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Summary

Occultation of solar radiation by a planetary atmosphere is a very accurate method to obtain 
high signal vs noise spectral measurement of the properties of the atmospheric gas, not only owing 
to the overwhelmingly large photon flux from our host star, but also because the method is nearly 
not dependent on instrument calibration. On the other hand, the method can only be applied near 
the terminator. Using occultation techniques in other regions of the atmosphere can nevertheless be 
done using stars as a radiation source, but the instrument then has to be more sensitive to cope 
with the severely reduced photon flux. The method nevertheless remains independent on the 
absolute calibration of the instrument.
Occultation observation directly provides the optical thickness (or the extinction coefficient) of the 
absorbing and scattering constituents when multiple scattering can be safely neglected. Under 
those conditions, the measurement gives the line-of-sight integrated density of the absorbing and 
scattering constituents, and simultaneous measurements at several wavelength are then needed to 
discriminate between the effects of the several species. Retrieval of the vertical density profile of 
the different constituents requires an inversion method, basically an inverse Abel transform when a 
spherical (or cylindrical) symmetry assumption can be made.
Efficient inverse Abel transform methods rely on least squares fit techniques taking advantage of 
easy-to-compute analytical indefinite integrals constructed from the Abel transform integral 
operator. In the case of a dusty atmosphere, the contribution of dusts to the extinction depends on 
the properties of the dust grains controlling their scattering cross section, which is generally 
represented using the so-called alpha parameter appearing as an exponent of the wavelength in the 
expression of the cross section. As the properties of the dusts vary with altitude, so does the alpha 
parameter, which severely complicates the computation of the indefinite integrals needed for the 
inverse Abel transform fitting. We propose a method that allows to express those indefinite 
integrals using Gauss’s hypergeometric 2F1 function, which can be applied to the observation of 
the Earth as well as of planet Mars, as it is done by the ESA EXOMARS-NOMAD instrument.
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Atmosphere remote sensing: Abel transform
Remote sensing instruments used to study the emissions of the atmosphere of celestial

objects (planets and comets) produce line-of-sight integrated quantities. For example,
observations of the radiations directly emitted by the atmosphere integrate the volume emission
rate (VER) along the instrument line of sight (l.o.s.), in the optically thin case. For occultation
observations, the observed radiation coming from the sun (or from a star) is attenuated by the
slant gas column integrating the atmospheric gas density along the l.o.s. When the integrated
quantity, either the VER or an atmospheric constituent density, can be assumed to have a
spherical symmetry, this l.o.s. integration is called the Abel transform of this quantity.

Function f(r) represents the VER or a gas density and F(r0) its Abel transform as a function of
r0 the tangent radius of the l.o.s.. The gas numeric density profile can have several functional
expressions. In planetary atmospheres, it is often represented by an exponential profile (2) or by a
Chapman profile (3).
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Abel transform of function f(r) along a line of sight 
with a tangent point located at the radial distance r0:
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Retrieving the local quantity f(r) from the knowledge of its Abel transform F(r0) is, in
principle, feasible using the analytical inversion formula:

Applying this formula to real observation is however difficult because the derivative of the
observation can be dominated by the noise, the profile needs to be known up to high altitude, and
a sufficiently high sampling is needed to reliably carry the integration. One generally resorts to
least squares fitting methods to overcome these drawbacks.

Inverse Abel transform using least squares 
fitting

The general idea of numerical Abel transform inversion is to f(r) using locally defined functions,
such as a set of line segments (i.e. a piecewise linear function) of which the Abel transform can
be computed, and determine the parameters of each piece by fitting the Abel transform of the
piecewise-defined vertical profile on the observation, so f(r) is immediately known.
The first method that comes to mind is to represent f(r) with line segments. This choice clearly
illustrates the principle of the method: a piecewise linear function can be represented by the
linear combination of triangular functions tk(r) defined on overlapping intervals. The Abel
transform Tk(r0) of each triangle tk(r) can be computed, and a linear combination of the Tk’s can
be fitted over the observed F(r0) denoting �� � the function that is 1 for r  Ω, and 0 otherwise:
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Computation the Abel transform of individual triangular
elements requires computing indefinite integrals constructed
from the Abel transform. This can be easily done when the
elements only contain powers of r. One can however use
triangular elements that differ from the linear triangles of
equation (5), to account for the needs of a specific observation.

