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Abstract. The Multiple Timescale Spectral Analysis is a framework relying on the existence of
well-separated timescales in the dynamic response of structures to generalize for higher-order
statistics the famous background/resonant decomposition, widely applied by the wind engineer-
ing community to compute the variance of the response of SDOF structures or of each modal
response of MDOF structures. This fast spectral analysis method mainly concerns the statistics
of the response of onshore structures subjected to a buffeting wind loading whose characteristic
frequency is typically lower than the natural frequencies of the structures concerned. By con-
trast, when dealing with wave-loaded floating offshore structures, the roles of the slow and fast
timescales are likely to be interchanged and the method is extended further in this paper to com-
pute rapidly the variances and the skewnesses of modal responses of such structures responding
in the inertial regime as well, since these statistics are necessary to consider the influence of the
non-Gaussianity of the loading.
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1 INTRODUCTION

The stochastic surge response of a floating structure is governed by a nonlinear differential
equation. The nature of this equation is such that the basic input of the problem, the water
particle velocity which is commonly assumed to be a Gaussian random process, results in a
non Gaussian surge response [10]. As a consequence, the extreme value response might sub-
stantially differ from the results predicted with a Gaussian model, which would be based on
the variance of the response only [11, 8]. A typical model developed in marine engineering is
based on the cubic translation and the evaluation of higher statistical moments [16]. There are
two approaches to the solution of this type of problem.

The first approach relies on the generation of samples of the problem input (the wave ve-
locity) and the numerical solution of the problem based on appropriate time marching algo-
rithms. In order to reduce the influence of the sampling and because of the coexistence of
several timescales in the problem, namely the slow dynamics of the oscillator and the fast
inertial wave loading, it is necessary to model very long signals with very short time steps.
This makes this first method computationally intense although straightforward as to its practi-
cal implementation.[1],[7],[9]

The second approach consists in a spectral analysis and its higher order extensions [17, 10].
Although the strict equivalence between time and frequency domains vanishes as soon as the
problem at hand features some nonlinearities, it is still possible to find relatively accurate es-
timates of the solution of the problem when the nonlinearities are limited [12]. The use of
Volterra and Wiener series is one such approach [15, 13]. In a spectral approach, the variance
of the response is obtained as a result of the integral of the power spectral density, while the
third (and higher) moments are obtained by integration of the bispectrum (and higher spectra,
respectively). Because of the existence of the several timescales in the response, the numeri-
cal integration of these spectra might be intense too. However, it is possible to take advantage
of the specific form of the spectra and proceed to their Multiple Timescale Spectral Analysis
[5]. This method consists in taking advantage of the known local shape of either factor of the
spectra (either related to the load, either to the structural filter) and provide approximations of
the integral. This method is known to be approximately two orders of magnitude (100 times)
faster than a standard numerical integration. It founds its roots in the small correlation expan-
sion [14] and has been being applied in wind engineering since the introduction of the famous
background/resonant decomposition [2]. The Multiple Timescale Spectral Analysis generalizes
several other similar approximations which provide a simple and rapid evaluation of the statis-
tics of the structural response (covariance [3], third moment [4]) in linear or slightly nonlinear
systems [6].

In this paper, the Multiple Timescale Spectral Analysis is specialized to the case of a single-
degree-of-freedom system subject to a stochastic loading distributed over its resonant and in-
ertial regimes, i.e. with a main loading frequency band above the natural frequency of the
structure. This configuration is typical of the surge response of floating structures and would
be typically tackled by means of a numerical integration of the spectra. Instead, we suggest to
decompose the response, at second and third orders, as a sum of a resonant and an inertial com-
ponents. Numerical validations demonstrate the accuracy of the proposed approximate, while
being significantly faster.
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2 FORMULATION OF THE PROBLEM

2.1 Governing equations

The force exerted by random waves on an oscillating point-like structure, which is undoubt-
edly small compared to the wavelength of waves, can be expressed according to the Morison
equation by the sum of an inertial loading component

fm(t) = kmu̇(t) (1)

resulting from a linear transformation, as the overhead dot denotes partial differentiation in time
t, of u(t), the fluctuations of the water velocity around the constant current speed uc, and a drag,
or viscous, loading component

fd(t) = kd |uc + u(t)| (uc + u(t)) (2)

depending on a nonlinear function of the water velocity, i.e. the sum of the current and the
waves speeds. For the sake of simplicity in this short paper, the influence of the movement of
the structure itself on the loading is considered as negligible. The coefficients km and kd are
related to geometric and hydrodynamic properties through:

km = cmρwvw and kd = cdρwaw/2 (3)

where ρw is the water density, cm is the inertia coefficient, cd is the drag coefficient and aw is
the cross-sectional area of vw, the volume of the submerged part of the structure.

