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Abstract

MRI Diffusion Tensor Imaging (DTI) has been recently proposed as a highly discriminative 

measurement to detect structural damages in Disorders of Consciousness patients (Vegetative 

State/Unresponsive Wakefulness Syndrome-(VS/UWS) and Minimally Consciousness State-

MCS). In the DTI analysis, certain tensor features are often used as simplified scalar indices to 

represent these alterations. Those characteristics are mathematically and statistically more 

tractable than the full tensors. Nevertheless, most of these quantities are based on a tensor 

diffusivity estimation, the arithmetic average among the different strengths of the tensor 

orthogonal directions, which is supported on a symmetric linear relationship among the three 

directions, an unrealistic assumption for severely damaged brains. In this paper, we propose a new 

family of scalar quantities based on Generalized Ordered Weighted Aggregations (GOWA) to 

characterize morphological damages. The main idea is to compute a tensor diffusitivity estimation 

that captures the deviations in the water diffusivity associated to damaged tissue. This estimation 

is performed by weighting and combining differently each tensor orthogonal strength. Using these 

new scalar quantities we construct an affine invariant DTI tensor feature using regional tissue 

histograms. An evaluation of these new scalar quantities on 48 patients (23 VS/UWS and 25 MCS) 

was conducted. Our experiments demonstrate that this new representation outperforms state-of-

the-art tensor based scalar representations for characterization and classification problems.

Index Terms

Diffusion Tensor Imaging (DTI); Disorders of consciousness; Vegetative State; Generalized 
Ordered Weighted Aggregations; Structural Damage; Disease Classification

1. INTRODUCTION

After a traumatic or non-traumatic brain injury, some patients will fall into a coma state, and 

possibly brain death. However, some others will “awaken”(i.e., recover sleep-wake cycles) 

from their coma, but with absence of any behavioral signs of awareness (i.e., will only show 

reflex movements without command following) [1]. This state is known as unresponsive 

wakefulness syndrome or Vegetative State (VS/UWS) [1]. In contrast, other patients evolve 

to a Minimally Conscious State (MCS) showing non-reflexive and purposeful behaviors but 
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they are unable to communicate [2]. From the clinical perspective, the diagnosis of these 

Disorders of Consciousness (DoC) is a very challenging task, reflected in the high rate of 

misdiagnoses of the VS/UWS patients (approximately 40%) [3]. Recently, some 

neuroimages experiments have tried to establish accurate biomarkers of the consciousness 

level in VS/UWS and MCS [4, 5, 6]. Nevertheless, a complete disease characterization of 

the neuroimaging is still a very difficult problem [7, 5].

Main etiologies of DoCs include Traumatic Brain Injury (TBI) and Anoxic Brain Injury 

(ABI) [2]. In TBI brain structures are damaged by external forces. For example, rapid 

accelerations or decelerations in a car accident can generate strong shearing forces that will 

affect the axon bodies in white matter [8]. The ABI results from a lack of oxygen supply to 

the brain, with consequent neuronal cell death [9]. These instantaneous damages are 

followed by complex physiological processes that, over the course of hours, days or even 

months, can lead to inflammatory processes, neuronal and axonal death. As a consequence, 

these patients frequently present very severe cortical and subcortical atrophies secondary 

hydrocephalus (i.e, enlarged ventricles [10]. All these physiological processes could 

dramatically change local and global morphological brain properties [11].

Recently, some biomarkers based on DTI have been proposed to quantify in-vivo structural 

changes that correlate with the level of consciousness in DoC patients [12, 5]. In particular, 

the amount of diffusion estimated by the mean diffusivity, has been identified as a low level 

scalar representation of the diffusivity water properties related to the morphological damage 

[5, 12]. This scalar seems to provide a good characterization capacity to discriminate 

VS/UWS and MCS patients [5]. Nevertheless, this quantity is implicitly assuming that 

different tensor orthogonal directions (one axial, two radial) are linearly related and have the 

same importance for the mean diffusivity estimation. This can be an unrealistic assumption 

in severely damaged brains where the level of atrophy and neuronal death probably affects 

each tensor direction in a different way [13]. This suggests that usual DTI scalar maps are 

likely non-optimal representations of damaged tissue, at least in these pathological brains.

In this paper we propose a new family of mean diffusivity estimations for damaged tissue in 

DoC patients. The main contribution of this work is the use of Generalized Ordered 

Weighted Aggregations (GOWA) to obtain a more realistic diffusivity estimation for the 

tensors located in damaged tissue. We show that classic tensor maps could be reformulated 

and even generalized in this new setting. Six different new quantities to capture different 

relationships between axial and radial diffusivities were formulated. Using these quantities a 

highly discriminant feature to distinguish VS/UWS and MCS patients was proposed. Results 

show that these new features outperforms state-of-the-art DTI based scalar quantities in real 

data.

