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ABSTRACT  
 
Optical measurement techniques look very promising 
for finite element (F.E.) model updating or error 
localisation of plate-like structures in the field of 
structural dynamics. The purpose of this paper is to 
investigate a way to better exploit the high spatial 
resolution inherent to these techniques in order to 
correct FE mesh discretisation errors and/or model 
parameter errors. An important assumption in F.E. 
model error detection is first to consider the initial mesh 
as sufficiently fine to well represent the measured 
(displacement or stress) field. In the case of model 
updating, the adjustment of the model is performed by 
minimising the difference between the outputs of the 
model and the exact solution with respect to design 
parameters. In the case of FE mesh adaptation, the 
exact solution has to be estimated whereas in the case 
of model parameter errors, it is directly measured. The 
idea developed in this paper is to take advantage of the 
high spatial resolution offered by optical techniques to 
calculate successively two error estimators using only 
measurements. The experimental field is first used for 
the detection of singular regions corresponding to high 
gradients. This estimator indicates the regions where a 
mesh refinement is required. Thus a second estimator 
is calculated and used for parameter error detection.  
 
 
INTRODUCTION 
 
Although the capabilities of numerical structural 
modelling are increasing, industrials are more and more 
looking for more accurate predictions of the dynamic 
behaviour of structures. This implies more and more 
effective procedures to correct the structural models.  
 
When dealing with finite element (FE) models, two 
types of errors may arise :  
- discretisation errors that are  related to the number of 

elements, to their type and their spatial distribution; 
- parameter errors which include the uncertainty on the 

boundary conditions and the inaccuracy on model 
parameters. 

 
The minimisation of model errors may be performed 
either by adaptive mesh refinement or by model 
parameter correction which is also called model 
updating. Mesh refinement and model updating are 
based on the comparison of an appropriate indicator of 
the discrepancy between the analytical solution and 
another solution assumed to be the correct one. For 

model updating, the measurements are used as the 
reference solution. For mesh adaptation, a better 
numerical solution has to be sought using the 
mathematical model. 
 
Model Updating in Structural Dynamics 
In order to compare experimental results with FE  
model predictions with the aim of model error 
localisation, the measured mode-shape vectors have to 
be expanded to the full size of degrees of freedom 
(DOF) of the model. Different mode-shape expansion 
methods are proposed in the literature [2, 6]. They can 
be classified as mathematically-based or physically- 
based methods in the sense that they make use or not 
of the physical behaviour of the structure. It can be 
shown that the reliability of the error localisation method 
is closely related to the quality of the eigenvector 
expansion process. As classical expansion techniques, 
let us cite the dynamic expansion method or the 
expansion by minimisation of errors on constitutive 
equations (MECE) [2]. The main drawback of mode-
shape vector expansion techniques is that 
mathematical errors due to the expansion process are 
spread all over the structure. A large number of 
measured co-ordinates helps to enhance the expansion 
quality and thus the model error localisation results.  
 
Mesh Refinement 
Mesh refinement methods used in linear static analysis 
aim at minimising errors due to the discretisation of the 
displacement field. It is well known that the use of a 
cinematically acceptable FE model leads to residual 
errors in the equilibrium equation and to stress field 
discontinuities along the interfaces between the 
elements. Mesh refinement methods [1, 3] look to 
transform these errors into a discretisation error 
measurement indicator. The principle of the methods 
consists in approaching the exact field by a field which 
satisfies at least one of the two missing properties of 
the FE discretised field. The exact solution is 
approximated by polynomials of a higher degree than 
those of the FE solution. The calculation of the 
difference between the two fields gives an 
approximation of the discretisation error. This error is 
locally defined as the difference between the exact field 
of displacements (or stresses) ϕ  and the FE field hϕ : 

hhe ϕϕ −=   
(1.) 