The surge response of a single degree-of-freedom structure subjected to such a one-dimensional
Morison-type force is therefore governed by the nonlinear second order differential equation

mẍ(t) + cẋ(t) + kx(t) = fm(t) + fd(t) (4)

where x(t) is the displacement, k is the stiffness, c is the viscosity and m is the effective mass
of the structure, i.e. the mass of the structure plus the added mass of fluid accelerating with the
structure, as represented in Figure 1. Because of the memoryless nonlinearity included in the
drag loading component, the response of the structure is expected to be non-Gaussian, even if
the only input of the dynamical system, the random process u(t), is supposed to be zero-mean,
Gaussian, stationary and thus fully defined by its power spectral density Su(ω).

The developments presented next are valid no matter the analytical or experimental definition
selected for this power spectral density (PSD) but, in order to illustrate the results in a simple
manner, the structure is assumed to be located at the still-water level in deep water. In this
specific case, the application of the Linear Airy Wave Theory gives

Su(ω) = ω2Sh(ω) (5)

Figure 1: Typical single degree-of-freedom system
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and it has been decided then to model the power spectral density Sh (ω) of the wave elevation
process h(t) by the two-sided Pierson-Moskovitz spectrum

Sh(ω) =
5

32

ω4
h
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4(
ωh
ω )
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(6)

with two parameters, hs and ωh, known as the significant wave height and the circular frequency
corresponding to the peak of the spectrum of the wave elevation process. By cancelling the
derivative of the PSD of the water velocity fluctuations, its own peak circular frequency, ωu, is
found to be equal to

ωu =
4

√
5

3
ωh (7)

The power spectral densities employed in this paper are two-sided and their integration over
the circular frequencies ω, from −∞ to ∞, provides the variance of the associated process.
Consequently, the variance of the water elevation process and the variance of the water velocity
process are respectively given by

σ2
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(
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)2

and σ2
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√
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4
ω2
uσ

2
h (8)

2.2 Dimensionless formulation

A dimensionless formulation of this problem can be written by introducing a characteristic
time tr, a characteristic response xr and a characteristic wave particle velocity ur. Defining
the dimensionless time t̃ = t/tr, the dimensionless displacement x̃

(
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)
= x

[
t
(
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/xr and the

dimensionless water velocity ũ
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/ur , Equation (4) becomes
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after a divison by kxr. The coefficient in front of the dimensionless drag loading component
is set to unity by equalizing the characteristic elastic force kxr to the force of the current kdu2c .
It is also chosen to define the reference time tr as the inverse of ω0 =

√
k/m, the natural

frequency of the system, in order to obtain a unitary coefficient in front of the highest order
derivative. Lastly, the reference speed ur is chosen as σu, the standard deviation of the water
velocity process u (t), and the presence of the turbulence intensity of waves, λu = σu/uc, is
hence revealed in the dimensionless formulation of the equation of motion

x̃′′ + 2ξsx̃
′ + x̃ = κuλuũ

′ + |1 + λuũ| (1 + λuũ) (10)

where the symbol ′ denotes differentiation with respect to the new independent coordinate t̃.
Besides,

ξs =
c

2mω0

and κu =
kmω0

kduc
(11)

are respectively the structural damping ratio and the loading ratio. Similarly, Equation (5) is
rewritten dimensionlessly as

Sũ(ω̃) =

√
3

π

ε2u
|ω̃|3

e−
3
4(
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4

(12)
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where ω̃ = ωtr is the nondimensional circular frequency and εu = ωu/ω0 is the frequency ratio.
The integration property of power spectral densities holds true for the nondimensional processes
and can be applied to the rescaled water velocity process, ũ(t̃), to demonstrate that this input
is now characterized by a unit variance, σ2

ũ = 1, regardless the value of the frequency ratio εu.
Interestingly enough, Equation (11) can be rearranged to introduce κc, the Keulegan-Carpenter
number, that theoretically describes the relative importance of the drag loading component over
the inertial loading component. It effectively plays this role in the equation of motion as it
appears in the denominator of the loading ratio