2. METHODS

In DTI information related with strength of water diffusion is described by a tensor S. 

Several scalar measures can be derived from S to describe the structural damage in the brain. 

Common measures include the eigenvalues λ = (λ1, λ2, λ3), λ1 ≥ λ2 ≥ λ3, that characterize 

disruption in the orientation of the brain structures, the mean diffusivity (MD):
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MD = λ =
λ1 + λ2 + λ3

3 (1)

which represents the increase of overall molecule displacement and several kinds of 

anisotropy indices, for instance the volume ratio - VR and the fractional anisotropy - F A:

VR =
λ1 + λ2 + λ3

λ 3

FA =
3 λ1 − λ 2 + λ2 − λ 2 + λ3 − λ 2

2 λ1
2 + λ2

2 + λ3
2

(2)

that quantify the level of disorder in oriented structures in the tissue [14]. Importantly, most 

of these quantities depend upon the estimation of the overall diffusivity in S, an arithmetic 

average of the eigenvalues (equation 1). For the morphological damage characterization 

problem, this estimation is assuming that all tensor orthogonal information is equally 

relevant. Additionally, the use of an arithmetic mean is assuming the existence of a linear 

relationship among the three eigenvalues [15]. Two assumptions that could be violated in 

severely damaged brains, resulting in a non-robust estimation of the mean diffusivity in the 

damaged tissue.

It is worthy to note that the weight selection 1
3  in equation 1 is based on the Laplace 

principle of insufficient reason, i.e., if there is no data to consider that one environmental 

state is more likely than the other, then prior probabilities of environmental states have to be 

equal (the spherical tensor model) [16]. However, because of the inhomogeneity in the 

tensor shapes coming of complex inflammatory and reabsorption processes in DoC patients, 

we believe that this symmetrical assumption is not valid. For example, histological evidence 

in TBI suggests that when axons are rapidly stretched they become brittle, and the axonal 

cytoskeleton can be broken. Then axonal transport is blocked in the breaking point of the 

cytoskeleton, leading to an accumulation of transport products and local swelling. Swelling 

can tear the axon at the site of the break in the cytoskeleton, causing it to drawback toward 

the cell body and form a bulb called a retraction ball [17]. By choosing equally probable 

weights in equation 1, it is assuming that these retraction balls are uniformly distributed on 

the volume measured by DTI. This symmetry could be naturally captured by the spherical 

tensor model, that has been proved to be appropriate in healthy tissue [18]. However, 

histological evidence suggests that this symmetry is not preserved anymore in the damaged 

brain tissues [17], therefore spherical tensor model could not be valid anymore. Additionally, 

the aritmetic average in equation 1 is assuming a linear tensor shape, i.e., tensor orthogonal 

directions are linearly scaled [15]. However, the successful log-euclidian metrics in DTI 

suggest that the tensor nature could be exponentially related rather than linear [19]. To 

capture these two phenomena, 1) the non-uniform distributions of the structural damages 
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and 2) the non-linear watter difussivity in the volume measured by DTI, we here assume 

non-isotropic tensor models for the estimation of the mean diffusivity.

To our knowledge, there is not extensive information about lesion tissue morphology on TBI 

and ABI to build a full disease related tensor model [13]. We therefore model some plausible 

damaged tensor shapes involving different diffusivity axis relevance: axial and radial. In 

addition, we model different relationships among the different tensor orthogonal directions: 

linear or exponential. This problem could be formulated using generalized ordered weighted 

aggregations (GOWA) operators [20]. These operators are widely used in computational 

intelligence because they provide a unified framework to aggregate multiple ordered 

information by using different weights to model different relevance of input information. 

GOWA operators also include several primitives of aggregation to capture different 

relationships between input information, for instance, linear or exponential [20]. A GOWA 

mapping M on a set of positive real numbers λ1, λ2, …, λn is defined by

Mw, p λ1, λ2, …, λn = ∑
j = 1

n
w jθ j

p
p

(3)

where w = (w1, w2, …, wn) is a collection of weights satisfying wj ∈ [0, 1] and 

∑ j = 1
n w j = 1, p is a parameter such that p ∈ [−∞, ∞], θj is the jth largest of the λj. This 

operator is a generalized weighted average on the set of input re-ordered data. Because this 

re-ordering step, a particular aggregate λi is not associated with a particular weight wi, but 

rather a weight is associated with a particular ordered position of aggregate.

