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Abstract

Cotton is a commercial and economically important crop that generates billions of dollars in

annual revenue worldwide. However, cotton yield is affected by a sap-sucking insect Bemi-

sia tabaci (whitefly), and whitefly-borne cotton leaf curl disease (CLCuD). The causative

agent of devastating CLCuD is led by the viruses belonging to the genus Begomovirus (fam-

ily Geminiviridae), collectively called cotton leaf curl viruses. Unfortunately, the extensively

cultivated cotton (Gossypium hirsutum) species are highly susceptible and vulnerable to

CLCuD. Yet, the concomitant influence of whitefly and CLCuD on the susceptible G. hirsu-

tum transcriptome has not been interpreted. In the present study we have employed an

RNA Sequencing (RNA-Seq) transcriptomics approach to explore the differential gene

expression in susceptible G. hirsutum variety upon infection with viruliferous whiteflies.

Comparative RNA-Seq of control and CLCuD infected plants was done using Illumina

HiSeq 2500. This study yielded 468 differentially expressed genes (DEGs). Among them,

we identified 220 up and 248 downregulated DEGs involved in disease responses and path-

ogen defense. We selected ten genes for downstream RT-qPCR analyses on two cultivars,

Karishma and MNH 786 that are susceptible to CLCuD. We observed a similar expression

pattern of these genes in both susceptible cultivars that was also consistent with our tran-

scriptome data further implying a wider application of our global transcription study on host

susceptibility to CLCuD. We next performed weighted gene co-expression network analysis

that revealed six modules. This analysis also identified highly co-expressed genes as well

as 55 hub genes that co-express with� 50 genes. Intriguingly, most of these hub genes are

shown to be downregulated and enriched in cellular processes. Under-expression of such

highly co-expressed genes suggests their roles in favoring the virus and enhancing plant

susceptibility to CLCuD. We also discuss the potential mechanisms governing the establish-

ment of disease susceptibility. Overall, our study provides a comprehensive differential
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gene expression analysis of G. hirsutum under whitefly-mediated CLCuD infection. This

vital study will advance the understanding of simultaneous effect of whitefly and virus on

their host and aid in identifying important G. hirsutum genes which intricate in its susceptibil-

ity to CLCuD.

Introduction

Cotton (Gossypium hirsutum L.) is one of the most important economic crops grown on sev-

eral continents of the world. It is cultivated in more than eighty countries around the world,

including China, India, USA and Pakistan [1]. It is a principal source of high quality fiber that

makes cotton the backbone of the textile industry. Cotton is also important owing to its high-

quality protein and oil rich seed that is used for cooking oil production and livestock feed [2].

However, several biotic and abiotic stresses affect the overall cotton production and fiber qual-

ity. The annual crop loss in cotton due to biotic stresses is significantly higher than any other

agriculturally important crops.

The major devastating biotic factors that significantly reduce cotton quality and production

include insect pests that accounts for up to about 37% yield losses [3]. Bemisia tabaci, or white-

fly, is among the most devastating sap-sucking pest that directly causes more than 50% of the

crop loss [4]. Additionally, it aids viruses as vector to transmit many bipartite begomoviruses

like Cotton leaf curl crumple virus (CLCrV) and Cotton leaf curl virus (CLCuV) [5, 6].

CLCuV causes CLCuD in host plant [7] that is also responsible for serious crop losses annually

[8]. Whitefly transmits a complex of single-stranded DNA viruses belonging to the genus Bego-
movirus (family Geminiviridae) along with their associated DNA satellites to establish CLCuD

(alphasatellite and betasatellite) [9–12]. The CLCuD is manifested by the characteristic symp-

toms of upward or downward leaf curling, vein swelling, leaf enation, and growth stunting.

The strategies adopted to improve insect or disease resistance traits include breeding

approaches, RNAi, protein-mediated resistance, genetic engineering or genome editing tech-

niques [11, 13, 14]. However, these viruses may develop resistance by mutations or recombina-

tion [15]. Therefore, it is essential to decipher the host responses during CLCuD to effectively

control this deadly disease in cotton.

Plants have evolved a wide variety of intrinsic defense mechanisms to fight off pathogens

including pests and viruses [16]. Upon a pathogen attack, plants undergo a dramatic transcrip-

tional reprogramming by differentially expressing a vast array of genes leading to global

changes in a variety of physiological and metabolic processes [17, 18]. On contrary, viruses are

evolving by adapting to their hosts via evading host defense mechanisms and taking control of

the host cellular machinery for their own benefits. Changes in the cellular metabolism along

with differential gene expression as host antiviral responses contribute to virulence and estab-

lishment of viral disease [19].