κu =
εu
κc

(13)

According to the Vashy-Buckingham theorem, the problem described in Equation (10) and
Equation (12) is actually ruled by a set of four dimensionless numbers, {ξs, λu, εu, κu}. In wind
engineering applications, where a very similar equation is encountered, these four parameters
are typically all small and this property allows to simplify the governing equation. The inertial
loading component is directly discarded and the absolute value is not needed anymore in the
drag loading component since its argument is always positive. The expansion of the governing
equation consequently yields

x̃′′ + 2ξsx̃
′ + x̃ = 1 + 2λuũ+ λ2uũ

2 (14)

in which the third term is at least one order of magnitude below the second because of the small-
ness of the turbulence intensity of wind, as detailed in [6]. In marine engineering applications,
the structural damping ratio is usually still a small number, ranging between 10−3 and 10−1, but
the turbulence intensity of waves can reach values up to 2 or more. In addition, the loading ratio
and the frequency ratio may take values above one, in the range [100; 103], when wave-loaded
structures are compliant in surge, as floating offshore wind turbines or floating bridges.

3 MULTIPLE TIMESCALE SPECTRAL ANALYSIS

Since the homogenous part of the dynamic system at hand (10) is linear, it is fully character-
ized by its frequency response function

H (ω̃) =
1

1− ω̃2 + 2iξω̃
(15)

The PSD of the response thus takes the canonical form

Sx̃ (ω̃) = Sf̃ (ω̃)Ks (ω̃) (16)

where the kernel function is, at second order,

Ks (ω̃) ≡ |H (ω̃)|2 = 1

(1− ω̃2)2 + 4ξ2ω̃2
. (17)

and, similarly, the bispectrum of the response is given by

Bx̃ (ω̃1, ω̃2) = Bf̃ (ω̃1, ω̃2)Kb (ω̃1, ω̃2) (18)

where Bf̃ (ω̃1, ω̃2) represents the bispectrum of the loading. At third order, the kernel reads [4]

Kb (ω̃1, ω̃2) ≡ H (ω̃1)H (ω̃2)H (−ω̃1 − ω̃2) (19)
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Figure 2: Typical shape of the PSD of the response (symmetrical, represented for ω̃ ≥ 0) Numerical values:
κu = 10 ; λu = 1 ; εu = 5 and ξ = 10−1.

In a spectral approach, the statistical moments of the response are obtained by the (heavy)
integration of the corresponding spectra, in particular

m2,x̃ =

ˆ

R

Sx̃ (ω̃) dω̃ and m3,x̃ =

¨

R2

Bx̃ (ω̃1, ω̃2) dω̃1dω̃2 (20)

for the second and third moments. The Multiple Timescale Spectral Analysis aims at approxi-
mating these integrals with just a few operations [5], while providing at the same time a clear
understanding of the different sources of contribution to the integral. Once statistical moments
are determined, the skewness coefficient

γx̃ =
m3,x̃

m
3/2
2,x̃

(21)

can be computed and used together with the peak factor model.

3.1 Second central moment of the response

As shown in Figure 2, when the frequency ratio εu is greater than one, the PSD of the
response basically features:
- two resonant peaks having a width of ord (ξ) and being centered in ω̃ = ±1;
- two inertial peaks reaching their maximum value when |ω̃| = ord (εu) and spreading over the
frequencies whose absolute value is above a given fraction ζ of the frequency ratio, |ω̃| > ζεu;
- a flat background region in the vicinity of the origin.

As a first step, the introduction of the strained coordinates ω̃ = ξη̃ ± 1, with η̃ = ord (1) at
most, into Equation (16) allows to focus on the resonant peaks of the PSD of the response and
the Taylor series expansion of the kernel function for small damping ratios yields

Ks (ξη̃ ± 1) ' 1

4ξ2

(
1

(η̃2 + 1)
∓ (η̃2 + 2)

(η̃2 + 1)2
ξη̃ + ord

(
ξ2
))

(22)
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Likewise, the PSD of the loading is also expanded in Taylor series and reads

Sf̃ (ξη̃ ± 1) ' Sf̃ (±1) + S
(1)

f̃
(±1) ξη̃ + ord

(
ξ2
)