Assuming first that the ��
� are known and that the Abel transform of all the triangular

elements is know, the inverse Abel transform problem reduces to a linear system solving the least
squares fitting of the data, generally with a Tikhonov regularization weighted by a parameter γ.

Packing the ɑj,k and the ��
� in one single array �⃗ (components ɑk) and denoting the Abel transform

of the corresponding triangular element (either Tk or Kk) as Fk, finding the inverse Abel transform
reduces to alinear least squares fitting. We apply a regularization matrix that computes the second
derivative of the fitted ak’s, as if they were a function of the radial distance: this penalizes noisy
variations (Hubert et al., 2016). (Observations Gj pack the ln(I(r0,j,λi)/Itop(λi)) in one single array.)

(5)

Abel transform of triangular elements for dust
Computing the Abel transform Kk of equation (6) requires to suitably chose the elementary
functions uk(r). Using the tk of equation (5) to build the piecewise approximation of the α
exponent parameter leads to Abel transforms of exponential-polynomial functions, which is
complicated and computationally costy. Using constant α value over each [rk,rk+1[ interval is the
easiest uk choice. We also build triangular elements linear with respect to the logarithm of the
radial distance. Choosing a reference radial distance r* (typically, the planet radius), we write
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Regularization matrix
(Hubert et al., 2016)
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VG : variance matrix of the observation {Gj}

(7)

Expressions (14), (13) and (12) can be used to compute the Kk Abel transforms in (6), possibly 
using standard identities to stabilize the 2F1 series when its arguments produce an alternating 
series . Expression (14) also implies differences of �d integrals, which can be nearly equal 
numbers in real applications. One can then alternatively use equation (10) with an 
appropriate lower bound and use a Gauss-Legendre (G-L) integration method to efficiently 
avoid the numerically troublesome differences. G-L method of order n exactly integrates a 
polynomial of power up to 2n-1. The integrant of (10) being a simple (non-integer) power, 
one can expect a G-L method of sufficiently high order will produce machine-precision 
accurate results. We only focus here on the fitting of the linear parameters, but we already 

highlight that an iterative method aimed at determining the ��
� can be imagined, the 

derivative of �� �, �, ��, � with respect to p being easily obtained in series (12) an integral (10).

Conclusions:
• Analytical expressions are found that allow for a log-linear piecewise, continuous representation of

the vertical profile of the dust properties, for which the Abel transform of each piece can be
computed using hypergeometric 2F1 functions.

• Inclusion of the piece-wise linear triangular elements in the inverse Abel transform analysis of
(simulated) occultation of the solar UV radiation by the Mars atmosphere allows for a more accurate
retrieval of the O3, CO2 and dust extinction profiles, provided that a very sensitive detection is
performed, the inversion being sensitive to noise.

• Further developments will be undertaken to fit the vertical profile of the dust extinction α(r)
parameter, computation of the 2F1 function being relatively fast.

Tests and applications to pseudo-data
We conducted tests aimed at assessing the properties of the inversion methods applied to artificially
simulated signals, including a noise or not, using stepwise uk (the simplest choice mentioned in the
preceding section) and then equations (7) to (14). We use a realistic CO2 profile from Krasnopolski.
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In the case of occultation studies, the observation provides the l.o.s. integrated gas density in an
indirect manner. A scan measuring the brightness (or intensity) I for a set of different values of
r0 at several wavelength λ allows for the estimate of the intensity ratio
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Where Itop denotes the unattenuated
intensity of light source at the top of the
atmosphere (i.e. for very large r0), nabs is
the number of absorbing species in the
atmosphere (such as O3 in the near UV), σj

