is somewhat surprising since the value of η as ‘felt’

by the supernova might be expected to be somewhat less, because

the corresponding beams are extremely thin. The fact that even the

supernova data ‘want’ η ≈ 1 could indicate that dark matter is dis-

tributed extremely homogeneously. See Holz (1998) for a different

expression of the same idea. Alternatively, this could be evidence

that the ‘Safety in Numbers’ scenario mentioned in section 2 is in

fact a valid approximation.

In contrast to the first useful determinations of λ0 and Ω0 from

the m–z relation for Type Ia supernovae e.g. Garnavich et al. 1998;

Riess et al. 1998; Perlmutter et al. 1999, where the effect of η 6= 1
had a negligible effect on the constraints derived, at least in the

‘interesting’ region of the λ0–Ω0 parameter space, with the larger

number of supernovae now available, this is no longer the case.

At the same time, current supernova data alone cannot usefully

constrain η (though this might be possible if other cosmological

data are taken into consideration, as discussed in the previous para-

graph). This should be taken into account in attempts to determine

further parameters, such as w, the equation-of-state parameter for

dark energy. When more supernova data become available, espe-

cially at higher redshift, it might be possible to usefully constrain

η and/or discriminate between the effect of η and other parameters

such as w. (The difference in apparent magnitude for different val-

ues of η increases with increasing redshift, while the difference due

to different values of λ0 and Ω0 is stronger (than that due to varia-

tion in η) at lower redshift and, for some sets of models, decreases

at higher redshift.) While allowing η to be a free parameter, but

constant as a function of redshift and for different lines of sight,

is certainly not the last word with respect to the influence of lo-

cally inhomogeneous cosmological models on the m–z relation for

Type Ia supernovae, it does demonstrate that care is needed when

interpreting conclusions derived from assuming η = 1. At least, the

uncertainty in λ0 and Ω0 must be correspondingly increased. While

it might be possible to decrease this with a more realistic model, it

is no longer possible to assume η = 1 and have confidence in the

parameters and their uncertainties resulting from an analysis of the

m–z relation for Type Ia supernovae.
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358, 13

Betoule M., et al., 2014, A&A, 568, A22

Bolejko K., Ferreira P. G., 2012, J. Cosmol. Astropart. Phys., 5,

003

Clarkson C., Ellis G. F. R., Faltenbacher A., Maartens R., Umeh

O., Uzan J.-P., 2012, MNRAS, 426, 1121

Dashevskii V. M., Slysh V. J., 1966, SvA, 9, 671

c© 2015 RAS, MNRAS 000, 1–11



Supernovae, inhomogeneity and dark matter 11

Dashevskii V. M., Zeldovich Y. B., 1965, SvA, 8, 854

Dyer C. C., Roeder R. C., 1972, ApJ, 174, L115

Dyer C. C., Roeder R. C., 1973, ApJ, 180, L31

Garnavich P. M., et al., 1998, ApJ, 493, L53
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