We build different tensor diffusivity estimations by using these operators over the 

eigenvalues. Note that usual scalar maps could be written with these operators, for example 

if p = 1 and w j = 1
3  we obtained MD = M 1

3, 1
3 , 1

3 , 1
λ1, λ2, λ3 . The VR could be written as the 

power three of the ratio of two GOWA mappings, one with p → 0 and w j = 1
3 , were we 

obtain the geometrical average M 1
3, 1

3 , 1
3 , 0

= λ1
1/3λ2

1/3λ3
1/3 , and other for the denominator 

using the MD GOWA, i.e.:

VR =

M 1
3, 1

3 , 1
3 , 0

M 1
3, 1

3 , 1
3 , 1

3

Other DTI scalar quantities could be similarly derived, for instance, λ1 = M(1,0,0),1, λ2 = 

M(0,1,0),1 and λ3 = M(0,0,1),1.

As observed, in the GOWA setting determining the associated weights w and the power term 

p of the operator are the most important tasks. Two options have been proposed in this case, 

the first is to use a set of training samples to estimate the parameters [21, 22], the second is 
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to model explicitly the aggregation [21]. For this problem, because of the inhomogeneity of 

the tensor shapes coming from complex inflammatory and athrophy processes, selection of 

good training samples of damaged tissue could be a difficult task [13]. We propose to model 

four different GOWA operators to capture some plaussible tensor shapes. Firstly, 

MD ⊥ , 1 = M 2
3, 1

3 , 0 , 1
 to model the high relevance of axial information compared to radial 

diffusivity. The last weight is set to zero to avoid highly noise input effects usually observed 

in the third eigenvalue of DTI [23]. Similarly, a mapping to model the opposite effect could 

be formulated, i.e., high radial information compared to axial diffusivity 

MD−, 1 = M 1
3, 2

3 , 0 , 1
. In both cases, by using p = 1 a linear relationship between the different 

orthogonal dimensions of the tensor is assumed. However, an exponential shape could be 

modeled in both cases by using weighted geometrical averages MD ⊥ , 0 = M 2
3, 1

3 , 0 , 0
, 

MD−, 0 = M 1
3, 2

3 , 0 , 0
.

Interpretation of these quantities are as follows, for instance M 1
3, 2

3 , 0 , 0
 is capturing the 

value of the average diffusitivity under the assumption that the tensor has a radial shape and 

their orthogonal directions have an exponential growing. We observed that tensors with high 

values for this mapping are likely in agreement with this tensor shape. This idea could be 

used to contrast two very different tensor models:

VR ⊥ / − =

M 2
3, 1

3 , 0 , 0
M 1

3, 2
3 , 0 , 1

3

, VR−/ ⊥ =

M 1
3, 2

3 , 0 , 0
M 2

3, 1
3 , 0 , 1

3

these quatities are natural extensions of the volume ratio (equation 2) and can be also be 

used as scalar maps.

2.1. DTI based scalar features

Overall, these patients present macrostructural lesions [24]. This condition could result for 

instance from hydrocephaly and atrophy processes that change dramatically the geometrical 

brain configuration [25]. Because of these large spatial deformations, recent approaches for 

characterization and classification based on DTI normalization could fail [26]. In 

neuroimages group studies severely deformed brains sometimes need to be excluded [5, 26]. 

Nevertheless, in the clinical practice it is of paramount importance to keep these data for 

diagnosis/prognosis [26]. In order to avoid such limitation, in this work we introduce an 

automatic global invariant affine characterization based on histograms to describe DTI 

information without any spatial normalization. In particular, we characterize white matter 

and gray matter volumes. An automatic brain segmentation was computed in the patient 

space by segmenting the DTI data using a multichannel expectation maximization algorithm 

[27]. The λ3 and MD were used to obtain [28, 27]: Cerebral Spinal Fluid (CSF), Gray 

Matter (GM) and White Matter (WM) volumes. CSF was removed from the analysis to 
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avoid hydrocephaly confounds [29]. Histograms for each scalar map inside each volume 

(WM and GM) were computed and normalized to sum 1. The histogram shape was 

described using the first four statistical moments (mean, variance, skewness and kurtosis) 

and the maximum peak of the histogram.

2.2. Experimental settings

We evaluated how discriminative were the proposed scalar GOWA maps compared with 

state-of-the-art scalar maps on two tasks: discrimination at the group level (VS/UWS vs. 

