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Alphabets et mots

Un alphabet est juste un ensemble fini dont les éléments sont appelés
des lettres.
Un mot (fini) est une suite (finie) de lettres que l’on concatène.

Par exemple, abacaba et cababababab · · · sont des mots sur l’alphabet
{a, b, c}.

Un sous-mot du mot u = u1u2 · · · um est une sous-suite finie de la
suite (uj)

m
j=1. Il est appelé facteur si la suite est constituée de termes

consécutifs.

Par exemple, acb est un sous-mot de u = abacaba, mais pas un facteur.
Le mot acab est un facteur de u, donc aussi un sous-mot.
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Nombre d’occurrences des facteurs et sous-mots

Un même mot peut apparaitre plusieurs fois comme sous-mot d’un autre
mot. On peut donc compter combien de fois il apparait.

On note
(u
x
)
le nombre de fois que le mot x apparait comme sous-mot

dans u et |u|x le nombre de fois qu’il apparait comme facteur dans u.

La quantité
(u
x

)
est appelée le coefficient binomial de u et x .

Considérons par exemple le mot u = aababa.

|u|ab = 2 et
(
u

ab

)
= 5.
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Une façon efficace de calculer un coefficient binomial

(
aababa

aba

)
=

(
ababa

aba

)
+

(
ababa

ba

)
=

(
baba

aba

)
+

(
baba

ba

)
+

(
baba

ba

)
=

(
aba

aba

)
+ 2

(
aba

ba

)
+ 2

(
aba

a

)
=

(
ba

aba

)
+

(
ba

ba

)
+ 2

(
ba

ba

)
+ 2 · 2

= 0 + 3
(
a

ba

)
+ 3

(
a

a

)
+ 4

= 0 + 3 · 0 + 3 · 1 + 4 = 7

Donc (
`1u

`2v

)
=

(
u

`2v

)
+ δ`1,`2

(
u

v

)
avec les cas de base

(
u
v

)
= 0 si |u| < |v | et

(
u
`

)
= |u|`.
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A propos de la relation k-binomiale

1 Définitions préliminaires
Mots, facteurs et sous-mots
Différentes relations d’équivalence
Fonctions de complexité

2 Calculer b(k) sur différents mots

3 Retour à la relation d’équivalence k-binomiale
Différences avec la relation k-abélienne
Générer une classe d’équivalence 2-binomiale



Différentes relations d’équivalence

Soient u et v deux mots finis. On définit plusieurs relations d’équivalence :

• l’égalité: u ∼= v ⇔ u = v

• l’équivalence abélienne : u ∼ab,1 v ⇔ |u|a = |v |a ∀a ∈ A

• l’équivalence k-abélienne (k ∈ N) : u ∼ab,k v ⇔ |u|x = |v |x ∀x ∈ A≤k

• l’équivalence k-binomiale (k ∈ N) : u ∼k v ⇔
(u
x

)
=

(v
x

)
∀x ∈ A≤k
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L’équivalence k-binomiale

Définition (Rappel)
Soient u et v deux mots finis. Ils sont k-binomialement équivalents si(

u

x

)
=

(
v

x

)
∀x ∈ A≤k .

Les mots u = bbaabb et v = babbab sont 2-binomialement équivalents.
En effet, (

u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 4 =

(
v

ab

)
,

(
u

ba

)
= 4 =

(
v

ba

)
.
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A propos de la relation k-binomiale

1 Définitions préliminaires
Mots, facteurs et sous-mots
Différentes relations d’équivalence
Fonctions de complexité

2 Calculer b(k) sur différents mots

3 Retour à la relation d’équivalence k-binomiale
Différences avec la relation k-abélienne
Générer une classe d’équivalence 2-binomiale



Complexité factorielle

Soit w un mot infini. Une fonction de complexité de w est une application
liant chaque naturel n avec les facteurs de longueur n du mot w.

Definition
La complexité factorielle du mot w est la fonction

pw : N→ N : n 7→ #Facw(n).

Definition
La complexité factorielle du mot w est la fonction

pw : N→ N : n 7→ #(Facw(n)/ ∼=).

On peut remplacer ∼= par les autres relations d’équivalence dont on a
parlé.
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Les différentes fonctions de complexité

La complexité factorielle du mot w est la fonction

pw : N→ N : n 7→ #(Facw(n)/ ∼=).