 
The error can be calculated element by element or on 
the whole structure. It can also be estimated using 



different norms. The FE method being based on the 
minimisation of the potential energy, it is usual to 
evaluate the error in the form of an energetic norm. 
  
Experimental Modal Analysis 
The use of distributed sensors (e.g. accelerometers) in 
dynamic structural testing is a widespread 
measurement technique. However, it usually leads to a 
very poor spatial resolution. To be able to compare 
efficiently experimental data with calculated results 
from a fine FE mesh or to use them as a starting base 
for structural acoustic calculations, it is recommended 
and even required to measure a sufficient number of 
co-ordinates. Because of this limitation, it is often 
difficult to identify the measured frequency response 
functions in the medium to high frequency range where 
the wavelength of the structural motion is in the range 
of the distance between two neighbouring sensors or 
even of their diameter. Moreover, the quality of the 
error localisation strongly depends on the expansion 
reliability which is itself related to the number of well 
identified experimental modes.  
 
Another drawback to the use of distributed sensors 
comes from their interaction with the tested structure. 
Additional mass and spurious stiffness effects due to 
the presence of sensors and excitation devices lead to 
shifts of the resonance frequencies and to a change in 
the mode shapes. This is especially true for lightweight 
and stiff structures like turbomachine blades for 
example.   
 
Plate-like Structures 
Plate-like structures offer the advantage of presenting 
the majority of their nodes used for the modelling on the 
external surface. In this case, field measurement 
techniques allow to gather a greater amount of 
measurement points than the number of DOF used to 
model the plate surface. This feature can be exploited 
to generate successively two error estimators using 
only measurements. The experimental field is first used 
to build an estimator which indicates the regions where 
a mesh refinement is required. Thus a second 
estimator is defined to detect parameter errors. In order 
to better exploit the richness of the experimental data, 
the whole measured field is compared with the FE field. 
The problem reduces then to the comparison between 
two fields which has been largely studied in the 
literature for mesh refinement purposes. 
 
 
MEASUREMENTS 
 
Optical measurement techniques can provide a whole-
field measurement of a vibrating object and make 
possible the visualisation of deformation shapes. 
Furthermore they have also the advantages  to have a 
high sensitivity, to be non-contacting techniques and to 
run (sometimes) in real-time. However, they are not 
convenient for measuring Frequency Response 
Functions (FRF) over a limited frequency interval. One 
major assumption when using these techniques is that 
the structure vibrates along a single mode-shape. We 
must also add the constraint that this single mode can 
only be excited by an harmonic excitation signal at the 
resonance frequency. Only under these assumptions 
will the deformation shape due to a single point 
harmonic excitation be equal to a mode-shape. 

Otherwise, the response of the structure to an harmonic 
excitation at a frequency close to a resonance 
frequency will be close to the corresponding mode-
shape if : 
- the modal responses of all the other modes are low 

compared to the modal response of the excited 
mode; 

- the resonance frequencies of the other modes are 
far from the natural frequency of the excited mode; 

- damping is low. 
 
The application of the excitation force (especially in the 
case of multiple excitation when the forces are tuned to 
force pure normal mode response) induces technical 
problems such as mass loading and spurious stiffness 
effects. For this reason, mechanical excitation has to be 
applied at the mounting base of the structure. Thus the 
excitation force can be measured by a load cell and an 
accelerometer can be mounted at the same time in 
order to have the driving point FRF and to be able to 
scale the resulting modes. This FRF can also help to 
locate resonance frequencies.  
 
In the case of highly coupled modes, the solution is to 
measure Operating Deflection Shapes (ODS) i.e. the 
stationary dynamic responses rather than mode-
shapes. Data acquisition of a set of FRF can be done at 
appropriated locations using a laser Doppler vibrometer 
so that a multiple degree of freedom parameter 
identification may be performed. It allows to identify the 
damping factors. 
 