Next-generation based RNA sequencing (RNA-seq) has emerged as a powerful tool to detect

differentially expressed genes (DEGs) in several plant species [20]. Identification of such DEGs

under a particular stress allows to understand the mechanisms of the complex nature of plant-

microbe interactions [21] and engineering of broad-spectrum disease resistance [22]. At present,

the available cotton transcriptome data is focused on salt/drought stress, fiber biology, leaf senes-

cence, aphid resistance, verticillium resistance, whitefly resistance but not on CLCuD response

[23–27]. Thus, we aim to study the response of tetraploid susceptible cotton G. hirsutum at a

molecular level in response to whitefly-mediated CLCuD by using RNA-Seq technology. This
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study will help us in identification of disease-related DEGs, which can be further exploited to

understand the cotton-whitefly-CLCuD interaction for effective control of disease.

Materials and methods

Whitefly-mediated CLCuD inoculation of cotton plants

Seeds of CLCuD susceptible cotton variety “Karishma” were obtained from Nuclear Institute

of Agriculture and Biology, Faisalabad. Plants of G. hirsutum, CLCuD susceptible genotype

“Karishma” were grown in a whitefly-free glasshouse. Three-week-old plants were then

divided into two sets. One set of plant was maintained in whitefly-free conditions, while the

other set was allowed to grow under viruliferous whiteflies (containing CLCuV/CLCuMBBur)

infestation. Each set contained 20 plants and we referred set one as a control and set two as

infected. Glasshouse temperature was retained 38–45˚C and 25–30˚C for day and night

respectively. After 25 days post infestation, when disease symptoms were very clear on the

CLCuD infected plants, leaf tissues were taken from both CLCuD infected and control plants.

RNA isolation and RNA-Seq library preparation

Leaf samples from three biological replicates of control and infected plants were subjected to

total RNA isolation via Trizole method (Plant RNA reagent Invitrogen, USA). RNA quantity

and quality was measured using NanoDrop 1000 spectrophotometer and 1% agarose gel elec-

trophoresis respectively. Moreover, Bio-analyzer 2100 equipment was used to examine the

RNA integrity. cDNA was synthesized using 10 μg of total RNA and all six samples were sub-

jected to construction of strand specific libraries for RNA-Seq [28]. Oligo dT beads were used

to extract poly (A) mRNA from the total RNA. The extracted mRNA was sheared into small

fragments of about 300 nucleotides. Afterwards first and second strand cDNA were made with

random hexamer-primers, RNaseH and DNA polymerase I. Purification and washing of

cDNA fragments was done to end repair, followed by their ligations to adapters for sequenc-

ing. Finally, the cDNA libraries were attained after purification and PCR enrichment. cDNA

libraries were inspected for integrity using Bio-analyzer 2100.

Sequencing and transcriptomic data analysis

All libraries were pooled to be sequenced by HiSeq 2500 on single-end mode. All the low qual-

ity reads including adopter sequences were removed using Trimmomatic software [29]. Qual-

ity of untrimmed and trimmed reads was examined by FastQC [30]. HISAT2 aligner was used

to map the clean reads to the G. hirsutum reference genome [31]. HISAT2-bulid was used to

index the reference genome and HISAT2-align was run with default parameters allowing up to

2 mismatches and twenty alignments report. HISAT generated alignment was subjected to

cuffdiff package of Cufflinks software for determining differential gene expression [32]. The

statistical model of Cufflinks-cuffdiff measures the differential gene expression by using a unit

FPKM i.e. Fragments per Kilobase of exon model per Million mapped reads. Cuffdiff was set

to calculate abundance of differentially expressed genes (DEGs) between control and infected

samples by using a cutoff q value of 0.05. An R-based Heatmap 2.0 package was implemented

to make a hierarchical clustering heat map on Log2 expression values of the G. hirsutum differ-

entially expressed genes under whitefly-mediated CLCuD infestation.

RT-qPCR analysis for validation of RNA-Seq data

We performed a quantitative real-time RT-PCR (RT-qPCR) on independent samples of con-

trol and infected Karishma plants to substantiate the differential expression identified by RNA
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sequencing data. Primer3 program was used to design primers on 10 selected genes. Karishma

leaves from control and infected samples were collected and flash frozen in liquid nitrogen.