is the absorption cross section of the jth

specie, �j is the slant column density
resulting from the l.o.s. integration of the
number density nj (that will be
approximated with a piecewise linear
function). The optical thickness of dusts,
τdust is obtained by l.o.s. integration of
the dust extinction coefficient kext, given
by the extinction coefficient �����(with

piecewise linear approximation) at
reference wavelength λ0 multiplied by
the ratio λ0/λ elevated to power α(r)
(O’Niel and Royer, 1993). The α
parameter will be piecewise-represented
using appropriate functions uk(r) to be
introduced later as to make the
computation of Kk(r0) manageable.
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Accounting for the non-zero support of tk , so that we can rewrite the dust optical thickness:
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with ��
∗ = max ��, ��  (r* is a reference radial distance used to adimentionalize the argument 

of the logarithm and keep the computation numerically manageable). All the integrals we need 
to compute therefore have the form
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Using the substitution x=r/r0 and then � = �� − 1 we obtain
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Apply now Euler’s integral definition of Gauss’s hypergeometric 2F1 function:
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(Gauss’s hypergeometric function)

(Pochhammer symbol)

(12)

Letting � = 1 −
�

��

�
, � = −

���

�
, � =

�

�
and � =

�

�
, we directly find 

�� �, �, ��, � =
1

2
 

��

�∗

�

�� � �� −
� + �

2
,
1

2
,
3

2
, −��  �

 

��
�
��

�
��

(13)

����� = 2 �
��

�

�� − ����

��

�

����
� ��

��
�∗ ���

� ��
����

�∗

��
��
�∗ ���

����
�∗

 

�

[�� �, 1, ��, ��
∗ − �� �, 1, ��, ����

∗  − 

+ 2 �
��

�

���� − ��

��

�

��
� ��

����
�∗ �����

� ��
����

�∗

��
����

�∗ ���
��
�∗ [−(�� �, 1, ��, ����

∗ − �� �, 1, ��, ��
∗ ) + 

�

����  �� �, 0, ��, ��
∗ − �� �, 0, ��, ����

∗ �
����

��
�

�����
� ���

�

��
��
�∗ ���

����
�∗

����  �� �, 0, ��, ����
∗ − �� �, 0, ��, ��

∗ �
����

��
�

���
������

�

��
����

�∗ ���
��
�∗

(14)

and the dust optical thickness becomes

The O3 density is a Chapman profile with properties compatible with Lebonnois
et al. [2006]. Our dust properties profile mimic one of those published by
Matthanen et al. [2013], chosen for its challanging numerical properties (i.e.
mixing locally large and small gradients). The absorption cross sections are
from Shemansky for CO2 and from Malicet [1995]. We use 100 wavelength
bins over the [200, 300] nm interval and the solar spectral distribution is from

the Solar2000 model. The resulting detailed
exponential attenuation of the solar radiation at
300 nm is detailed below. The total attenuation
is the product of those from the dusts, CO2 and
O3. In our test, the dusts vastly dominate over
the other contributions.

Without noise

We compare the dust kext,0 profile as well as the CO2 and O3 density retrieved using stepwise and log-
linear uk functions: Dashes represent the input profiles, dotted lines with stars show the retrieved value.
The piecewise log-linear representation of the α(r) parameter brings a somewhat more accurate

Stepwise αStepwise αStepwise α

Piecewise log-linear 
α, with 2F1 functionsPiecewise log-linear 

α, with 2F1 functions

Piecewise log-linear 
α, with 2F1 functions

representation , which
improves the retrieval
of the less absorbing
species. For the plots
shown here, we used
twice more pseudo-data
points than fitting
points. The benefit is
more important when
the number of data and
fitting points are equal.
It must be noted that a
regularization of the
system is necessary. We
penalized the second
derivative of the ak’s.

With noise

Noise necessarily degrades the information provided by the (pseudo-)data. We included a minor noise
to the simulated intensity, following a Poisson statistics. The relative uncertainty is small, as would be
the case when using a high efficiency detector. Again, using the log-linear functions for the α(r)

parameter improves the 
retrieval of CO2. The 
adverse effect of noise 
can however easily 
impair the retrieval 
quality of the less 
absorbing species.


