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Abstract: For hyperspectral imaging, diffraction gratings based spectrometers exhibit high spectral resolution and optical 

performance. Among those spectrometers, the Offner type (which consists of an entrance slit, two concave mirrors and convex 

grating) offers a lot of advantages. In this paper, we propose the design and modelization of a convex grating which covers a spectral 

band ranging from 0.7 μm to 5 μm with a minimum diffraction efficiency of 20% at 800 nm, 50% at 3000 nm and 25% at 5000 nm. 

For a so wide band, a grating with a single blaze cannot satisfy these requirements. We will therefore propose an approach of multi-

blaze grating which is subdivided into different sections each with its own blaze angle. On April 30, 2016 we published a similar 

article in your journal and the optimization process resulted in a grating design of 9 blaze wavelengths. We have continued to work on 

this and currently we propose a better optimization method which allows to obtain the same results but only with 3 blaze wavelengths. 

Meanwhile, we perform the diffraction efficiency prediction using the scalar and rigorous theories to prove the compliance of this 

design with the technical specifications. The rigorous theory will also allow us to study the polarization sensitivity of this grating and 

the calculation of the diffraction efficiency of a grating with a profile degraded by manufacturing errors to assess the impact on the 

diffraction efficiency and the sensitivity to polarization. 

 

Keywords  – Offner spectrometer, grating, blazing, multi-blaze grating  

 

I. INTRODUCTION 

Hyperspectral remote sensing has been defined as “the 

field of study associated with extracting information about an 

object without coming into physical contact with it”[1]. It 

combines two sensing modalities: imaging and spectrometry. 

An imaging system captures a picture of a remote scene 

related to the spatial distribution of the power of reflected 

and/or emitted electromagnetic radiation integrated over 

some spectral band. On the other hand, spectrometry 

measures the variation in power with the wavelength or 

frequency of light, capturing information related to the 

chemical composition of the materials measured[2]. Our 

study focuses on this second part proposing an optimization 

method of a convex grating for the hyperspectral imager 

spectrometer of the Chandrayaan 2[3] instrument which 

covers a spectral range from 0.7 μm to 5 μm with diffraction 

efficiency described in section V. In this manuscript, we 

return to the previous version of the article already 

published[4] to apply a new optimization method for a multi-

blaze grating. For spectrometry, an optical system with 

convex grating in Offner configuration demonstrates a high 

performance with a compact volume.  

II. CONVEX GRATING SPECTROMETER IN 

OFFNER CONFIGURATION 

An Offner grating spectrometer design requires the use 

of convex blazed grating that can be produced by ruling or 

diamond turning. It consists of a slit, two concave mirrors 

and a diffraction convex grating between them. Because of 

the asymmetry introduced by grating diffraction, a split-

Offner design is employed, where orientation of the two 

mirrors is slightly asymmetric. This configuration offers a 

larger field of view and lower aberrations. These 

spectrometers have a concentric structure and thus a compact 

design. They operate with a relatively low F-number (≤f/2), 

accept a long slit while maintaining a compact size, and need 

only three optical surfaces. The use of this design has resulted 

in imaging spectrometers with extremely low values of 

spatial-spectral distortion[5]. Most land observation 

hyperspectral instruments are based on Offner configuration. 

This is the case of the Hyperion instrument on board EO-1 

NASA platform or HyspIR[6], but also for the imaging 

spectrometer for planetary mineralogy[7], EnMAP[8], 

CHRIS (on board proba-1)[9].  
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The present instrument (Chandrayaan 2) consists of a four 

optics telescope, slit, spectrometer, order sorting filter and 

detector. The instrument design is presented at figure 1 

 

 
Fig. 1: Hyperspectral instrument design (AMOS proprietary). 

 

III. DIFFRACTION GRATING EQUATION 

 

When a diffraction grating is illuminated with a beam of 

monochromatic light, the diffraction orders, in reflection 

and/or in transmission, are governed by the so-called 

equation of the diffraction gratings represented by the 

equation (1). This manuscript will focus on reflective 

gratings. For grating period Λ, the incident beam of a 

wavelength λ illuminating the grating with an angle of 

incidence θi with respect to the normal at the incidence point 

on the grating, will be diffracted in discrete diffraction orders 

m (m is a relative integer) with an angle θd given by: 

Λ(sin θi +sin θd)=mλ (1) 
  

This equation is valid in reflection and transmission provided 

that the diffraction angle is positively counted if it is located 

on the same side as the angle of incidence with respect to the 

normal and negatively otherwise[10] 

IV. GRATING DESCRIPTION 

The grating description is summarized in the table 1. 