 
Interferometry 
Laser-based optical techniques (holography, electronic 
speckle pattern interferometry (ESPI), scanning laser 
Doppler vibrometer) have gain a wide acceptance in 
the field of experimental mechanics for vibration 
measurement of plate-like structures. 
 
By using phase shifting technique for quantitative 
deformation measurement, and by doing stroboscopic 
laser illumination at the vibration frequency, it is 
possible to extract amplitude and phase information for 
every point (pixel) of the fringe pattern at a single 
frequency. With a 3D-ESPI where the position of the 
camera or the illumination direction can be changed, 
and thus the sensitivity vectors, a 3D displacement can 
be calculated. 
 
The measurement and averaging of interference fringes 
between a rest position and a recording of several 
periods (called averaging technique) can be used as a 
quick but rough modal analysis method. 
 
 
GEOMETRICAL CORRELATION  
 
Before using the measured field in the updating 
process, it is necessary to establish the geometric 
correspondence between the experimental structure 
and the finite element model. This implies to determine 
with precision the transformation between the 2-D 
system of the measurement co-ordinates and the  3-D 
system of the model. The measured field is obtained on 
a rectangular grid of pixels. Each pixel may be 
associated to a specific point on the structure surface. 
So a geometrical correlation between the tested 
structure and the model geometry has to be performed. 



Once this correspondence has been established, the 
measurements can be “projected” on the model. In 
reference [4], it is proposed to find the dilatation and 
rotation factors by minimising the distance between the 
image of the structure contour and the projection of the 
model contour in the measurement plane. The 
minimisation process requires the introduction of the 
co-ordinates of a reference point and the evaluation of 
the horizontal and vertical dilations. So a pixel is 
associated to a co-ordinate (x,y). The third co-ordinate 
(depth) is obtained by a projection of the grid of 
measurement on the field representation of the surface 
geometry.  
 
 
DISPLACEMENT OR STRESS FIELD RECOVERY 
 
In this paper, the exact field ϕ to be used in the error 
localisation equation (1) is replaced by the measured 
field ϕexp. At this point, one would like to be able to 
compare the measured value at each pixel with the 
corresponding value of the discretized solution. 
However, the transformation of the experimental data 
(defined in the absolute reference frame) in the intrinsic 
co-ordinates system of a single finite element is a 
difficult inverse problem. Moreover, the stress field is 
not continuous in the cinematically acceptable models. 
For these reasons, it is preferred to fit the 
(displacement or stress) discretized field using the 
same polynomial expressions as the ones used in the 
finite element formulation. The advantages are that : 
- the polynomial functions of the FE solution are 

already known; 
- the experimental fields of displacements and of 

stresses are already naturally continuous; 
- it allows to use directly the experimental data so that 

a possible deterioration of the measurements by a 
smoothing technique is avoided ; 

- it allows to build a continuous FE stress field. 
 
The reconstructed field may either be a naturally 
continuous displacement or stress field of the same 
degree as in the FE formulation. It may be expressed 
element by element according to : 
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where 
n = the number of nodes in the element 
Ni = the shape function at node i  
qi, si = nodal FE displacements or stresses.   
 
The construction of the chosen displacement or stress 
continuous field may be performed at a local level 
(element by element) but also at a more global level 
(region by region). This method is known as the “patch 
recovery” method [1, 3] : it is based on the recovery of 
the continuous field by interpolation of the FE field on a 
given zone called a « patch ». A patch may be defined 
as a set of elements connected to a node of the mesh. 

The reconstructed field on the different patches is then 
used for the evaluation, element by element, of different 
types of errors.  
 
A method which has given good results is the Super-
convergence recovery procedure in element patch. It 
can be shown that the FE stress field crosses the exact 
stress field at particular points of a given element : 
these points are called super-convergence points and 
their co-ordinates may be found theoretically for the 
different types of finite elements. The principle of the 
super-convergence recovery procedure is then to force 
the smoothed field to pass through those particular 
points. As a consequence, this method overestimates 
the quality of the FE solution at these nodes in the case 
of the stress field.  
 