Total RNA was isolated from frozen samples using Trizol method and then subjected to

DNase treatment to remove any DNA contamination. Two μg of total RNA was used for

cDNA synthesis using Superscript II reverse transcriptase (Thermo-Fischer Scientific) as per

manufacturer instructions. cDNA was diluted 5 times and 2.5 μL /reaction was used as a tem-

plate. Expression analysis was performed using RT-qPCR using iQ5 Real-Time Bio-Rad PCR

instrument. Each reaction was performed in 20 μL total volume with 10 μL SYBR Green Mas-

ter Mix (Thermo-Fischer Scientific), 2.5 μL of cDNA template, 0.5 μL from 10 μM/μL of each

primer and remaining volume was made up using nuclease free water. The amplification pro-

gram was set using 95˚C for 5 min of initial denaturation, followed by 35 cycles of 95˚C for 15

s,and 55˚C for 20 s. At the end, melt curve analysis was done at temperature range from 55 to

95˚C to make sure the product specificity. ΔΔ Ct method was used to find out the relative gene

expression taking 18s rRNA internal control gene for data normalization. To evaluate the

implication of RNA-Seq data on other CLCuD susceptible cultivars, we did an additional RT-

qPCR on samples of another CLCuD susceptible cultivar of G. hirsutum “MNH786”. RT-

qPCR was performed on control and infected samples using same procedure as described

above.

WGCNA and network analyses

Construction of weighted gene-based co-expression network (WGCNA) was done using

FPKMs of all 468 DEGs found in RNA-Seq data. An R-based package was run for WGCNA on

FPKMs of DEGs [33–35]. CutreeDynamicTree algorithm was implemented with smallest

module of 70 genes size as a set threshold to construct the dendrogram [33]. Different modules

presented the entire network with respective colors were identified with a set weighted correla-

tion cutoff� 0.85. NetworkX Plugin was used to analyze degree of the network while Cytosca-

peV.3.5.1 was utilized for cluster coefficient analysis [36, 37]. “Group Attributes Layout”, an

attribute of CytoscapeV.3.5.1 Plugins was employed for visualizing the co-expression network

[38, 39].

Functional annotation and GO-term analysis of DEGs

All DEGs were subjected to be searched in Cottongen database for the assignment of their

respective biological functions. All these genes were also analyzed using Kobas 3.0 [40] for

determination of associated GO-terms. An interactive graph of GO-terms with a threshold of

0.05 p-value was made by AgriGO toolkit [41]. Additionally, the identified modules and hub

genes by WGCNA were also used for GO-term analysis to examine their probable role in cot-

ton response to whitefly-mediated CLCuD.

Data accessibility

RNA Sequencing raw data of present study is available at the National Center for Biotechnol-

ogy Information (NCBI) as BioProject accession No. PRJNA398803.

Results and discussion

Transcriptomic data on geminivirus-infected plants are very limited. A few microarray studies

dealing with the impact of geminivirus infection on host gene expression are done with a focus

on the model plant Arabidopsis thaliana [42, 43]. Using RNA-Seq, mostly studies have been

done on geminivirus infected tomato or tobacco plants [44–46]. There are two reports that
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have studied transcriptome of cotton under aphid and/ whitefly infestation [26, 27]. Another

recent RNA-Seq dataset has depicted the transcriptome changes in G. arboreum under graft-

mediated CLCuD stress [47]. However, these studies are different from our study in terms of

infestation, method of inoculation, cotton variety/genotype, ploidy level of cotton species and

differential gene expression. Compared to previous studies, here we have presented a simulta-

neous effect of whitefly and CLCuV (field like condition) on cotton transcriptome. To our

knowledge this is the first transcriptomic study in tetraploid cotton G. hirsutum under white-

fly-mediated CLCuD infestation which provides comprehensive insights into the cotton

responses to whitefly mediated CLCuD infestation.

Cotton transcriptome reveals global transcriptional changes in response to

CLCuD infection

Notably, cultivated tetraploid cotton G. hirsutum is highly susceptible to CLCuD. Hence, the

current study sheds light on the changes in gene expression of G. hirsutum in response to

whitefly-mediated CLCuD. This study will also help decipher potential disease susceptibility

mechanisms involved in G. hirsutum in response to the whitefly vector and begomoviruses

causing CLCuD. A workflow for this transcriptomic study is highlighted in Fig 1.