Table 1: grating specification related to Chandrayaan 2 mission [3] 

Surface profile Convex spherical 

Surface shape Circular 

Clear aperture >37 mm 

Radius curvature 88.4±0.05 mm 

Material Optical grade aluminium 

Coating Gold 

Groove density 20 grooves/mm 

Incidence angle of 

the central field 

27.12 degrees  

Optimization order +1 

 

V. DESIGN AND MODELIZATION OF THE CONVEX 

GRATING 

 

A. INTRODUCTION 

The grating specifications require a period of 50 µm with 

a spectral range of operation from 0.7 to 5µm. Based on a 

preliminary study, we understand the challenge due to the 

wide spectral bandwidth. As a consequence, a multi-blaze 

grating is predicted as the only viable solution. The choice of 

blaze angles and the configuration are dictated by the 

required diffraction efficiency defined by figure 2. 

 

 
Fig. 2:  Diffraction efficiency requirement for the convex grating. 

 

As far as modelling of surface-relief metallic gratings is 

concerned, an efficient tool is the PCGrate software based on 

a rigorous integral method of solving the electromagnetic 

problem[11]. Blazed gratings with TE and TM polarization 

on flat or non-flat substrate can be modeled and optimized. 

The diffraction efficiency over the diffraction orders is fully 

characterized. Numerical instabilities can arise, especially 

with large period as we find in this case. 

For that reason, a simpler more intuitive approach is also 

possible since the grating period is large, compared to the 

wavelength: the “scalar theory” approach is another useful 

tool. Both tools will be used and compared to enhance the 

trust level of simulations. However, only the rigorous theory 

will give information about the polarization sensitivity of the 

grating. 

This paper will focus on the optimization of the Chandrayaan 

2 diffraction grating. The goal is to fulfill the requirements, 

especially the spectral behavior of the diffraction efficiency 

and the polarization sensitivity. The proposed method 

consists in defining a “multi-blazed profile” and we will use 

both scalar and rigorous theories. 

B. Scalar theory  

The scalar theory is very convenient. It is a theory that 

ignores the vectorial aspect of light but provides results 

comparable with those obtained with rigorous theories under 

specific conditions while being less time consuming and 

easier to implement. Moreover, the scalar theory allows for 

an easier approach to optimize diffraction gratings, while 

rigorous theories sound more like tools to check the 

diffraction characteristics for the gratings designed. The 

scalar theory is a powerful tool to deal with high period to 

wavelength ratio grating. Scalar theory is known to be 

accurate if [12], [13] 
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
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(2) 

Where Λ is the grating period and λ is the wavelength. 
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For the Chandrayaan 2 hyperspectral imaging spectrometer, 

the wavelength range extents from 0.7 to 5µm for a grating 

period of 50µm. Even the worst case (50µm/5µm) responds 

to the scalar theory criterion. This means that Fourier theory 

can be used. However, this model does not take into account 

the polarization state. The scalar diffraction efficiency for 

reflective gratings assuming a perfect reflective coating is 

given by[14]: 

 
 

(3) 

Where k is the diffraction order and h is the grating thickness 

directly linked to the blazed wavelength: 

2
b

h

k
 

 

(4) 

 

   

Therefore, for one given thickness when λ = λb, the grating 

achieves 100% diffraction efficiency at the diffraction order 

k. The diffraction efficiency will be zero for every other 

diffraction orders. Combining equations 3 and 4, the 

diffraction efficiency for the first order (k = +1) of diffraction 

becomes: 

 
 

(5) 

C. Rigorous theory: “PCGrate software” 

Our rigorous analysis tool allows calculating the 

diffraction efficiency of gratings on plane, spherical, 

cylindrical and aspherical surfaces. PCGrate uses an accurate 

boundary integral equation method, with some optimization 

parameters, which is described with numerous references 

directly on the website of PCGrate[15]. 

D. Optimization of the grating profile 

The optimization of the grating profiles depend on the 

technical characteristics of the grating, namely, the 

requirements in terms of diffraction efficiency, spectral 

bandwidth, optimization order, etc. In addition to the classical 

single-blaze grating, we present a multi-blaze grating 

approach. 

1. Single-blaze grating 

A single-blaze grating is a mono angle blazed grating and 

therefore with a uniform profile over its entire surface. The 

optimization of this grating is very simple and is done using 

the diffraction gratings equation (1). Figure 3 shows an 

example of single-blaze grating where Λ, α, and h are, 

respectively, period, blaze angle, and groove depth. Once the 

optimization is complete, that is to say, when all the grating 

parameters are known, the calculation of the grating 

diffraction efficiency is done by the scalar and/or rigorous 

theories. 

 
Fig. 3: Example of a single-blaze grating. 