(23)

where the superscript (i) indicates the i-th derivative with respect to the dimensionless circular
frequency ω̃. While it seems reasonable to truncate Equation (22) at leading order on account
that ξ � 1, it is necessary to check that the PSD of the loading is almost constant on the interval
of interest, or more formally that

S
(1)

f̃
(±1) ≤ ord

(
Sf̃ (±1)

)
(24)

to be allowed to neglect higher order terms in Equation (23). If this condition is fulfilled, the
PSD of the response is approximately equal to

Sr̃ (ω̃) =
Sf̃ (1)

4ξ2

(
ξ2(

(ω̃ + 1)2 + ξ2
) + ξ2(

(ω̃ − 1)2 + ξ2
)) (25)

in the regions spanned by the strained coordinates ω̃ = ξη̃ ± 1, since the PSD of the loading is
symmetric. This local approximation is represented by the yellow dashed line in Figure 2. The
resonant component of the variance is eventually given by

m2,r̃ =

ˆ

R

Sr̃ (ω̃) dω̃ =
π

2ξ
Sf̃ (1) . (26)

Applying the procedure recommended in [5], the subtraction of Sr̃ (ω̃) from the PSD of the
response Sx̃ (ω̃) provides a first residual with only two inertial peaks

Rr̃ (ω̃) = Sx̃ (ω̃)− Sr̃ (ω̃) = Sf̃ (ω̃)Ks (ω̃) (27)

in which

Ks (ω̃) = |H (ω̃)|2 − Sr̃ (ω̃)

Sf̃ (ω̃)
(28)

is the residual kernel function. A new coordinate stretching, ω̃ = (ζη̃ ± 1) /εu with εu = 1/εu �
1 and η̃ = ord (1) at most again, is then injected into Equation (27) to zoom on the inertial peaks.
The Taylor series expansion of the residual kernel function for small values of εu yields

Ks ((ζη̃ ± 1) /εu) '
ε4u

(1± ζη̃)4
−

Sf̃ (1)

Sf̃ ((ζη̃ ± 1) /εu)

ε2u
(1± ζη̃)2

(29)

at leading order and the second term, coming from the approximations of the resonant peaks,
can be discarded if

Sf̃ (1)

Sf̃ ((ζη̃ ± 1) /εu)
≤ ord

(
ε3u
)

(30)

in the interval of interest. However, even though the residual is correctly fitted by

Sι̃ (ω̃) =
Sf̃ (ω̃)

ω̃4
(31)
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in the regions spanned by the stretched coordinates ω̃ = ξη̃ ± 1, this is not an appropriate local
approximation, in the sense of the Multiple Timescale Spectral Analysis, because it is not al-
ways integrable near ω̃ = 0, regardless of the definition of the PSD of the loading. Considering,
instead, the (0, 4) Padé approximant

P (0, 4) [Ks (ω̃)] =
1

1/Ks (0) + ω̃4
(32)

for the residual kernel, the local approximation

Sι̃ (ω̃) =
Sf̃ (ω̃)

1/Ks (0) + ω̃4
(33)

of the residual is now integrable near ω̃ = 0 and matches the residual in the background region
as well. The integrand is ultimately made totally independent from structural characteristics,
such as the natural frequency of the system, by observing that Sp̃ (1) ' Sp̃ (0), since εu � 1,
and is represented by an orange dashed line in Figure 2. At the end, the mainly inertial, partly
background, component of the variance of the response is given by

m2,ι̃ =

ˆ

R

Sf̃ (ω̃)

2 + ω̃4
dω̃. (34)

and the variance of the response is approximated by the sum of the resonant and inertial contri-
butions as

m2,mtsa =
π

2ξ
Sf̃ (1) +

ˆ

R

Sf̃ (ω̃)

2 + ω̃4
dω̃. (35)

This approximation seems less advantageous, at first glance, than its equivalent background/resonant
decomposition, since the inertial component is still expressed by means of an integral. Never-
theless, it is noticed that this integral only involves the loading and can be established, even
maybe in closed-form, a priori, for a given PSD of loading.

3.2 Third central moment of the response

As shown in Figure 3, when the frequency ratio is greater than one, the bispectrum of the
response exhibits essentially:
- six background bi-resonant peaks on an area of ord (ξ2), centered in (±1, 0), (±1, 0) and
± (1,−1);
- six bi-resonant inertial peaks on an area of ord (ξ2), centered in ± (1,−2), ± (2,−1) and
± (1, 1);
- six bi-background inertial triangular basins located between the background bi-resonant peaks
and the bi-resonant inertial peaks;
- six resonant bi-inertial pairs of peaks, centered in ± (εu, 0), ± (0, εu) and ± (εu,−εu).