High quality RNA was isolated from leaf tissues obtained from control and CLCuD infected

plants in three biological replicates. After library preparation, RNA-Seq was performed on

these pooled libraries using Illumina HiSeq 2500 platform. For each of the six samples, we

obtained an average of 10 million reads per sample (Fig 2A). These reads were checked for

quality by FastQC before and after Trimmomatic processing with a high base call Phred Score

64 (S1 Fig). The mapping of high quality control sample reads RZN18-20 and infected samples

RZN22-24 was performed using HISAT2 to the reference genome of G. hirsutum (26 chromo-

somes and 76,943gene models), alignment summary is shown in Fig 2A. Subsequently, control

and infected samples alignment was used to find out the differential gene expression. Biologi-

cal replicates were compared individually for each condition and transcript abundance was

calculated using Cuffdiff [32] (Fig 2B). As a quality check, gene density and genes dispersion

was provided by comparison of transcripts (Fig 2C and 2D). FPKM value was used to normal-

ize the mapped genes expression levels. Log2 fold change greater than 1 and a cutoff false dis-

covery rate < 0.05 was customized to identify DEGs in comparison of control and disease

infected leaves of G. hirsutum plants that yielded 468 DEGs as provided in S1 Table. Among

them, 220 up and 248 genes were found downregulated (Figs 2E and 3A).

To corroborate our Karishma transcriptomic data, we selected 10 significantly DEGs hav-

ing their potential roles in disease susceptibility (Tables 1 and S2). These genes include CRD,

COBL7, arginine decarboxylase, amino-acid decarboxylase and alpha-galactosidase 1 (AGAL-

1), WEB1, CDF, 1-aminocyclopropane-1-carboxylate oxidase (ACO1) and Metallothionein-

like protein. Differential expression of these genes suggest their involvement in CLCuD

response in cotton. Moreover, the role of these genes, based on many previous reports has

been discussed below.

The upregulation of chlorophyll biosynthesis-related two CRD genes and downregulation of

WEB1, a chloroplast photodamage responsive gene was observed. It’s important to note that

host genes involved in chloroplast biosynthesis and development were previously shown to

interact with BC1 of a Radish leaf curl disease (RaLCB) in Nicotiana benthamiana. This interac-

tion ultimately leads to a damage of chloroplast integrity for successful viral symptoms estab-

lishment [48, 49]. ACO1 that is induced in infected Karishma leaves is involved in ethylene

formation and pathogen defense [50]. Previously, expression of ACO1 was shown to be elevated

in plants because of severe necrosis caused by the with Potato Virus Y infection [51]. Besides
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metal binding, metallothionein proteins are involved in capturing of harmful oxidant radicals.

Moreover, expression levels of metallothionein in plants is induced to combat oxidative stresses

Fig 1. RNA-Seq of G. hirsutum under whitefly-mediated CLCuD stress. (A) Sketch of CLCuD infestation of three-week-old cotton plant with viruliferous whitefly. (B)

Control (top) and CLCuD infected (bottom) leaf of G. hirsutum used for RNA-Seq, arrows are showing vein thickening in CLCuD infected leaf, (C) RNA-Seq data analysis

methodology.

https://doi.org/10.1371/journal.pone.0210011.g001
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Fig 2. Data quality analysis and mapping to reference genome. (A) RNA-seq raw vs mapped reads where number of samples and reads lie on x and y-axis, respectively,

(B) Data (Log10 FPKM) among the biological replicates, where q1 and q2 represent control and infected samples, moreover q1_0, q1_1, q1_2 symbolize three biological

replicates of controls, q2_0, q2_1, q2_2 denote three biological replicates of infected samples. (C-E) Gene dispersion, density and DEGs in the dataset.

https://doi.org/10.1371/journal.pone.0210011.g002

Fig 3. Hierarchical clustering heatmap of cotton DEGs under whitefly-mediated CLCuD. R-based Heatmap 2.0 package was implemented to make a heat map of G.

hirsutum DEGs under whitefly-mediated CLCuD stress (A). Heatmap of 468 DEGs and (B). Hub genes identified by WGCNA.

https://doi.org/10.1371/journal.pone.0210011.g003
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[52]. Hence, upregulation of metallothionein protein in our data represents its involvement in

cell survival under oxidative stress caused by whitefly and CLCuD. Arginine decarboxylase cata-

lyzes the arginine metabolism and therefore involved in polyamine synthesis. The disease resis-

tance response of Polyamines is related to ROS that inhibit pathogen growth, stimulate cross-

linking of the plant cell wall and mediate defense responsive pathways [53]. The downregulation

of arginine decarboxylase in transcriptomic data here depicts its role in disease susceptibility.