La complexité abélienne du mot w est la fonction

ρw : N→ N : n 7→ #(Facw(n)/ ∼ab,1).

La complexité k-abélienne du mot w est la fonction

ρ
(k)
w : N→ N : n 7→ #(Facw(n)/ ∼ab,k).

La complexité k-binomiale du mot w est la fonction

b
(k)
w : N→ N : n 7→ #(Facw(n)/ ∼k).
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Un exemple...

Prenons le mot infini t généré par le morphisme ϕ : a 7→ ab, b 7→ ba. On a

t = abbabaabbaababba · · ·

Les premières valeurs de la complexité factorielle sont les suivantes :

n 0 1 2 3 4 · · ·
pt 1 2 4 6 10 · · ·

Les premières valeurs de la complexité abélienne sont les suivantes :

n 0 1 2 3 4 · · ·
ρt 1 2 3 2 3 · · ·
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Quelques propriétés

1. Pour tous mots u, v et pout tout naturel k ,

u ∼ab,k+1 v ⇒ u ∼ab,k v et u ∼k+1 v ⇒ u ∼k v .

2. Pour tous mots u, v ,

u ∼1 v ⇔ u ∼ab,1 v .

3. Il y a un ordre entre les différentes fonctions de complexité :

ρw(n) = b
(1)
w (n) ≤ b

(k)
w (n) ≤ b

(k+1)
w (n) ≤ pw(n) ∀n ∈ N, k ∈ N .
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Pour la complexité factorielle...

Théorème (Morse–Hedlund)
Soit w un mot infini construit sur un alphabet à ` lettres. Les trois
affirmations suivantes sont équivalentes.
1. Le mot w est ultimement périodique : il existe des mots finis u, v

tels que w = u · vω.
2. Il existe n ∈ N tel que pw(n) < n + `− 1.
3. La fonction pw est bornée par une constante.

Et pour la fonction b(k) ? L’une des implications reste évidente :

w est ultimement périodique ⇒ b
(k)
w est borné par une constante,

puisque b
(k)
w (n) ≤ pw(n).
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Le mot de Thue–Morse

Le mot de Thue–Morse est défini commme le point fixe du morphisme

ϕ : {a, b}∗ → {a, b}∗ :
{

a 7→ ab;
b 7→ ba,

On sait (M. Rigo, P. Salimov, 2015) qu’il a une complexité k-binomiale
bornée.

La valeur exacte est connue :

Théorème (M. L., J. Leroy, M. Rigo, 2018)
Soit k un naturel non nul. Pour tout n ≤ 2k − 1, nous avons

b
(k)
t (n) = pt(n),

tandis que pour tout n ≥ 2k ,

b
(k)
t (n) =

{
3 · 2k − 3, si n ≡ 0 (mod 2k);
3 · 2k − 4, sinon.
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Une autre famille de mots

Un mot sturmien est un mot infini ayant une complexité factorielle égale à
p(n) = n + 1 pour tout n ∈ N.

Vu le théorème de Morse–Hedlund, il s’agit des mots apériodiques de
complexité factorielle la plus faible possible.

Théorème (M. Rigo, P. Salimov, 2015)
Soit w un mot sturmien. Nous avons

b(k)w (n) = pw(n) = n + 1,

pour tout n ∈ N et pour tout k ≥ 2.

Puisque b(k)w (n) ≤ b(k+1)
w (n) ≤ pw(n), il suffit de prouver que

b(2)w (n) = pw(n).
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Généralisations de ces résultats : cas de Thue–Morse

Le mot de Thue–Morse fait partie d’une famille de mots plus large.

Un morphisme est Parikh-constant si les images de toutes ses lettres sont
égales à permutation près.
Autrement dit, pour tous a, b, c ∈ A, |σ(a)|c = |σ(b)|c .

Si σ est un morphisme pour lequel il existe une lettre a ∈ A telle que
• σ(a) commence par a,
• limn→+∞ |σn(a)| = +∞,

alors on peut définir un mot infini

w = lim
n→+∞

σn(a),

que l’on appelle un point fixe du morphisme σ.
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Points fixes de morphismes Parikh-constants

Théorème (M. Rigo, P. Salimov, 2015)
Soit w un mot qui est point fixe d’un morphisme Parikh-constant. Alors
il existe Ck,w > 0 tel que

b
(k)
w (n) < Ck,w

pour tout n ∈ N.