Focusing first on the region where ω̃1 and ω̃2 are both of ord (1), it appears quite clearly that
the bispectrum of the response behaves locally as

Br̃ (ω̃1, ω̃2) = <
[
Bf̃ (0, 0)

]
Kb (ω̃1, ω̃2) (36)

because the bispectrum of the loading is almost constant in this zone and its imaginary part is
equal to zero. In addition, the third order kernel decreases fast enough along ω̃1 and ω̃2 for the
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Figure 3: Typical shape of the bispectrum of the response Bx̃ (ω̃1, ω̃2). Numerical values: κu = 10 ; λu =
1 ; εu = 5 and ξ = 10−1.
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approximation presented in Equation (36) to be local and integrable, as required by the multiple
timescale spectral analysis. Its double integration gives a simple and rapid estimation of the
component of the third central moment of the response in the vicinity of the origin

m3,õ =
8π2

3 (1 + 8ξ2)
<
[
Bf̃ (0, 0)

]
(37)

which corresponds to the area under the six background bi-resonant peaks, the six bi-resonant
inertial peaks and the six bi-background inertial triangular basins.

Then, the subtraction of Br̃ (ω̃1, ω̃2) from the bispectrum of the response provides a first
residual

Rr̃ (ω̃1, ω̃2) = Bf̃ (ω̃1, ω̃2)Kb (ω̃1, ω̃2) (38)

where

Bf̃ (ω̃1, ω̃2) = Bf̃ (ω̃1, ω̃2)−<
[
Bf̃ (0, 0)

]
(39)

and a new coordinate stretching, ω̃1 = η̃1/εu and ω̃2 = η̃2 with η̃1 and η̃2 of ord (1), is injected
into Equation (38) in order to zoom on one of the resonant bi-inertial pair of peaks. The lead-
ing order term of the Taylor series expansion of the third order kernel for small values of εu
corresponds to

Kb (ω̃1, ω̃2) ' Ks (ω̃1)< [H (ω̃2)] (40)

where we recover the second order kernel and the real part of the frequency response function.
Interestingly enough, each of those two distinguished functions depends on only one coordinate
in the intervals of interest. In order to ensure the integrability of the local approximation near
ω̃1 = 0 and ω̃2 = ±1, respectively, the second order kernel is approximated by a (0, 4) Padé
approximant, similarly to what was done before with the inertial component of the PSD of the
response,

P (0, 4) [Ks (ω̃1)] =
1

1 + ω̃1
4 (41)

and the real part of the frequency response function, on the contrary, cannot be simplified on
account that the damping ratio is a small number. In addition, the variations of the bispectrum
of the loading along ω̃1 and along ω̃2 have both to be taken into account. The first ones are
indeed required to get a local approximation that resembles the residual while the second ones
are needed to obtain a non-zero result for the resonant bi-inertial component of the third central
moment of the response, since ˆ

R

< [H (ω̃2)] dω̃2 = 0 (42)

However, the number of points where the bispectrum has to be evaluated is drastically reduced
by using a (0, 2) Padé approximant to fit correctly the integral of the residual along ω̃1 when ω̃2

is of ord (1). It reads

P (0, 2)

ˆ
R

Bf̃ (ω̃1, ω̃2)

1 + ω̃1
4 dω̃1

 =
1

p0 + p2ω̃2
2

(43)
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in which

p0 =

ˆ

R

Bf̃ (ω̃1, 0)

1 + ω̃1
4 dω̃1 and p2 =

ˆ

R

B(0,2)

f̃
(ω̃1, 0)

1 + ω̃1
4 dω̃1 (44)

where the superscript (i, j) indicates the (i, j)-th derivative with respect to ω̃1 and ω̃2. It is worth
to note that the Padé approximant is entirely independant from the structural characteristics
again. The resonant bi-inertial component of the third central moment of the response is finally
given by

m3,ι̃ =

ˆ

R

< [H (ω̃2)]

p0 + p2ω̃2
2

dω̃2

and the third moment of the response approximately corresponds to

m3,mtsa = m3,õ +m3,ι̃ (45)

3.3 Numerical validation

The mathematical developments presented in Sections 3.1 and 3.2 are now validated by com-
paring the results obtained with the multiple timescale spectral analysis to the results coming
from Monte Carlo simulations.