Amino-acid decarboxylase gene exhibit suppression under sap-sucking insects and viral stresses

[54, 55], therefore, we found this gene to be downregulated by whitefly and CLCuD stress

response. Upregulation of CDF3 denotes its probable role in disease stress response as observed

previously in pepper upon infection with different viruses [56]. The downregulation of two sec-

ondary cell wall biosynthesis and biogenesis related genes, COBL and AGAL-1 denote their role

in cell wall mediated signal transduction upon pathogen attack [57, 58].

We examined the transcriptional responses of these genes in two susceptible cultivars, Kar-

ishma and MNH786 using RT-qPCR analyses. Karishma has been found to be highly suscepti-

ble to CLCuD during field observations [59], therefore, we used this variety in transcriptomic

study to decipher mechanisms impartially involved in disease susceptibility. However,

MNH786 is relatively a recent cotton variety that is also susceptible to CLCuD [60], so we

hypothesized that both susceptible cultivars might exhibit similar transcriptomic changes

under CLCuD infestation. Our qPCR data on independent biological replications of highly

susceptible Karishma corroborated with RNA-Seq expression (Fig 4). Intriguingly, transcript

levels of all the tested genes in qPCR, with one exception displayed analogous expression pat-

terns in MNH786, another susceptible G. hirsutum cultivar (Fig 5).

Perhaps, one gene that did not show consistent mRNA levels between two susceptible culti-

vars might be due to genotype dependent gene expression or different sensitivity of two tech-

niques. Overall, our qPCR findings demonstrate the implication of our transcriptomic data on

other CLCuD susceptible cultivars. To gain further insights into this transcriptome data, we

performed gene set enrichment analysis. We discovered several functional sets of DEGs, signif-

icantly altered in CLCuD infected cotton plants particularly involved in pathogen interaction,

defense and disease susceptibility.

Functional annotation unveils differential gene expression of important

gene families in cotton upon CLCuD infection

On the course of evolution, plants have established sophisticated defense mechanisms for cop-

ing with pests and pathogens including viruses and insects [61]. In addition to physical barriers

Table 1. List of some significant differentially expressed genes in the transcriptomic data of G. hirsutum under whitefly-mediated CLCuD infection.

Gene_ID Function Control_FPKM Infected_FPKM Regulation in G. hirsutum
CotAD_04678 Metallothionein-like protein 1 0 1357.24 up

CotAD_19598 COBRA-like protein 7 218.176 0 down

CotAD_19166 Arginine decarboxylase 66.2789 7.13967 down

CotAD_30209 1-aminocyclopropane-1-carboxylate oxidase (ACO1) 21.9758 183.178 up

CotAD_28371 alpha-galactosidase 1 110.121 10.4329 down

CotAD_24161 Aromatic L. amino acid decarboxylase 256.185 0 down

CotAD_62004 WEB family protein 0 178.295 up

CotAD_28260 Magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase 363.941 32.3541 down

CotAD_53254 Magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase 491.584 34.9266 down

CotAD_10143 cyclic dof factor 3 11.0365 55.8462 up

https://doi.org/10.1371/journal.pone.0210011.t001
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(such as trichomes as well as toxic compounds and secondary metabolites), plants employ an

intricate network of defense signaling pathway to defend themselves against a wide-range of

pathogens [62]. On contrary, pests and pathogens like insects and viruses have evolved

counter-defense strategies by hijacking host machinery to compromise host defenses and

establish disease susceptibility [63]. This CLCuD-related transcriptome analysis sheds light on

such mechanisms that suppress plant immune system, avert pathogen recognition and influ-

ence host metabolic pathways to establish disease susceptibility in cotton. Functional annota-

tion using a GO enrichment analyses of DEGs in G. hirsutum plants under CLCuD, shown

several groups of genes differentially expressed in cotton in our study. The majority of these

genes include metabolite synthases, transcription factors, protein kinases and phytohormone-

related genes. GO terms associated with DEGs were found to be related to biological processes,

immune response, organelle organization, heterocyclic metabolism and protein modification-

related processes (Fig 6). We discuss here the potential roles of these functional classes in the

context of network structural analyses in the succeeding section.