MCS) and patient-per-patient classification (VS/UWS vs. MCS). A sample of 48 severely 

brain-injured patients (23 VS/UWS and 25 MCS) of varying etiologies, who met the criteria 

defining the VS/UWS and MCS [30], was used to evaluate the proposed characterization. 

Clinical examination was performed using the Coma Recovery Scale-Revised (CRS-R) [30]. 

DTI data were acquired using 3T MRI Scanner (Allegra, Siemens) 64 non-collinear 

directions using a b-value = 1000 s/mm2 and two b=0 images (TR= 5700 ms, TE= 87 ms, 

matrix size=128 × 128, 45 slices, slice thickness=3 mm, gap=0.3 mm) at the University 

Hospital of Liége, Belgium. Images were processed using the FMRIB Software Library 

(FSL, version 4.1.6; Oxford Centre for Functional MRI of the Brain (FMRIB), UK; http://

www.fmrib.ox.ac.uk/fsl/). Several DTI Based scalar maps were constructed from the DTI 

data [14], namely tensor eigen-values (λ1, λ2, λ3), mean diffusivity (MD), fractional 

anisotropy (FA), volume ratio (VR), the recently proposed ellipsoid area ratio (EAR) [31], 

and the six proposed scalar quatities (MD⊥,1, MD−,1, MD⊥,0, MD−,0, VR⊥/−, VR−/⊥). For 

the group level study we reported the results of a two-tailed t-tests comparing the five 

computed quantities per scalar map (Bonferroni corrected for multiple comparisons, p < 

0.01). For the classification task we used a k-nearest neightborhood (k-NN) classifier (k = 

3). A 10-folding cross-validation was used to evaluate generalization performance. A total of 

ten different 10-folding cross-validations were performed. The area under the Receiver 

Operational Curve (ROC) was computed as summary statistic in each fold experiment [32]. 

Two additional experiments of classification were performed to explore the discrimination 

capacity of the complete set of features with and without GOWA based scalar maps, one 

with all features and one using feature selection previous to the training process [33].

3. RESULTS

Table 1 reports the p-values of the five histogram features of each scalar map. The third 

moment of the second eigen value λ2 and the third moment of MD⊥,0 provided the best 

discrimination between VS/UWS and MCS in white matter. In gray matter the best 

discrimination was given by the maximum probability peak of proposed contrasts scalar map 

VR−/⊥. Finally, when both white matter and gray matter were used to compute the histogram 

of damage the best discrimitation was given by the third moment of the MD⊥,0. Using this 

global characterization (WM-GM), the best discrimination values (FA, EAR, MD⊥,0) were 

obtained. EAR outperformed FA. The proposed scalar feature MD⊥,0 outperformed both.

Figure 1 shows the performance for a patient classification task (VS vs. MCS) using whole 

brain (WM-GM) histogram features with different DTI scalar maps features. The proposed 

contrast scalar map VR−/⊥ outperforms other scalar maps with an average classification 
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performance of 0.68 ± 0.026 (best classification 0.72). The EAR based feature provided the 

best average classification performance 0.66 ± 0.043 (best classification 0.72) among the 

evaluated state-of-the-art scalar features. Two additional experiments were performed to 

assest the discrimination capacity the complete set of the scalar features. The first 

experiment (All − No − GOWA) evaluated the discrimination capacity of the classifier using 

all state-of-the-art scalar features (λ1, λ2, λ3, MD, FA, VR, EAR) including the GOWA 

based scalar maps (All − GOWA). In figure 1, classification performance improves from 

0.57 ± 0.048 (best classification 0.64) to 0.66 ± 0.041 (best classification 0.75) by using the 

complete set of features including the GOWA maps. For the second experiment including 

that included the feature selection method, the average classification performance decreased 

to 0.49 ± 0.031 by using this feature selection step on the state-of-the-art scalar features (All 
− No − GOWA†). With the same selection procedure applied over the complete set of scalar 

features, including the GOWA based scalar maps (All − GOWA†), the best average 

classsification performance 0.74 ± 0.032 (best classification 0.79) was obtained. This 

improvement in the classification performance is statistically significant (p < 0.0001).

4. CONCLUSIONS

We here proposed a new family of diffusion tensor scalar quantities based on GOWA to 

characterize morphological damages in severely damaged brains. Using these scalar maps 

we constructed a global affine invariant DTI tensor feature based on regional tissue 

histograms. We demonstrated on different experimental settings that the new representation 

is suitable to characterize the severity of damage in DoC patients.
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Fig. 1. 
Area under the ROC for a whole brain brain classiffier (± standard deviation) using different 

the DTI scalar features. *Bonferroni corrected (p < 0.0001).
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