2. Multiblaze grating 

In 1998, Mouroulis et al. proposed a grating design based 

on multiblaze profiles[16]. Such a design aims to meet the 

requirements of the grating in terms of diffraction efficiency, 

which a single blaze cannot satisfy, over a well-defined 

spectral band. Figure 4 shows an example of multi-blaze 

grating. The number of blaze wavelengths and their values 

depend on the grating technical specifications. The goal of 

this paper is to propose an optimization method that allows 

one to find the number of blaze wavelengths of the grating, 

their values and their weights to meet the diffraction 

efficiency requirements. The proposed method will use the 

diffractive scalar theory to calculate the grating diffraction 

efficiency and others optimization tools. 

 
Fig. 4: Example of multiblaze grating. The period remains constant.The 

blaze angle is variable, and the groove depth is adapted. 

 

The multiblaze gratings can be defined over a period [13], 

[17], [18], [19] but in our case, the hybrid grating profile 

might be built as an ensemble of sub-gratings (sections) each 

with its blaze angle at fix period and fix draft angle α (often 

assumed as zero). It means that the groove depth h is 

increasing when the blazing angle ϒ increases as shown on 

figure 5.  

 
Fig. 5: Influence of the blaze angle γ on the grooves depth h with a draft 

angle α. 
During the manufacture of the multi-blaze grating, it is 

obligatory to change the slope of the diamond cutting tool to 

change the blaze angle and the depth passing from one 

section to the other. In this case, the rulings between different 

blazes will tend to match at the peaks and the difference 

between the average heights will be high. Therefore the mean 

phase difference is considerably large[16]. This would have a 

detrimental effect on the point spread function (PSF). The 

ideal solution is to match the mean heights thus leading to a 

zero mean phase difference between the blazes. 

E. Optimization tools 

1. Function fsolve 

We are going to apply a new method[20] to optimize a multi-

blaze grating based on the fsolve function of which we 

present a summary in the following lines. The function 

fsolve[21] is a MATLAB optimization tool and is used to 

solve a system of nonlinear equations: 

 

x = f solve (@functionname, x0, options) (6) 
 

Input arguments 

The first argument functionname is thename of the system 

of nonlinear equations to solve. Functionname is a function 
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that accepts a vector x and returns a vector F, the nonlinear 

equations evaluated at x. The functionname can be specified 

as an M-file function. It is a MATLAB function such that 

functionname has to match the file name. A function file is 

not executable by itself; it can only be called in other 

commands. It is defined by the following equation: 

 
(7) 

The second argument x0 is the arbitrary initial vector for x. It 

is a vector whose components are wavelengths and their 

weights. The number of those components is equal to the 

number of unknowns to be determined. The third argument 

options is the options structure created with the optimoptions 

tool. Optimoptions allows to create or edit optimization 

options structure: 

Options = optimoptions ('param1', value1,'param2', value2,...) 

creates an optimization option structure called options, in 

which the specified options (param) have specified values. 

fsolve uses large scale and medium scale algorithms. Some 

options apply to both algorithms, some are only relevant 

when using the large-scale algorithm, and others are only 

relevant when using the medium-scale algorithm. In this 

manuscript, the options structure will allow to define the 

algorithm that the fsolve function uses to solve the system of 

nonlinear equations and give the desired blaze wavelengths. 

2. Algorithms 

 

  By default fsolve chooses the medium-scale algorithm based 

on the nonlinear least-squares algorithms and uses the trust-

region dogleg method[22]. This method is an iterative 

procedures in which the objective function is represented by a 

quadratic model inside a suitable neighborhood (the trust 

region) of the current iterate, as implied by the Taylor series 

expansion. This method can only be used when the system of 

equations is square, i.e., the number of equations equals the 

number of unknowns. The medium-scale algorithm uses two 

other methods for which the system of equations need not be 

square: 

1.The Gauss-Newton method is a method for minimizing a 

sum-of-squares objective function. It presumes that the 

objective function is approximately quadratic in the 

parameters near the optimal solution[22].  

2.The Levenberg-Marquardt method is a standard technique 

for solving nonlinear least squares problems. This method is 

a combination of two methods: the gradient descent method 

and the Gauss-Newton method[23]. 

The second algorithm used by the function fsolve is the large-

scale algorithm which is a subspace trust-region method and 

is based on the interior-reflective Newton method[24],[25]. 

The LargeScale option specifies a preference for which 

algorithm to use. It is only a preference because certain 

conditions must be met to use the large-scale algorithm. For 

this algorithm, the nonlinear system of equations cannot be 

underdetermined; that is, the number of equations (the 

number of elements of F returned by functionname) must be 

at least as many as the number of unknowns or else the 

medium-scale algorithm is used. 