 
Definition of the patch area 
The patches may comprise several finite elements and 
in general, they superpose partly each other. These 
areas must be chosen to have enough data to allow the 
interpolation of the finite element field. Usually, the 
patch area associated to a node j  is made up of the set 
of elements that are connected to this node. 
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where iΩ  represents the element i and mi the number 
of elements connected to the node j. 
 
 
Representation of the field 
Whether speaking about the displacement or the stress 
field, the notation rϕ  will be used to represent the 
recovered field. Each component of this field is 
represented by the polynomial function: 
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where the number of terms is equal to : 
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It is shown in [7] that the results of the recovery of a 
field represented by a bilinear polynomial depend on 
the co-ordinate system of the area, on its position, on 
its size and its orientation. In order to obtain the most 
general possible procedure, it is necessary to have a 
recovery method that is independent of the system of 
axes chosen to evaluate the polynomial coefficients. It 
has been shown in reference [3] that it is advisable to 
use a complete polynomial and a normalised system of 
co-ordinates. 



 
Normalisation of the co-ordinates 
The normalisation used for two-dimensional problems 
is defined in the space [-1,1] X [-1,1] by:  
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where χ represents the co-ordinates (x, y). 
 
This normalisation guarantees the definition of an area 
which touches all the lines defining the limits of the 
normalised space [3] and which is weakly dependent 
on a particular direction. 
 
 
Conditions on the field ϕr. 
The unknown parameters a in equation (6) are obtained 
by minimisation of the difference between the FE 
results and the smoothed values at the points of super-
convergence in the "patch". This results in minimising 
the function :  
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where  ω(xi, yi, zi) is a weighting function that can be 
used to balance the influence of the points (xi, yi, zi) 
according to their distance to the central node which 
defines the area. It is chosen here to give the same 
weight to all the points used. 
  
The problem defined by equation (8.) is in general over-
determined and its solution can be estimated using a 
least square method. For this purpose, let us consider 
the following function :  
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where (xi, yi, zi) are the co-ordinates of the selected 
group of points; mi = ne K  is the total number of these 
points (K = the number of points per element of the 
area).  
 

The minimisation procedure 0)(
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which can be put in the matrix form:  
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Note that the number of equations to be solved for each 
component in each area is low. This makes the method 
less expensive than a method that would use a global 
projection. It should also be noted that the use of the 
stress field super-convergence property leads to 
consider smoothed stress values that are better than 
those obtained by the FE method. However, the 
difference between this improved field and the FE one 
is usually quantified at a previous stage when the FE 
mesh quality is checked. If the FE model discretisation 
of the structure is well adapted, the difference between 
the two fields is weak.  
 
 
CALCULATION OF  ERRORS 
 
Once the field ϕr has been recovered on the patch 
areas, it becomes possible to evaluate the value of the 
continuous field ϕ at any point of the continuous 
structure in the global co-ordinates. Consider a point 
located on the border of the structure : one keeps first 
the values of ϕr on all the areas to which the point 
belongs. Thus one calculates the weighted average 
using the following equation :  
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where mj is the number of areas including the point j ; 
Cj

r is a weighting factor corresponding to the distance 
between the point and the node associated to area r.  
 
The value of the displacement or stress field is then 
available at any measurement points and more 
particularly, at any points inside an element like the 
points of Gauss of the external surface for instance. 
 
Correlation between experimental and FE results 
The most common technique used to assess the 
correlation between measured and FE mode-shape 
vectors is the Modal Assurance Criterion (MAC) defined 
as follows : 
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MAC values give a good idea of the closeness between 
two different mode-shapes ϕexp and ϕFE. They oscillate 
between 0 and 1. An unitary value means a perfect 
correlation. 
 