Questions ouvertes :
1. Etant donné un w point fixe d’un morphisme Parikh-constant σ,

peut-on calculer la valeur exacte de b
(k)
w , connaissant juste σ ?

2. Existe-t-il un w point fixe d’un morphisme Parikh-constant pour lequel

b
(k)
w (n) < b

(k)
t (n)

pour tous les n > N ?
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Généralisations de ces résultats : cas des mots sturmiens

Les mots sturmiens sont construits sur l’alphabet binaire {a1, a2}.

Soit w un mot infini sur l’alphabet {a1, . . . , ad}. C’est un mot
d’Arnoux-Rauzy si

• pw(n) = (d − 1)n + 1 ;
• il est récurrent ; i.e. chacun de ses facteurs apparait une infinité de

fois dans w ;
• il possède exactement un facteur spécial à gauche de chaque longueur ;

i.e. pour tout n, il existe un unique facteur u de w de longueur n qui
peut être prolongé à gauche d’au moins deux façons différentes :

∀n, ∃!u ∈ Facw(n) t.q. ∃ai , aj ∈ A, i 6= j : aiu, aju ∈ Facw(n + 1);

• il possède exactement un facteur spécial à droite de chaque longueur.
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Mots d’Arnoux-Rauzy

Les mots d’Arnoux-Rauzy à 2 lettres sont exactement les mots sturmiens.

Rappel :
Pour tout mot sturmien w, on a b

(k)
w = pw, pour tout k ≥ 2.

Conjecture :
Pour tout mot d’Arnoux-Rauzy w, on a b

(k)
w = pw, pour tout k ≥ 2.

La conjecture a pu être démontrée (M. L., M. Rigo, M. Rosenfeld, 2019)
pour le mot de Tribonacci, point fixe du morphisme

τ(0) = 01, τ(1) = 02, τ(2) = 0.
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A propos de la relation k-binomiale

1 Définitions préliminaires
Mots, facteurs et sous-mots
Différentes relations d’équivalence
Fonctions de complexité

2 Calculer b(k) sur différents mots

3 Retour à la relation d’équivalence k-binomiale
Différences avec la relation k-abélienne
Générer une classe d’équivalence 2-binomiale
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Digression : les languages réguliers

Un language est un ensemble de mots.
Il est dit régulier s’il est accepté par un automate.

Exemple : L’automate suivant accepte l’ensemble des mots sur {a, b}
ayant un nombre pair de b.

b

b

aa

Les languages réguliers ont en général une expression "simple". Ici, le
language accepté par l’automate peut être écrit a∗(a∗ba∗ba∗)∗.
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Les languages LL et Sing...

Soit ∼ une relation d’équivalence quelconque définie sur les mots. On
définit
• LL(∼,A) = {u ∈ A∗ : ∀v ∈ [u]∼, u ≤lex v}, le language des plus

petits représentants de chaque classe;

• Sing(∼,A) = {u ∈ A∗ : #[u]∼ = 1}, le language des mots seuls dans
leur classe.

Exemple : Considérons la relation abélienne. On a [aaa]∼ab,1 = {aaa} et
[baa]∼ab,1 = {baa, aba, aab}. Donc

aaa ∈ Sing(∼ab,1, {a, b}) et baa, aba, aab 6∈ Sing(∼ab,1, {a, b})
aaa, aab ∈ LL(∼ab,1, {a, b}) et baa, aba 6∈ LL(∼ab,1, {a, b}).
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...pour la relation k-abélienne

Théorème (J. Cassaigne, J. Karhumäki, S. Puzynina, M. A. Whiteland,
2017) :
Soit A un alphabet quelconque et soit k un naturel. Les languages
LL(∼ab,k ,A) et Sing(∼ab,k ,A) sont réguliers.

En général, on "aime bien" les languages réguliers, car on peut les exprimer
de façon très simple.