In this manuscript, the system of nonlinear equations used to 

determine the blaze wavelengths is not necessary square and 

also each equation of the system is not quadratic. Then, the 

most appropriate method to solve this system is the 

Levenberg-Marquardt algorithm. This algorithm is suitable 

even if the system may not have a zero. The algorithm still 

returns a point where the residual is small. The idea is to 

construct systems of m (constant) equations with n variables, 

n varying from 1 (mono-blaze) to N. Here N represents the 

minimum number of blaze wavelengths and their weights that 

will result from the optimization.   

F. Determination of the best grating configuration by the 

optimization method of the previous section 

We will first determine some values of diffraction 

efficiency ɳ on the desired reference curve in the figure 6. 

The objective is to have a grating configuration with a 

diffraction efficiency curve that can fitter the desired 

efficiency curve. 

1. ɳ (λ=700 nm) =0.31 

2. ɳ (λ =1100 nm) =0.42 

3. ɳ (λ =1500 nm) =0.50 

4. ɳ (λ =2000 nm) =0.59 

5. ɳ (λ =2500 nm) =0.64 

6. ɳ (λ =3000 nm) =0.655 

7. ɳ (λ =3500 nm) =0.64 

8. ɳ (λ =4000 nm) =0.59 

9. ɳ (λ =4500 nm) =0.50  

10. ɳ (λ =5000 nm) =0.39 
The figure 6 shows the reference curves and the values 

selected on the desired curve. These values will be used to 

define the systems of equations to be used to determine blaze 

wavelengths, their values and their weights. Ten diffraction 

efficiency values are defined, which means that the systems 

will have 10 equations each with n variables, n varying from 

n = 1 (mono-blaze grating) to n = N (multi-blaze grating), N 

being the minimum number of blaze wavelengths and their 

weights that will result from the optimization process. The 

ten values of diffraction efficiency selected are represented 

by the ten red dots in Figure 6. 

 
Fig. 6: Required diffraction efficiency for the convex grating with the ten 

values selected on the curve that will be used to determine blaze 
wavelengths. 

1. Mono-blaze solution 

Even if we know that a grating optimized at a single blaze 

wavelength is not suitable for this problem, for reason of 

methodology we begin to look for the best mono-blaze 

solution to this problem. The function F which defines the 
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system of nonlinear equations for N = 1 (mono-blaze grating) 

is given by the the “systeme1bis”. In this system,  

 

 
each equation of the system defines the value of the 

diffraction efficiency required for a given wavelength using 

scalar diffraction theory.  
x (1) represents the blaze wavelength to determine for the 

mono-blaze grating. Does this blaze wavelength exist to meet 

the requirements of the grating? We intuitively know that the 

answer is no. This system must be solved using the 

Levenberg-Marquardt algorithm. It is a numerical analysis 

algorithm used to solve a system of nonlinear problems. 

Currently, this method is implemented in Matlab by the 

fsolve function whose syntax is given by the equation (8) and 

the rest is explained with the MatLab routine as an 

illustration of the principle. The mathematical developments 

of this algorithm are detailed in the articles cited in reference 

for interested readers. 

 

 

(8) 

In this code, x0 is the arbitrary initial vector with 

only one component p because there is one blaze wavelength 

(one variable) to be determined. The options are defined by 

the "optimoptions" tool which has in this case two arguments: 

the first indicates the solver used, the second and the third its 

method (Levenberg-Marquardt). Finally, the function 

"fsolve" gives the solution of the system. It has three 

arguments: the first one is a function handle (@ plus the 

name of the file corresponding to the system) which is a 

Matlab value that provides a means of calling a function 

indirectly, the second argument corresponds to the initial 

vector and the third calls the defined options.  

For this system, the best estimate of the solution of 

the system by equation (8) gives a blaze wavelength of 2277 

nm for any initial vector X0. This estimate is certainly not a 

root of the system, but gives a blaze wavelength that 

produces a diffraction efficiency as close as possible to that 

required for a mono-blaze grating.  

 

Profile construction  

  Using the rigorous theory, we simulated the grating 

performance with respect to the grating profile, starting from 

the ideal triangular blaze profile. We know that tooling can 

produce manufacturing defects. We consider a profile whose 

top is flattened on 5 µm and the bottom of the grooves 

rounded with a radius of curvature of 5 (10) µm on the last 3 

(5) microns for the grooves less (more) rounded. 

 

 

 

 
Fig. 7: Ideal and rounded profiles used in simulations for a blaze wavelength 

of 2277 nm (the axes are not at the same scale). 
 

The diffraction efficiency of the mono-blaze grating 

with this blaze wavelength calculated using the scalar theory 

is given by Figure 8. 