First, the PSD of the dimensionless water velocity fluctuations, Sũ (ω̃), is computed accord-
ing to Equation (12) for a given set of dimensionless numbers. A time-history of wave velocity
fluctuations, ũ

(
t̃
)
, is then generated by computing the inverse Fourier transform of

U (ω̃i) =
√
Sũ (ω̃i)Nω̃sej θi (46)

where N = 108 is the number of elements, ω̃s = 20 εu is the sampling circular frequency and
θi is a phase angle randomly drawn from a uniform distribution in the interval [0, 2π[. At this
point, it is already possible to check that the frequency content of the wave velocity signal is
correctly represented by superimposing its PSD on the theoretical one. Figure 4 shows the very
good agreement between them. Then, a loading sample is obtained by calculating

f̃ = κuλuũ
′ + |1 + λuũ| (1 + λuũ) . (47)

It is used differently in the time domain analysis and in the Multiple Timescale Spectral Analy-
sis.

In time domain, the loading sample enters into the equation of motion which is hence solved
numerically to obtain the evolution of the displacement of the structure in time, x̃

(
t̃
)
. To do so,

the finite difference method with an explicit scheme has been chosen here but any other time
marching algorithm would obviously provide almost exactly the same results. At the end, the
second and third central moments of the response are respectively given by

m2,x̃ = E
[(
x̃
(
t̃
)
− E

[
x̃
(
t̃
)])2] (48)

m3,x̃ = E
[(
x̃
(
t̃
)
− E

[
x̃
(
t̃
)])3] (49)

where the operator E [.] stands for the mathematical expectation, computed over the samples.
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Figure 4: Typical shape of the power spectral density of the water velocity fluctuations.

In the spectral approach, we start by determining the power spectral density and the bis-
pectrum associated to the loading sample. From there on, we just follow the steps detailed in
Sections 3.1 and 3.2 to obtain the resonant and the inertial components of the second and third
central moments of the response. Since we have kept the same set of dimensionless numbers
throughout the whole paper, the local approximations and the first residual of the power spectral
density and of the bispectrum of the response are respectively shown in Figure 2 and Figure 3.

The numerical results are summarized in Table 1 together with the computational time re-
quired in both cases. The second and third central moments of the response are computed much
more rapidly with the Multiple Timescale Spectral Analysis and are very close to the references
obtained with Monte Carlo simulations.

Sf̃ (1) m2,x̃ m2,r̃ m2,ι̃ m2,mtsa ttime tmtsa

0.05 3.58 0.76 2.60 3.36 5 s 0.1 s
Bf̃ (0, 0) m3,x̃ m3,õ m3,ι̃ m3,mtsa γx̃ γmtsa

8 · 10−3 0.93 0.20 0.68 0.88 0.137 0.143

Table 1: Numerical values: κu = 10 ; λu = 1 ; εu = 5 and ξ = 10−1

4 CONCLUSIONS

The background/resonant decomposition (which is widely applied in wind engineering) is a
particular application of the Multiple Timescale Spectral Analysis where the natural frequency
of the oscillator is larger than the frequency content of the loading. In this paper, we have spe-
cialized the concept to the companion problem, where the natural frequency of the oscillator
is smaller than the characteristic frequency of the loading, as is typical in floating structures
considered in marine engineering. Instead of the heavy numerical integration of the power
spectral density and bispectrum of the structural response, the proposed methodology is able
to determine the statistical moments of the response as a sum of two components. These two
components correspond to a resonant contribution and an inertial contribution. The same de-
composition is used for both the second and third orders. The resonant contribution takes a very
similar shape as the well known existing approximations. Conversely to the companion prob-
lem though, the inertial contribution requires the evaluation of an integral, which is however
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less cumbersome than in the formal numerical integration of the spectra since it involves the
loading only.

The proposed methodology has been benchmarked against Monte Carlo simulations. It
shows a significant CPU saving while offering a very competitive accuracy. It will certainly
serve as a major cornerstone of a multi degree-of-freedom model, where the response of a
structure in its modal basis will be computed as a linear combination of modal (single degree-
of-freedom) responses.
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