Corollaire :
Il existe une opération "assez simple", appelée k-switch, et dénotée ≡k ,
telle que

u ∼ab,k v ⇔ u ≡∗k v ,

i.e. u et v sont équivalents ssi on peut passer d’un mot à l’autre en
appliquant un nombre fini de fois un k-switch.
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...pour la relation k-binomiale

Question naturelle :
Soit A un alphabet quelconque et soit k un naturel. Les languages
LL(∼k ,A) et Sing(∼k ,A) sont-ils réguliers ?

1. Le cas facile : si k = 1. On a vu que ∼1,ab et ∼1 étaient la même
relation. Donc OUI.

2. Deuxième cas facile : si k = 2 et A = {0, 1}. Déjà connu donc OUI
(détails slides suivants).
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Si k = 2 et A = {0, 1}

Définissons le switch, dénoté ≡ :
Soit u un mot de la forme x01y10z (resp., x10y01z). On dit qu’on
applique un switch si on le transforme en le mot x10y01z (resp.,
x01y10z).

Théorème : Nous avons

u ∼2 v ⇔ u ≡∗ v .

Exemple : Générons la classe ∼2 du mot 01100110.

01100110 ≡ 10010110 ≡ 10011001
≡ 10100101 ≡ 11000011
≡ 01101001
≡ 01011010 ≡ 00111100
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Si k = 2 et A = {0, 1} : LL(∼2, {0, 1})

Corollaire : Un mot u est lexicographiquement minimal dans [u]∼2 ssi
une occurrence de 10 comme facteur dans u implique qu’il n’y a aucune
occurrence de 01 comme facteur à droite de ce 10.

Retour à l’exemple : Trouvons le mot minimal dans

[01100110]∼2 = {01100110, 10010110, 10011001, 10100101,
11000011, 01101001, 01011010, 00111100}.

Voici un automate acceptant LL(∼2, {0, 1}).

0

1

1

0 1 0

0
0

0 1
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Si k = 2 et A = {0, 1} : Sing(∼2, {0, 1})

Remarque : Un mot u est seul dans [u]∼2 ssi
• une occurrence de 10 comme facteur dans u implique qu’il n’y a

aucune occurrence de 01 comme facteur à droite de ce 10 (i.e., il est
minimal)

ET
• une occurrence de 01 comme facteur dans u implique qu’il n’y a

aucune occurrence de 10 comme facteur à droite de ce 01 (i.e., il est
maximal).

On peut donc obtenir un automate acceptant Sing(∼2, {0, 1}) en faisant
l’intersection de l’automate du slide précédent et son "complémenté"
(obtenu en échangeant les 0 et les 1).
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Le cas général : k ≥ 2 et #A ≥ 3

Réponse : NON, les languages LL(∼k ,A) et Sing(∼k ,A) ne sont pas
réguliers ; ce qui diffère donc des résultats connus pour ∼ab,k .

Idées-clés du raisonnement:
• Ces languages sont polynomiaux. Un language L est dit polynomial

si la fonction
n 7→ L ∩ An

est majorée par un polynôme en n.
• Ces languages sont non bornés. Un language L est dit borné s’il

existe des mots finis u1, . . . , up tels que

L ⊂ u∗1 · · · u∗p.

• On conclut que les 2 languages ne sont pas réguliers car :
Tout language polynomial qui est régulier est aussi borné.
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Le cas manquant : #A = 2 et k > 2

Conjecture :
Pour tout k > 2, les languages LL(∼k , {0, 1}) et Sing(∼k , {0, 1}) ne sont
pas réguliers.

Ces languages sont polynomiaux, mais la technique utilisée dans le cas
général pour montrer qu’ils sont non bornés ne fonctionne plus.

Remarque :
Lorsqu’un language est régulier, on le trouve souvent "sympathique". On
peut lui associer une expression "simple". Le fait que les languages
LL(∼k , {0, 1}) et Sing(∼k , {0, 1}) ne soient pas réguliers dans le cas
général indique qu’il y a peu de chance de trouver une opération similaire
au k-switch dans le cas k-abélien.

Marie Lejeune (ULiège) 11 décembre 2019 26 / 32



Le cas manquant : #A = 2 et k > 2

Conjecture :
Pour tout k > 2, les languages LL(∼k , {0, 1}) et Sing(∼k , {0, 1}) ne sont
pas réguliers.