 
Fig. 8: First-order diffraction efficiency, for an optimized grating at single-
blaze wavelength of 2277 nm, obtained by scalar theory using the ideal 

profile. 

 

The area below the desired diffraction efficiency curve is 

2360 AU (arbitrary unit). This surface will remain unchanged 

during the process of optimization of this problem. The 

simulation curve of the mono-blaze grating is lower than the 

desired curve on 55% of the spectral band.  This represents a 

surface deficit of 366 AU in this band, which corresponds to 

a relative difference deficit of 15.51%. On the other hand, the 

simulation curve is greater than the one desired for the 

remaining 45% of the spectral band with a surface surplus of 

448 AU, which represents a surplus in relative difference of 

18.98%. These surfaces are determined using the trapezoidal 

method. The goal is to have a 100% curve in line with the 

desired reference curve. This means that the area between the 

desired curve and the one resulting from the optimization 

process must be as close as possible to zero without any 

deficit and surplus over the entire spectral band. Table 2 
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summarizes the position of the simulation curve compared to 

that of reference.  
 
Table 2: Blaze wavelength and position of the simulation curve with respect 
to that reference according to the x0 component for N = 1. 

 
Component 

of x0 

Blaze 

wavelength 

Position of the simulation curve with 

respect to the desired curve 

conformity 

on the 

spectral 

band 

Relative 

difference 

deficit on 

55% of the 

spectral 

band 

Relative 

difference 

surplus on 

45% of the 

spectral 

band 

900 nm 2277 nm no 

conform  

15.51% 18.98% 

 
 

   This solution does not meet the requirements of diffraction 

efficiency of the grating over the entire spectral band because 

the simulation curve is too far from the reference curve in the 

spectral band. The mono-blaze grating is not suitable for this 

case. Even if this mono-blaze solution is not suitable for this 

problem, let us compare the spectral behavior of computed 

diffraction efficiency with the scalar and rigorous theories at 

a blaze wavelength of 2277 nm.  Figure 8 describes 

performance against an ideal profile for scalar theory, while 

Figure 9 shows the unpolarized diffraction efficiencies given 

by the rigorous theory for a grating in perfect reflection with 

the ideal and realistic profiles built on figures 7. As can be 

seen in Figures 8 and 9, the results of the scalar theory is 

similar to that of the rigorous theory for the ideal profile. If 

we compare the ideal and realistic profiles (Figure 9), the 

maximum diffraction efficiency has decreased by 16% from 

the ideal profile to the more rounded profile, with a slight 

shift at low wavelengths and decreases by 9% with shifting to 

low wavelengths going from the ideal profile to the less 

rounded profile. These impacts on diffraction efficiency are 

not negligible and must be taken into consideration by the 

manufacturers of the diffraction gratings. We will return to 

the impact of these realistic profiles on diffraction efficiency 

and polarization sensitivity with the best multi-blaze solution 

for this problem. 

 
 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
Fig. 9: First order unpolarized diffraction efficiencies for a perfect reflection 

grating with a single blaze 2277 nm, based on rigorous theory using ideal 

and realistic profiles. 
 

 

2. Solution with dual blaze wavelengths 

 

  Based on the above results, a single wavelength blaze 

grating cannot meet the requirements of the grating in terms 

of diffraction efficiency. In this section, we investigate 

whether a double blaze wavelength grating can be sufficient 

to meet the requirements for diffraction efficiency. The 

system defined by the function F will be a system with four 

variables: two blaze wavelengths x (1) and x (2) and their 

weight x (3) and x (4), that is to say their contributions to the 

diffraction efficiency of the grating. This Function is named 

“syteme2bis”. The solution will be valid if each weight is 

positive and the sum of the weights is equal to 1. In practice, 

the weighting factor will correspond to a proportional surface 

area of the complete grating. 

In this system, four variables are to be determined 

using the Levenberg-Marquardt algorithm, as described in 

Equation (8), and the initial vector x0 will have four 

components. For any initial vector x0, the system admits a 

single solution (1541; 3160; 0.5; 0.5) that is to say two blaze 

wavelengths 1541 nm and 3160 nm as well as their weight 

0.5 each. The diffraction efficiency of the grating 

corresponding to these two blaze wavelengths calculated 

using scalar theory is given in Figure 10 in comparison with 

the desired diffraction efficiency.  
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Fig.10: First order diffraction efficiency for an optimized grating at 2 blaze 

wavelength 1541 nm and 3160 nm obtained by scalar theory using the ideal 
profile. 