Co-expression gene network pinpoints six novel modules

With the accessibility of large transcriptomic datasets, identification of a set of co-regulated

genes under a stimulus or a physiological condition may be performed using co-expression

network analysis [64, 65]. Thus, a co-expression network may help identify a cohort of genes

that are involved in a shared biological process. Towards this, we performed a WGCNA to

reveal diverse co-regulated gene groups in our RNA-Seq dataset [33, 34]. Gene expression sim-

ilarity matrix between two nodes was computed by neighborhood proximity and depicted by

creating topological overlap mapping metric (TOM) plot [34]. TOM also made a display of

dendrograms with weighted correlations [66]. The overall analysis generated an undirected

co-expression network possessing six different modules that are demonstrated in six different

colors (Fig 7A and 7B and S3 Table). Specifically, these modules i.e. grey, turquoise, blue,

brown, yellow and green consist of 136, 81, 78, 65, 58 and 51 genes, respectively. Most signifi-

cant connections or nodes were deciphered within the weighted co-expression network by

making degree and clustering coefficient analysis [67, 68]. The network topological property

analysis discovered overall 55 hub genes with� 50 connections in the co-expression network

(Figs 3B and 7B and S4 and S5 Tables).

CLCuD-related modules provide insight into the establishment of disease

susceptibility in cotton

Intriguingly, all of the hub genes, discovered in co-expression network are downregulated and

are enriched in yellow module. GO term annotation of these hubs shown their association

with intracellular processes (Figs 7C snd S2). Like all other viruses, geminiviruses have

coevolved with their host plants. These viruses overcome the plant defenses and hijack the

endogenous host cellular processes for their replication, expression and transport of their

DNA genomes. Therefore, hub genes that include transcription factors, kinases, phytohor-

mones, DNA repair, plasmodesmata and organelle trafficking-related genes possibly play roles

in successful establishment of viral infection leading to heightened susceptibility to CLCuD in

cotton. Gene families of particular interest as potential targets for engineering pathogen resis-

tance are further elaborated below.

Fig 4. RT-qPCR Validation of transcriptomic data in Karishma cultivar. (A) R-based heat map of 10 selected DEGs for RT-qPCR. (B)

Relative expression levels of selected ten genes and 18S as an internal reference detected by RT-qPCR in control and symptomatic leaves.

Error bars symbolized standard error of three biological replicates and � shows significance determined by Student’s t-test.

https://doi.org/10.1371/journal.pone.0210011.g004
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Transcription factors. Transcription factors play as major regulators to govern the expres-

sion of multiple genes under different biotic and abiotic stresses in plants. In particular, they

have been focus of many studies involved in disease resistance mechanisms in several plants

species for their regulatory actions in activating defense-responsive genes [69]. In our analysis,

several transcription factors are differentially expressed in cotton under CLCuD infection

including zinc finger, MYB, WD-40 repeat family proteins, NAC domain and bHLH. These

results are in concert with a previous study that displays the differential regulation of these tran-

scriptional gene families in cotton in response to whitefly infection [26]. In addition, the roles of

these transcription factors have also been studied to be associated with viral infections in plants.

Host NAC transcription factor directly interacts with the geminiviral proteins upon disease

infection and this interaction leads to enhanced viral replication [70]. Consistent with these

findings, downregulation of NAC transcription factor in our data might indicate its role in

establishment of early disease infection. Moreover, MYB transcription factors regulates an array

of genes involved in diverse plant processes including development, hormone signaling, metab-

olism, plant stress and disease resistance [71]. In another study, the association of bHLH tran-

scription factors and Tomato yellow leaf curl virus disease resistance in tomato (Solanum
lycopersicum) [72] has been demonstrated. In our experiment, all these transcription factors

were downregulated suggesting their roles in suppression of cotton defense-responsive genes

that are implicated in disease resistance against whitefly and CLCuD.