Ces languages sont polynomiaux, mais la technique utilisée dans le cas
général pour montrer qu’ils sont non bornés ne fonctionne plus.

Remarque :
Lorsqu’un language est régulier, on le trouve souvent "sympathique". On
peut lui associer une expression "simple". Le fait que les languages
LL(∼k , {0, 1}) et Sing(∼k , {0, 1}) ne soient pas réguliers dans le cas
général indique qu’il y a peu de chance de trouver une opération similaire
au k-switch dans le cas k-abélien.

Marie Lejeune (ULiège) 11 décembre 2019 26 / 32



A propos de la relation k-binomiale

1 Définitions préliminaires
Mots, facteurs et sous-mots
Différentes relations d’équivalence
Fonctions de complexité

2 Calculer b(k) sur différents mots

3 Retour à la relation d’équivalence k-binomiale
Différences avec la relation k-abélienne
Générer une classe d’équivalence 2-binomiale



Comment obtenir tous les mots d’une classe ∼2 ?

Soit u = u1 · · · un et A un alphabet d’au moins 3 lettres. On souhaite
calculer [u]∼2 rapidement. Comment faire ?

Idée 1 : Générer toutes les permutations de {u1, . . . , un}, les mots ainsi
obtenus sont ∼1-équivalents à u. Il faut alors calculer les coefficients
binomiaux de 2 lettres.

Idée 2 : Généraliser le switch utilisé dans le cas d’un alphabet binaire :
soient a, b deux lettres de A. Le switch est défini comme suit :

xabybaz ≡ xbayabz .

Nous avons u ≡∗ v ⇒ u ∼2 v mais malheureusement nous n’avons plus la
réciproque : 1223312 ∼2 2311223 mais 1223312 6≡∗ 2311223.
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L’idée intelligente

Si notre alphabet a d lettres, on suppose que A = {1, . . . , d}.

Remarques : Soient a, b ∈ A. Lorsque l’on passe d’un mot u = xaby à un
mot v = xbay , ce que l’on va noter u ab−→ v ,

1. Les mots u et v sont toujours 1-binomialement équivalents.

2. Si c , d sont des lettres différentes de a, b,
( v
cd

)
=

( u
cd

)
.

3. On a
( v
ab

)
=

( u
ab

)
− 1 et

( v
ba

)
=

( u
ba

)
+ 1.
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L’algorithme

Soit u = u1 · · · un. Pour calculer [u]∼2 :

1. On démarre du mot "trié"

w = 1|u|12|u|2 · · · d |u|d ,

qui est le mot lexicographiquement minimal dans [u]∼1 .

2. Pour tous a < b ∈ A, on calcule
( u
ba

)
. Remarquons que

(w
ba

)
= 0.

3. On va générer tous les mots obtenus en appliquant, pour tous a < b,
exactement

( u
ba

)
transformations du type ab−→ au départ de w .

4. On fait cela "de manière intelligente" afin de ne pas tourner en rond.
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Exemple : Générer [1223312]∼2

(1223312
21

)
= 2(1223312

31

)
= 2(1223312

32

)
= 2

|1122233

|1212233 |1122323

|2112233 12|21233 12|12323 |1123223 11223|32

2|112323 122|1323 12|13223 12123|32

2|113223 21123|32 122|3123 12213|32 12|31223

2|131223 1223|132 123|2123

2|311223 1223|312

12−→

13−→

23−→
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Et pour générer une classe ∼k ?

On peut déjà générer la classe ∼2 facilement, et il suffit donc de calculer
les coefficients binomiaux de plus de 2 lettres.

Remarque :
Il suffit de calculer les coefficients binomiaux en les mots de Lyndon, càd
les mots w tels que, pour tous mots u, v ∈ A+ tels que w = uv , alors
w <lex vu. On peut déduire les autres coefficients de ceux-ci.

Par exemple, le mot bab n’est pas Lyndon, et le coefficient peut donc
s’exprimer (

w

bab

)
=

(
w

ab

)[(
w

b

)
− 1

]
− 2

(
w

abb

)
,

en fonction de ceux des mots ab, b, abb qui sont Lyndon.
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en fonction de ceux des mots ab, b, abb qui sont Lyndon.
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Place aux questions...
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