FE mesh discretisation errors 
The field recovery technique presented previously may 
also be used to express the measurements in the form 
of a smoothed field. If degree N of the measurement 
field polynomial expression is such that :  
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the elementary error introduced by the discretisation of 
the measured field and the use of a polynomial function 
of degree N is written:  
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The total error is: 
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N
jN  and n

jN  are the polynomial interpolation 

functions, respectively of degree N and n at the node j. 
n  is the degree of the FE study. 
 χs  are Gauss points of integration in the local co-
ordinates on the element surface. 

exp

~
js  is the value of the smoothed experimental field at 

node j.  
n  is the total number of elements. 
 
Errors on the parameters 
In this case, the experimental field is used for the 
detection of singular regions corresponding to high 
gradients of errors defined in equation (1). The 
elementary error is obtained by integration using the 
Gauss points located on the surface of the element. 
 
 
CASE STUDY 
 
The error detection procedure has been validated on 
the example of a clamped plate structure (100 x 50 x 2 
mm) (figure 1) using simulated optical measurements. 
The plate is made of Titanium (Young modulus = 11 

E+4 N/mm2). For the purpose of this demonstration, no 
noise was added to the data. The optical 
measurements were simulated using a very fine FE 
mesh (!!! dof) while the FE calculation results are 
obtained using a coarse mesh (!!! dof). 
 

B

A

Figure 1 : Simulated optical measurements (Mode n° 7  
at 116.25Hz). (Fixations are on the right side.) 
 
 
Errors on the parameters 
The FE model and the dynamic analysis were 
performed using the finite element programme Samcef 
(figure 2).  
 

 
Figure 2: FE results (Mode 7  at 117.9 Hz) 

 
The simulated defects are stiffness losses located at 
points A and B (figure 1). The first defect (A) is a 1.66 x 
3.33 x 2 mm area where the Young modulus has been 
reduced to 3.25 E+4 and the second defect (B) is a 
1.66 x 5 x 1 mm area with a Young modulus equal to 
1.6 E+4. 
 
Mode 7 was used for error detection because it is the 
last mode which gives a good correlation between the 
measurements and the FE results. 
 
The correlation between the FE smoothed field and the 
measured field for the 7th mode and for the three 
measurement directions x, y and z gives MAC values 
equal to respectively: 0.9051, 0.8983, 0.9526. 
 
The results of the error localisation technique are 
shown in figure 3. The two zones where the stiffness 
was reduced are clearly identified. Moreover, as shown 
in figure 3, an error at the clamping is also detected. 
This error comes from the FE mesh discretisation error. 

 
Figure 3: elementary error localisation (mode 7) 

(The fixations are at line 40 on the x axis.) 
 
FE mesh discretisation errors 
The simulated experimental structure is a clamped 
plate with a very thin square area at the middle as 
shown in figure 4. The third mode was investigated. 
 



 
Figure 4:clamped (on the right side) plate with a very 

thin square zone, (mode 3) 
 
Results of the discretisation error localisation procedure 
are shown in figures 5 and 6. It can be observed in 
figure 5 that a discretised model using only 1026 DOF 
and 363 nodes is not convenient to well represent the 
3th mode. The error is more or less 10% of the 
experimental displacement field. 
 

 
Figure 5: elementary structural error localisation 

(1026 DOF and 363 nodes) 
In figure 6, the error localisation procedure is applied 
with a model containing 2016 DOF and 693 nodes. It 
results that : 
 
- the global mode is well represented; 
- the mesh is not sufficiently fine near the defect area 

to well represent the measured displacements; 
- an error at the clamping remains. 

Figure 6: elementary structural error localisation 
(2016 DOF and 693 nodes) 

 
 
 
 
 
CONCLUSION 
 
The measurement results of optical techniques were 
exploited for the detection and the localisation of errors 
in the FE model of the experimental structure. The 
proposed method has been tested using simulated data 
and has shown its ability and its performance. The next 
step in the future will be to validate the method on a 
compressor blade using true optical measurement data. 
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