Phytohormone signaling. Differential gene expression in phytohormones in plants upon

pathogen infection has been well studied [73]. CLCuD infection in G. hirsutum revealed the

DEGs associated with phytohormone signaling pathways. In this study, auxin- and cytokinin-

related genes were upregulated that highlight their roles in plant defense responses under this

Fig 5. RT-qPCR Validation of transcriptomic data in MNH786 cultivar. Relative expression levels of selected ten genes and 18S as an

internal reference detected by RT-qPCR in control and symptomatic leaves. Error bars symbolized standard error of three biological

replicates and � shows significance determined by Student’s t-test.

https://doi.org/10.1371/journal.pone.0210011.g005

Fig 6. GO term analysis of DEGs. GO term annotation of G. hirsutum differentially expressed genes under CLCuD stress.

https://doi.org/10.1371/journal.pone.0210011.g006
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deadly viral attack. Allene oxide synthase (AOS) gene, which encodes an essential enzyme in jas-

monic acid (JA) biosynthesis, was also downregulated in our data. Previously, the AOS tran-

script and cellular concentration of JA were found to be critical for pathogen and viral infection

in plants [74]. Hence, downregulation of AOS in our experiment suggests its role in the downre-

gulation of JA pathway leading to the cotton susceptibility to the disease. Abscisic acid (ABA) is

another important plant hormone that functions as a chemical signal in response to different

biotic and abiotic stresses. ABA further triggers an array of genes involved in physiological and

developmental processes of the plant to cope with the stress conditions [75]. If activated at early

Fig 7. WGCNA for identification of hub genes among CLCuD-responsive DEGs in G. hirsutum. (A). TOM heatmap on 468 DEGs. Pink and green colors denote high

and no strength, respectively, while dendrogram lines represent genes. DEGs with similar expression regulation patterns have been clustered and referred as modules. (B).

Weighted correlations within the network deciphered six modules with a threshold of� 0.85. The network nodes having more than 50 connections were denoted as highly

connected hub genes (C). GO term annotation of CLCuD responsive hub genes revealed by WGCNA.

https://doi.org/10.1371/journal.pone.0210011.g007
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stages of the disease, ABA is involved in the positive regulation of plant defense against invader

pathogens but in case of later stages of infection, ABA suppresses reactive oxygen species pro-

duction, JA and salicylic acid pathways, thus negating the plant defenses by manipulating these

hormonal signaling cascades [76]. This suggests that ABA is involved in both pre- and post-inva-

sive plant defenses. ABA limits the movement of viruses by increasing callose deposition and is

shown to be required for disease resistance against diverse viruses including TMV and PVX

[77]. Likewise, another study demonstrates that tomato plants resistant to TMV contained ele-

vated levels of ABA compared to susceptible tomato [78]. Similarly, ABA is involved in the regu-

lation of miRNA and siRNA pathways including dcl1-11, HUA ENHANCER 1 (hen1), dcl2,

dcl3 and dcl4, which are negative regulators of geminivirus infection in host plants [79, 80]. In

concordance with these observations, downregulation of genes that are involved in ABA path-

ways in our data suggests a role of ABA in limiting the induction of imperative genes involved in

mRNA processing, miRNA/siRNA biogenesis and other hormones, thereby compromising the

plant defense against whitefly and CLCuD. Taken together, we concluded that phytohormone-

related complex gene expression under whitefly-mediated CLCuD shows the important implica-

tion of these signaling pathways in cotton as response to CLCuD infection.

Protein kinases. Protein kinases play an essential role in plant-pathogen interactions and

plant immunity. Kinase gene family has also been found to be involved in plant metabolism

and other cellular processes [81]. These can also concert with the pathogen proteins to facili-

tate pathogen for infection particularly in case of viral infections. Host protein kinases have

been reported to implicate such processes by interacting with geminivirus proteins [82]. In

our experiment, we found NAD kinase 2, SIK1, leucine-rich repeat transmembrane protein

kinase, ACT-like protein tyrosine kinase related genes were downregulated upon infection of

CLCuD, while thiamin pyrophosphokinase1 and a CBL-interacting protein kinase remained

upregulated. The downregulation of most of the kinases in CLCuD plants might indicate their

role in supporting the viral infection, while upregulation of some of these could possibly main-

tain plant metabolism, aiding plant survival under viral propagation.