The simulation curve of the dual-blaze grating is lower 

than the desired curve on 61.63% of the spectral band. This 

represents a surface deficit of 159 AU, which corresponds to 

a relative difference deficit of 6.73%. Also the simulation 

curve is higher than the desired reference curve on 38.37% 

with a superficial surplus of 93 AU, which corresponds to a 

relative difference surplus of 3.94%. The simulation curve 

corresponding to the dual-blaze grating is not consistent with 

the reference curve as shown in Figure 10, which means that 

the problem cannot be solved by this grating. 
 

3. Grating solution with three blaze wavelengths 
 

The previous results show that a two blaze solution is not 

suitable for this problem. We will build a system of equations 

similar to the one built in the previous subsection. Since we 

have three blaze wavelengths to determine and their weights, 

the system will have six unknowns, namely three blaze 

wavelengths x (1), x (2), x (3) and their respective weights x 

(4), x (5) and x (6). The solutions will be valid if the weights 

are positive and their sum equal to one. As for other cases, 

the system is solved using Equation (8). The initial vector x0 

will have six components as the system has six unknowns. 

For any initial vector x0, the system admits a unique solution, 

for example for x0 = [800; 900; 1000; 0.2; 0.3; 0.4], the 

system has for solution x = [996; 2179; 3397, 0.34, 0.33, 

0.33] that is to say three blaze wavelengths 996 nm, 2179 nm 

and 3397 nm and their respective weights 0.34, 0.33 and 

0.33. The diffraction efficiency of a grating optimized at 

these three blaze wavelengths and computed by scalar theory 

is given in Figure 11 in comparison with the two reference 

curves. 

 
Fig. 11: First order diffraction efficiency for an optimized grating at blaze 

wavelengths of 996 nm, 2179 nm and 3397 nm, obtained by scalar theory 

using the ideal profile and compared to the reference curves. 

 

Figure 11 shows that the simulation curve of the 

optimized grating at three blaze wavelengths of 996 nm, 2179 

nm and 3397 nm is not consistent with the desired curve but 

is well within the range of required diffraction efficiency. 

The simulation curve is below the desired curve with a 

surface deficit of 287 AU, which represents a relative 

difference deficit of 12.16%. The simulation curve is above 

the required minimum curve with a surplus of 358 AU which 

represents a relative difference surplus of 20.87%. 

 Even if the solution is acceptable to the extent that 

the simulation curve is between the two reference curves, let's 

see if a solution at four blaze wavelengths can improve the 

results. 

4. Grating solution at four blaze wavelengths 

 

The previous result is consistent. With only three blazes, the 

simulation curve is well above the required minimum curve 

(20.87% surplus in relative difference) but slightly below the 

desired curve (12.16% deficit in relative difference). As in 

the previous cases, the system to be solved will have 8 

variables: 

  four blaze wavelengths x (1), x (2), x (3) and x (4) and their 

respective weights x (5), x (6), x (7) and x (8) . Therefore, the 

initial vector x0 will have 8 components. The solution is 

valid if the weights are positive and their sum equal to one. 

For any initial vector x0, the solution of the system is x = 

[921; 1669; 2607; 3563; 0.25, 0.25, 0.25, 0.25]. These are the 

four blaze wavelengths 921 nm, 1669 nm; 2607 nm and 3583 

nm and their identical weight 0.25. The diffraction efficiency 

of an optimized grating at these four blaze wavelengths is 

given in Figure 12 in comparison with the reference curves.  

 

 

 
 
Fig. 12: First-order diffraction efficiency for an optimized grating at four 
blaze wavelengths of 921 nm, 1669 nm, 2607 nm and 3563 nm, obtained by 

scalar theory using the ideal profile and compared to the reference curves. 

 

The simulation curve is below the desired curve with a 

surface deficit of 291AU, which represents a relative 

difference deficit of 12.33%. The simulation curve is above 

the required minimum curve with a surface surplus of 354 

AU which represents a relative difference surplus of 20.65%. 

If we compare this solution to the solution with three blaze 

wavelengths, there is no improvement over the previous 

solution. 
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5. Grating solution at five blaze wavelengths 

 

  The previous results show that we do not have a simulation 

curve in agreement with the desired curve, so we see now if a 

solution with five blaze wavelengths can solve this problem. 

The system of equations will have 10 unknowns: the five 

blaze wavelengths and their respective weights. According to 

the initial vector used, the system admits two types of 

solution: a solution whose five blaze wavelengths are 

different and two solutions whose two blaze wavelengths are 

identical, which amounts to the solution with four blaze 

wavelengths and they are not better than the solution in the 

previous section. The only valid solution is x = [903; 1573; 

2328; 3022; 3673; 0.23; 0.22; 0.19; 0.18; 0.18] for an initial 

vector x0 = [900; 1250; 1600; 1950; 2300; 0.1; 0.1; 0.2 0.3, 

0.3] for example. The diffraction efficiency of a grating 

optimized at these five wavelengths is given in Figure 13 in 

comparison with the reference curves. 

 

 
Fig. 13: First order diffraction efficiency for an optimized grating at five 

blaze wavelengths of 903 nm, 1573 nm, 2328 nm, 3022 nm and 3673 nm 
obtained by the scalar theory using the ideal profile and compared to the 

reference curves. 

 

  The simulation curve is below the desired curve with a 

surface deficit of 288 AU, which represents a relative 

difference deficit of 12.20%. The simulation curve is above 

the required minimum curve with a surplus of 357 AU which 

represents a relative difference surplus of 20.81%. This 

solution is better than the solution with four blaze 

wavelengths but the solution with three blazes remains the 

best in that its simulation curve is closer to the desired curve. 

The question that can be asked now is whether there is a 

solution capable of producing a curve in accordance with the 

desired curve. The answer is no because for N = 6, the 

solution of the system is such that each time one has two 

identical wavelengths which amounts to a solution with five 

blazes wavelengths that does not improve the results already 

found. It is the same for N greater than 6: Each time the 

solution is such that we have five blaze wavelengths by 

equality of the blaze wavelengths found, two by two and / or 

even three.   

 

6. CONCLUSION 

 

  From the previous results, there are three solutions in the 

range of diffraction efficiency desired namely solutions with 

three (3), four (4) and five (5) blaze wavelengths. The 

solution at three blaze wavelengths is better because its 

simulation curve is closer to the desired curve than to the 

other two. Indeed this solution has a 12.16% deficit in 

relative difference compared to the desired curve against 

12.33% for 4 blaze wavelengths and 12.20% for 5 blaze 

wavelengths. In addition, having a solution with few blaze 

wavelengths offers a non-negligible optical advantage. This 

is the solution for this problem. 

 

G. Study of the impact of realistic profiles on diffraction   

        efficiency and polarization sensitivity 

 

1. Diffraction efficiency 

 

  We used scalar theory to determine the number of blaze 

wavelengths and their weights to obtain a grating with a 

diffraction efficiency corresponding to the reference curves. 

The preceding results show that the three-blaze wavelengths 

solution is the best. We will now use the rigorous theory 

represented by PCGrate software, the only tool capable of 

simulating realistic profiles, to study the impact of these 

profiles on diffraction efficiency and polarization sensitivity. 

We have constructed these realistic profiles, corresponding to 

the three blaze wavelengths of 996 nm, 2179 nm and 3397 

nm, in the image of Figures 7. The diffraction efficiency of 

the grating with these ideal and realistic profiles is calculated 

using the rigorous theory represented by the PCGrate 

software. Figure 14 shows the diffraction efficiency of the 

grating optimized at these three wavelengths and computed 

by the rigorous theory using ideal profiles in comparison with 

the required minimum curve. There is a great similarity 

between the diffraction efficiency curve given by the scalar 

theory and the diffraction efficiency curves given by the 

rigorous theory especially that of the TM polarized light.  

 
Fig. 14: First-order diffraction efficiency for an optimized grating at blaze 

wavelengths of 996 nm, 2179 nm and 3397 nm obtained by the rigorous 

theory PCGrate using the ideal profile with the parameters given in Table 1. 

 

  After having constructed the profiles corresponding to these 

blaze wavelengths as in figures 7, we have simulated these 

profiles by the rigorous theory to see their impact on 

diffraction efficiency and polarization sensitivity. Figure 15 

gives the diffraction efficiency with the less rounded profiles. 

The constant is that the maximum efficiency decreases with a 
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small shift of the curves to the left which results in the 

decrease of the efficiency in the longest wavelengths and an 

increase in the smaller wavelengths. Physically this is due to 

the fact that the depth of the grooves and the period of the 

deformed profiles decrease slightly compared to the ideal 

profile. To confirm the rule, we will consider a more rounded 

profile to see the behavior of the diffraction efficiency 

curves. The diffraction efficiency of the grating with more 

rounded profiles is given by Figure 16. 

 
Fig. 15: First order diffraction efficiency for an optimized grating at blaze 
wavelengths of 996 nm, 2179 nm and 3397 nm obtained by the rigorous 

PCGrate theory using the less rounded profile with the parameters given in 

Table 1. 

 

 
Fig. 16: First order diffraction efficiency for an optimized grating at blaze 
wavelengths of 996 nm, 2179 nm and 3397 nm obtained by the rigorous 

theory PCGrate using the more rounded profile with the parameters given in 

Table 1. 
 