Role of metabolism in response to CLCuD. Upon pathogen infection, energy require-

ments of the plants are increased under a pathogen stress. These requirements are then sup-

ported by involvement of primary and secondary metabolic pathways. Secondary metabolites

comprising lignin and phenolics are requisite for plant for coping safeguard against microbial

pathogens [83]. We identified two modules grey and turquoise that are enriched with genes-

related to cellular metabolism (S3 and S4 Figs). These genes include flavonoids, aromatic com-

pounds metabolism and galactose metabolism-related genes. S-adenosyl-L-methionine-depen-

dent methyltransferases, cytochrome p450, HSP chaperones were upregulated, while galactose

metabolism-related genes including alpha-galactosidase 1 and UDP-glucose pyrophosphorylase

2 were downregulated. All these genes are well studied to have a role in plant defense responses

against viral and insect pathogens [84–86]. Previous studies have shown accumulation of flavo-

noids in cotton under sap sucking insects and fungal pathogen infections and revealed that fla-

vonoids act as signal molecules for defense response mechanisms. Also sugar metabolism-

related genes have been found to be differentially expressed under aphid infestation in plants

[87, 88]. The differential gene expression of these sets of genes in CLCuD infected plants might

indicate their potential role in coordinated plant metabolism under stress conditions.

Differential gene expression of methyltransferases and protein

modifications-related genes in response to CLCuD

We found three modules i.e. blue, brown and green that are enriched in genes involved in

immune response and intracellular processes (S5–S7 Figs). Host plants use DNA methylation
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as an innate immune signal to regulate diverse array of downstream genes and suppresses

endogenous transposons and invading DNA viruses. Geminiviruses encoding proteins inhibit

host methylation and therefore represses transcriptional gene silencing (TGS) as a counter-

defense. TrAP/C2 of geminivirus suppresses host TGS to establish viral spread in the host plant

[89]. In our data set, the downregulation of DNA methylation-related gene SUVH3 suggests its

role in the repression of host TGS to stabilize viral infection. Post-translational modification of

proteins is necessary in the defense response to a pathogen infection. Pathogens modify post

translational modifications machinery of host to trigger susceptibility in host [90]. Therefore,

we found protein processing and ribosome-related differentially expressed genes in our data

that propose roles of these genes in aiding pathogen to enhance disease susceptibly in cotton.

Previous transcriptomic study between cotton and its pathogens were performed on differ-

ent regimes or genotypes. For instance, gene expression analysis of highly resistant and suscep-

tible cotton varieties upon infection with aviruliferous whitefly showed the role of MPKs,

WRKY factors, JA, ET and metabolism-related genes in insect resistance [27]. Additionally,

cationic peroxidase 3, lipoxygenase I, TGA2, non-specific lipase, amino acids biosynthesis and

carbon fixation related genes have been found influenced in response to aphids and whiteflies

infestation [26]. Moreover, RNA-Seq dataset on diploid cotton G. arboreum under graft-medi-

ated CLCuD infestation indicated the involvement of Aquaporin TIP4-1, NRT1/PTR and

SWEET transporters in long-sought transport of secondary metabolites and defense-related

compounds as a defense response strategy [47].

However, in our transcriptomic study on a susceptible cultivar karishma cotton under

whitefly-mediated CLCuD infestation, we identified a different set of differentially expressed

genes including NAC, MYB, bHLH, alpha-galactosidase, methyltransferases, cytochrome p450

and HSP chaperones. Intriguingly, most of identified hub genes are downregulated and there-

fore, the under-expression of such highly co-expressed genes suggests their roles in favoring

the whitefly and virus and enhancing plant susceptibility to CLCuD. We have also discussed

the role of abscisic acid, transcriptional gene silencing and post translational modifications in

compromising the plant defense against whitefly and CLCuD. We have discovered differen-

tially expressed genes in tetraploid susceptible cotton karishma variety under field like stress

conditions of whitefly-mediated CLCuD infestation. Hence, these identified genes are different

from genes identified in other studies. It is concluded that the variations in differential gene

expression under different experiments is quite possible, as these variations come from differ-

ent varieties, genotypes, ploidy levels of plants and/or stress conditions.

Conclusion

In this RNA-Seq based study, we have shed light on the indispensable understanding of

response of G. hirsutum to whitefly-mediated CLCuD infection. G. hirsutum is naturally suscep-

tible to CLCuD and our study has revealed a complicated gene network involved in interaction

of whitefly-transmitted CLCuD in cotton. The transcriptomic data provided here is a valued

source that provides an opportunity to further characterize CLCuD defense responsive gene

network. Subsequently, this cotton transcriptomics study will benefit the researchers in better

and deep understanding of the mechanisms involved in G. hirsutum susceptibility to CLCuD.
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