We note that the curves collapse without moving to 

the left. What is the difference between the two profiles given 

in Figure 7? They are flattened at the same level at the top but 

the difference resides in the rounded dimensions of the 

bottom of the grooves, the more rounded having a bottom 

rounded on a large radius which has an impact on the real 

period and depth of the grooves. The conclusion is that the 

flattened form moves the curves to the left while the rounded 

shape decrease the diffraction efficiency. 

 

Conclusion 

  Comparing the ideal and realistic profiles, we note a 

decrease in efficiency of about 6% from the ideal profile to 

the more rounded profile. The cause of these changes is the 

decrease in height and the variation of the real period of the 

rounded profiles. These deformations therefore result in a 

decrease in the maximum efficiency of 6%. It is not 

insignificant and these deformations have to be considered by 

the manufacturers of grating. 

 

2. Polarization sensitivity 

 

   An important drawback when using grating as dispersive 

element is the relatively large polarization sensitivity i.e. the 

diffraction efficiency is different for TM and TE polarization. 

This difference depends on the incidence angle, wavelength 

and spatial frequency of the grating. The polarization 

sensitivity of the grating can be studied with the rigorous 

theory. The equation 9 calculates that dependency as the 

contrast or degree of polarization:  

 

 
 

(9) 

Where  and    are respectively the diffraction 

efficiencies for TE and TM polarized light.  

The polarization dependency of this multi-blazed grating can 

be deduced from the curves of figures 14, 15 and 16. Figure 

17 depicts that dependency as the contrast or degree of 

polarization for ideal and realistic profiles. In the case of the 

Chandrayaan 2 hyperspectral imager, the polarization 

contrast of the grating should remain below 5%. This 

requirement is met over almost the whole spectral band by 

the realistic profiles and more than 80% of the band by the 

ideal profile. 

 

 

Fig. 17: First-order polarization contrast of an optimized grating at three 

blaze wavelengths of 996 nm, 2179 nm and 3397 nm blaze based on rigorous 

theory using ideal and realistic profiles. 

 

H. Diffraction efficiency as a function of incidence angle 

Since the multi-blaze grating is convex, the incidence 

angle of an almost collimated wavefront varies along its 

surface. For an incidence of 27.12 degrees at the grating 

center, the incidence angles at left and right ends are 

respectively 15.04 and 39.20 degrees. 

Consequently, the diffraction efficiency of multi-blaze 

grating with ideal profile as a function of the incidence angle 

is studied below. The simulation is performed at a 
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wavelength of 2277 nm. The diffraction efficiency varies 

from 8% passing from the left (15.04 degrees) end to the 

right end (39.20 degrees) as shown on figure 18.  

 

 
 

Fig. 18: Diffraction efficiency of optimized grating at three blaze 
wavelengths, as a function of incidence angle, given by rigorous theory using 

the ideal profile.  The red line indicates the ideal incidence angle (27.12 

degrees). The black and green lines indicate respectively the incidence 
angles at left (15.04 degrees) and right (39.19 degrees) edges of the grating. 

 

The polarization contrast as a function of the incidence angle 

is given by the figure 19. 

 

 
Fig. 19: Polarization contrast of the +1st diffraction order for a multi-blazed 

grating, as function of incidence angle, based on rigorous theory using ideal 

profile. The red line indicates the ideal incidence angle (27.12 degrees). The 

black and green lines indicate respectively the incidence angles at left (15.04 

degrees) and right (39.19 degrees) edges of the grating. 

 

As can be seen in Figure 19, the polarization contrast is well 

below 5% within the limits of use. 

VI. Conclusion 

The results obtained with single blaze have shown that 

such diffraction grating cannot cover a spectral range from 

0.7 microns to 5 microns with the required diffraction 

efficiency. Consequently, we proposed a method based on the 

resolution of a system of nonlinear equations by the function 

matlab fsolve. This method allowed us to move to an 

optimized grating with 9 blaze wavelengths (in the previous 

publication) to an optimized grating with 3 blaze wavelengths 

which offers a considerable optical and manufacturing 

advantage. These three blaze wavelengths are 996 nm, 2179 

nm and 3397 nm and their respective weights 0.34, 0.33 and 

0.33. The calculation of the diffraction efficiency using both 

rigorous and scalar theories has shown that such conception 

is covering the given spectral band with efficiency matching 

the required specifications. Unfortunately the diffraction 

gratings exhibit a non-negligible sensitivity to polarization. 

We also showed the impact of a rounded profile as 

encountered with practical manufacturing techniques: the 

diffraction efficiency decreases with rounded profiles but the 

polarization sensitivity is also reduced especially in the mid 

infrared. We also calculated the degree of polarization of 

multi-blaze depending on the angle of incidence for a 

wavelength of 2277 nm. The results show that when the angle 

of incidence remains inside the working limits, the 

polarization contrast remains low. 
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